Research on Chemical Intermediates

, Volume 36, Issue 9, pp 1037–1047 | Cite as

Synthesis and characterization of Pb(II) complexes of Schiff bases derived from 3-methyl-4-fluoroacetophenone and amino acids



A series of Pb(II) complexes of the type Pb(L)2 have been synthesized with fluorinated Schiff bases derived from 3-methyl-4-fluoroacetophenone and amino acids (viz phenylalanine, alanine, tryptophan, valine, isoleucine, and glycine). These complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. On the basis of analytical and spectral (IR, UV–visible, and 1H, 13C and 19F NMR) studies, it has been concluded that all the metal complexes have square planar geometry in which the ligand is coordinated to the metal ion through the azomethine nitrogen atom and the carboxylate oxygen atom via deprotonation.


Fluorinated Schiff bases Lead(II) complexes Spectral studies 



The authors are thankful to the Dean, Faculty of Engineering and Technology, Mody Institute of Technology and Science, Deemed University, Lakshmangarh, Sikar, for providing the necessary facilities. The authors are also grateful to Dr Ankit Gandhi for linguistic corrections.


  1. 1.
    V. Chandrasekhar, K. Gopal, P. Thilagar, Acc. Chem. Res. 40, 420–434 (2007)CrossRefGoogle Scholar
  2. 2.
    V. Chandrasekhar, S. Nagendran, V. Baskar, Coord. Chem. Rev. 235, 1–52 (2002)CrossRefGoogle Scholar
  3. 3.
    H.L. Singh, Spectrochim. Acta A 76, 253–258 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Gielen, Appl. Organomet. Chem. 16, 481–494 (2002)CrossRefGoogle Scholar
  5. 5.
    T.S.B. Baul, Appl. Organomet. Chem. 22, 195–204 (2008)CrossRefGoogle Scholar
  6. 6.
    S.K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev. 253, 235–249 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Murugavel, N. Gogoi, J. Organomet. Chem. 693, 3111–3116 (2008)CrossRefGoogle Scholar
  8. 8.
    M.K. Rauf, M.A. Saeed, B.M. Imtiaz-ud-Din, A. Badshah, B. Mirza, J. Organomet. Chem. 693, 3043–3048 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Ma, Q. Wang, R. Zhang, Inorg. Chem. 47, 7060–7061 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Azadmeher, M.M. Amini, N. Hadipour, H.R. Khavasi, H.-K. Fun, C.-J. Chen, Appl. Organomet. Chem. 22, 19–24 (2008)CrossRefGoogle Scholar
  11. 11.
    V. Chandrasekhar, R. Thirumoorthi, Organometallics 28, 2096–2106 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Pellei, S. Alidori, F. Benetollo, G.G. Lobbia, M. Mancini, G.E.G. Lobbia, C. Santini, J. Organomet. Chem. 693, 996–1004 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Nath, S. Pokharia, R. Yadav, Coord. Chem. Rev. 215, 99–149 (2001)CrossRefGoogle Scholar
  14. 14.
    L. Ronconi, C. Marzano, U. Russo, S. Sitran, R. Graziani, D. Fregona, J. Inorg. Biochem. 91, 413–420 (2002)CrossRefGoogle Scholar
  15. 15.
    H. Bruckner, K. Hartel, German Patent 1,061,561, 16 July 1959Google Scholar
  16. 16.
    P. Clifford, S. Singh, J. Stjernsward, G. Klein, Cancer Res. 27, 2578–2615 (1967)Google Scholar
  17. 17.
    Z.H. Chauhan, M. Praveen, A. Ghaffar, Metal-Based Drugs 4, 267–272 (1997)CrossRefGoogle Scholar
  18. 18.
    R.J. Bromfield, R.H. Dainty, R.D. Gillard, B.T. Heaton, Nature 223, 735–736 (1969)CrossRefGoogle Scholar
  19. 19.
    J.T. Welch, S. Eswarakrishnan, Fluorine in bioorganic chemistry (Wiley, New York, 1991)CrossRefGoogle Scholar
  20. 20.
    D.B. Harper, D. O’Hagan, Nat. Prod. Rep. 11, 123–133 (1994)CrossRefGoogle Scholar
  21. 21.
    E. Piscopo, M.V. Diurno, M. Antonucci, F. Imperadrice, G. Califano, M.T. Cataldi, R. Nebulosi, Boll. Soc. Ital. Biol. Sper. 61, 1571–1578 (1985)Google Scholar
  22. 22.
    K.C. Joshi, V.K. Pathak, Coord. Chem. Rev. 22, 37–122 (1977)CrossRefGoogle Scholar
  23. 23.
    F. Ahmad, M. Pervez, S. Ali, M. Mazhar, A. Munir, Synth. React. Inorg. Met.-Org. Chem. 32, 665–687 (2002)CrossRefGoogle Scholar
  24. 24.
    H.L. Singh, M. Sharma, A.K. Varshney, Synth. React. Inorg. Met.-Org. Chem. 30, 445–456 (2000)Google Scholar
  25. 25.
    H.L. Singh, Phosphorus Sulfur and Silicon and Related Elem. 184, 1768–1778 (2009)CrossRefGoogle Scholar
  26. 26.
    H.L. Singh, A.K. Varshney, Bioinorg. Chem. Appl. 2006, 1–7 (2006). doi: 10.1155/BCA/2006/23245 CrossRefGoogle Scholar
  27. 27.
    H.L. Singh, M. Sharma, M.K. Gupta, A.K. Varshney, Bull. Pol. Acad. Sci. Chem. 47, 103–110 (1999)Google Scholar
  28. 28.
    K. Nakamota, Infrared and Raman spectra of inorganic and coordination compounds (Wiley, New York, 1986)Google Scholar
  29. 29.
    B.Y.K. Ho, J.J. Zuckerman, Inorg. Chem. 12, 1552–1561 (1973)CrossRefGoogle Scholar
  30. 30.
    M.K. Gupta, H.L. Singh, U.D. Tripaathi, A.K. Varshney, Synth. React. Inorg. Met.-Org. Chem. 30, 1685–1695 (2000)Google Scholar
  31. 31.
    W.W. Simmons, The Sadtler handbook of proton NMR spectra (Sadtler Laboratories, Philadelphia, 1978)Google Scholar
  32. 32.
    D.J. Pasto, Organic structure determination (Prentice Hall, London, 1969)Google Scholar
  33. 33.
    A. Joshi, S. Verma, R.B. Gaur, R.R. Sharma, Bioinorg. Chem. Appl. 3, 201–215 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Engineering and TechnologyMody Institute of Technology and ScienceLakshmangarh, SikarIndia

Personalised recommendations