Advertisement

Research on Chemical Intermediates

, Volume 36, Issue 6–7, pp 867–873 | Cite as

Synthesis of carbon encapsulated metal (Ni and Cu) nano particles and applications for chiral catalysts

  • Young Rang Uhm
  • Hi Min Lee
  • Fedorova Olga
  • Ovchinnikova Irina
  • Valova Marina
  • Rusinov Gennady
  • Charushin Valery
  • Chang Kyu Rhee
Article

Abstract

Carbon-encapsulated Ni and Cu nanoparticles with a core/shell structure were synthesized by levitational gas condensation (LGC). Methane (CH4) gas was used to coat the surface of the Ni and Cu nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2–3 nm thin carbon layers. In the case of Cu, the particles had a core diameter of 30 nm, and multi-shells with a thickness of 2–3 nm. Biginelli reaction in the presence of l-proline and Ni encapsulated nanoparticles was carried out to change the ratio between stereoisomers in favor of the S-enantiomer for 3,4–dihydropyrimidine (DHPM) with an excess of about 18%.

Keywords

Carbon-encapsulated metal nanoparticles Biginelli reaction 3,4–dihydropyrimidine (DHPM) Chiral 

Notes

Acknowledgment

This research was supported by a grant from “New technology development for synthesis of green nanopowder” by Ministry of Knowledge Economy, Republic of Korea.

References

  1. 1.
    R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoneg, Science 259(5093), 346–348 (1993)CrossRefGoogle Scholar
  2. 2.
    J. Scott, S. Majetich, Phys. Rev. B 52(17), 12564–12571 (1995)CrossRefGoogle Scholar
  3. 3.
    J.J. Delaunay, T. Hayashi, M. Tomita, S. Hirono, S. Umemura, Appl. Phys. Lett. 71(23), 3427–3429 (1997)CrossRefGoogle Scholar
  4. 4.
    Y. Lu, Z.P. Zhu, Z.Y. Liu, Carbon 43, 369–374 (2005)CrossRefGoogle Scholar
  5. 5.
    T. Hayashi, S. Hirono, M. Tomita, S. Ummemura, Nature 281(6585), 722 (1996)Google Scholar
  6. 6.
    P. Harris, S.C. Tsang, Chem. Phys. Lett. 293(1–2), 53–58 (1998)CrossRefGoogle Scholar
  7. 7.
    Z.H. Wang, C.J. Choi, B.K. Kim, J.C. Kim, Z.D. Zhang, Carbon 41(9), 1751–1758 (2003)CrossRefGoogle Scholar
  8. 8.
    B.H. Liu, J. Ding, Z.Y. Zhong, Z.L. Dong, T. White, J.Y. Lin, Chem. Phys. Lett. 358(1–2), 96–102 (2002)CrossRefGoogle Scholar
  9. 9.
    C. Yu, J.S. Qiu, Chem. Engine Res. Des. 86, 904–908 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Caoa, G. Huangb, S. Xuana, Q. Wu, F. Gua, C. Li, J. Alloys Compd. 448, 272–276 (2008)CrossRefGoogle Scholar
  11. 11.
    B.S. Han, C.K. Rhee, M.K. Lee, Y.R. Uhm, IEEE Trans. Magn. 42(11), 3779–3781 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Barluenga, M. Tomas, A. Ballesteros, L.A. Lopez, Tetrahedron Lett. 30, 4573–4576 (1989)CrossRefGoogle Scholar
  13. 13.
    C.O. Kappe, Eur. J. Med. Chem. 35, 1043–1052 (2000)CrossRefGoogle Scholar
  14. 14.
    M.C. Wang, C.L. Xu, Y.X. Zou, H.M. Liu, D.K. Wang, Tetrahedron Lett. 46, 5413–5416 (2005)CrossRefGoogle Scholar
  15. 15.
    Y.R. Uhm, H.M. Lee, C.K. Rhee, IEEE Trans. Magn. 45(6), 2453–2455 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Young Rang Uhm
    • 1
  • Hi Min Lee
    • 2
  • Fedorova Olga
    • 3
  • Ovchinnikova Irina
    • 3
  • Valova Marina
    • 3
  • Rusinov Gennady
    • 3
  • Charushin Valery
    • 3
  • Chang Kyu Rhee
    • 1
  1. 1.Nuclear Materials Research DivisionKorea Atomic Energy Research Institute (KAERI)DaejeonKorea
  2. 2.Plant-Engineering CenterInstitute for Advanced Engineering (IAE)Gyonggi-doKorea
  3. 3.Institute of Organic SynthesisUral Branch of the Russia Academy of ScienceYekaterinburgRussia

Personalised recommendations