Research on Chemical Intermediates

, Volume 36, Issue 6–7, pp 653–660 | Cite as

Correlation between acidity and catalytic activity for the methanol dehydration over various aluminum oxides

  • Dong Min Sung
  • Yun Ha Kim
  • Eun Duck Park
  • Jae Eui Yie


Dehydration of methanol into dimethyl ether (DME) was carried out over aluminum oxides with different crystalline phases, viz. η-Al2O3, γ-Al2O3, θ-Al2O3, (χ + γ)-Al2O3, δ-Al2O3, α-Al2O3, and κ-Al2O3. The catalytic activity decreased in the following order: η-Al2O3 > γ-Al2O3 ≫ θ-Al2O3 ≫ (χ + γ)-Al2O3 ≫ δ-Al2O3 > α-Al2O3 ≈ κ-Al2O3. Several techniques: N2 physisorption, X-ray diffraction (XRD), temperature-programmed desorption (TPD) of NH3, and FT-IR spectroscopy after pyridine adsorption were employed to characterize these solid acid catalysts. The good correlation can be found between the catalytic activity and the amount of Lewis acid site determined by the FT-IR spectra after pyridine adsorption.


DME Dehydration Alumina NH3-TPD Pyridine-IR 



This work was performed for clean energy technology development, and was funded by the R&D Management Center for Energy and Resources of Korea Energy Management Corporation. This work was also supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094047).


  1. 1.
    S.-H. Ahn, S.-H. Kim, H.-S. Hahmm, Res. Chem. Intermed. 34, 793 (2008)CrossRefGoogle Scholar
  2. 2.
    T.A. Semelsberger, R.L. Borup, H.L. Greene, J. Power Sour. 156, 497 (2006)CrossRefGoogle Scholar
  3. 3.
    Q. Ge, Y. Huang, F. Qiu, S. Li, Appl. Catal. A Gen. 167, 23 (1998)CrossRefGoogle Scholar
  4. 4.
    F.S. Ramos, A.M. Duarte de Farias, L.E.P. Borges, J.L. Monteiro, M.A. Fraga, E.F. Sousa-Aguiar, L.G. Appel, Catal. Today 101, 39 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Xia, D. Mao, B. Zhang, Q. Chen, Y. Zhang, Y. Tang, Catal. Commun. 7, 362 (2006)CrossRefGoogle Scholar
  6. 6.
    D. Mao, W. Yang, J. Xia, B. Zhang, G. Lu, J. Mol. Catal. A Chem. 250, 138 (2006)CrossRefGoogle Scholar
  7. 7.
    L. Wang, Y. Qi, Y. Wei, D. Fang, S. Meng, Z. Liu, Catal. Lett. 106, 61 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Takeguchi, K. Yanagiswa, T. Inui, M. Inoue, Appl. Catal. A Gen. 192, 201 (2000)CrossRefGoogle Scholar
  9. 9.
    E.-Y. Lee, Y.-K. Park, O.-S. Joo, K.-D. Jung, React. Kinet. Catal. Lett. 89, 115 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Fu, T. Hong, J. Chen, A. Auroux, J. Shen, Thermochim. Acta 434, 22 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Jiang, J.S. Hwang, T. Jin, T. Cai, W. Cho, Y.S. Baek, S.E. Park, Bull. Korean Chem. Soc. 25, 185 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Xu, J.H. Lunsford, D.W. Goodman, A. Bhattacharyya, Appl. Catal. A Gen. 149, 289 (1997)CrossRefGoogle Scholar
  13. 13.
    K.W. Jun, H.S. Lee, H.S. Roh, S.E. Park, Bull. Korean Chem. Soc. 23, 803 (2002)CrossRefGoogle Scholar
  14. 14.
    F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard, Catal. Commun. 6, 147 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Mollavali, F. Yaripour, Sh. Mohammadi-Jam, H. Atashi, Fuel. Process. Technol. 90, 1093 (2009)CrossRefGoogle Scholar
  16. 16.
    F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard, Catal. Commun. 6, 542 (2005)CrossRefGoogle Scholar
  17. 17.
    F. Yaripour, M. Mollavali, Sh. Mohammadi-Jam, H. Atashi, Energy Fuels 23, 1896 (2009)CrossRefGoogle Scholar
  18. 18.
    V.S. Kumar, A.H. Padmasri, C.V.V. Satyanarayana, I.A.K. Reddy, B.D. Raju, K.S.R. Rao, Catal. Commun. 7, 745 (2006)CrossRefGoogle Scholar
  19. 19.
    C.W. Seo, K.D. Jung, K.Y. Lee, K.S. Yoo, Ind. Eng. Chem. Res. 47, 6573 (2008)CrossRefGoogle Scholar
  20. 20.
    W.E. Farneth, R.J. Gorte, Chem. Rev. 95, 615 (1995)CrossRefGoogle Scholar
  21. 21.
    F. Arena, R. Dario, A. Parmaliana, Appl. Catal. A Gen. 170, 127 (1998)CrossRefGoogle Scholar
  22. 22.
    C.V. Hidalgo, H. Itoh, T. Hattori, M. Niwa, Y. Murakami, J. Catal. 85, 362 (1984)CrossRefGoogle Scholar
  23. 23.
    Z. Zhu, Q. Chen, Z. Xie, W. Yang, C. Li, Microporous Mesoporous Mater. 88, 16 (2006)CrossRefGoogle Scholar
  24. 24.
    C.S. Triantafillidis, A.G. Vlessidis, L. Nalbandian, N.P. Evmiridis, Microporous Mesoporous Mater. 47, 369 (2001)CrossRefGoogle Scholar
  25. 25.
    L.R. Gonzalez, F. Hermes, M. Bertmer, E.R. Castellon, A.J. Lopez, U. Simon, Appl. Catal. A Gen. 328, 174 (2007)CrossRefGoogle Scholar
  26. 26.
    K.-E. Jeong, S.-Y. Jeong, Res. Chem. Intermed. 34, 693 (2008)CrossRefGoogle Scholar
  27. 27.
    G.L. Woolery, G.H. Kuehl, H.C. Timken, A.W. Chester, J.C. Vartuli, Zeolites 19, 288 (1997)CrossRefGoogle Scholar
  28. 28.
    S. Zheng, H.R. Heydenrych, A. Jentys, J.A. Lercher, J. Phys. Chem. B 106, 9552 (2002)CrossRefGoogle Scholar
  29. 29.
    B. Xu, C. Sievers, J.A. Lercher, J.A. Rob van Veen, P. Giltay, R. Prins, J.A. van Bokhoven, J. Phys. Chem. C 111, 12075 (2007)CrossRefGoogle Scholar
  30. 30.
    P. Hoffmann, J.A. Lobo, Microporous Mesoporous Mater. 106, 122 (2007)CrossRefGoogle Scholar
  31. 31.
    E.V. Kul’ko, A.S. Ivanova, G.S. Litvak, G.N. Kryukova, S.V. Tsybulya, Kinet. Catal. 45, 714 (2004)CrossRefGoogle Scholar
  32. 32.
    Catal. Today 5, 1 (1989)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dong Min Sung
    • 1
  • Yun Ha Kim
    • 2
  • Eun Duck Park
    • 2
  • Jae Eui Yie
    • 1
  1. 1.Division of Applied Chemistry and Biological EngineeringAjou UniversitySuwonRepublic of Korea
  2. 2.Division of Energy Systems Research and Division of Chemical Engineering and Materials EngineeringAjou UniversitySuwonRepublic of Korea

Personalised recommendations