Research on Chemical Intermediates

, Volume 36, Issue 6–7, pp 851–857 | Cite as

Effect of hydrogen reduction temperature on the microstructure and magnetic properties of Fe–Ni powders

  • Sung-Tag Oh
  • Yong-Ho Choa
  • Ki Hyeon Kim
  • Sang-Kwan Lee
  • Si-Young Chang


The effect of hydrogen reduction temperature on the properties of Fe–Ni powders was described. The mixed powders of Fe-oxide and NiO were prepared by chemical solution mixing of nitrates powders and calcination at 350 °C for 2 h in air. The calcined powders formed small agglomeration with an average particle size of 100 nm. The microstructure and magnetic properties were investigated by using X-ray diffractometry, thermogravimetry, differential thermal analyzer, and vibrating sample magnetometer. Microstructure and thermal analysis revealed that the Fe-oxide and NiO phase were changed to FeNi3 phase in the temperature range of 245–310 °C, and by heat-up to 690 °C the FeNi3 phase was transformed to γ-FeNi phase. The reduced powder at 350 °C showed saturation magnetization of 76.3 emu/g and coercivity of 205.5 Oe, while the reduced powders at 690 °C exhibited saturation magnetization of 84.0 emu/g and coercivity of 14.0 Oe. The change of magnetic properties was discussed by the observed microstructural features.


Fe–Ni powders Hydrogen reduction Powder synthesis Microstructure Magnetic properties 



This research was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.


  1. 1.
    J.L. Wallace, IEEE Trans. Magn. 29, 4209 (1993)CrossRefGoogle Scholar
  2. 2.
    K.J. Vinoy, R.M. Jha, Radar Absorbing Materials from Theory to Design and Characterization (Kluwer Academic Publishers, Boston, 1996), p. 13Google Scholar
  3. 3.
    Y. Nie, H.H. He, R.Z. Gong, X.C. Zhang, J. Magn. Magn. Mater. 310, 13 (2007)CrossRefGoogle Scholar
  4. 4.
    X. Lu, G. Liang, Y. Zhang, Mater. Sci. Eng. B139, 124 (2007)CrossRefGoogle Scholar
  5. 5.
    B.-H. Lee, Y.J. Lee, K.H. Min, D.-G. Kim, Y.D. Kim, Mater. Lett. 59, 3156 (2005)CrossRefGoogle Scholar
  6. 6.
    C. Duhamel, Y. Champion, M. Trencé, M. Walls, J. Alloy Compd. 393, 204 (2005)CrossRefGoogle Scholar
  7. 7.
    Z.H. Wang, C.J. Choi, J.C. Kim, B.K. Kim, Z.D. Zhang, Mater. Lett. 57, 3560 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Tomonari, K. Ida, H. Imanishi, T. Yonezawa, K. Mori, H. Yamashita, Res. Chem. Intermed. 34, 641 (2008)CrossRefGoogle Scholar
  9. 9.
    S.-T. Oh, M.-H. Joo, Y.-H. Choa, K.H. Kim, S.-K. Lee, Phys. Scr. T139, 014050 (2010)CrossRefGoogle Scholar
  10. 10.
    J.S. Lee, T.H. Kim, J.H. Yu, S.W. Chung, Nanostr. Mater. 9, 153 (1997)CrossRefGoogle Scholar
  11. 11.
    S.F. Moustafa, W.M. Daoush, J. Mater. Proc. Tech. 181, 59 (2007)CrossRefGoogle Scholar
  12. 12.
    T.B. Massalski, Binary Alloy Phase Diagram (American Society for Metals, Ohio, 1986), p. 267Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sung-Tag Oh
    • 1
  • Yong-Ho Choa
    • 2
  • Ki Hyeon Kim
    • 3
  • Sang-Kwan Lee
    • 4
  • Si-Young Chang
    • 5
  1. 1.Department of Materials Science and EngineeringSeoul National University of Science and TechnologySeoulKorea
  2. 2.Department of Chemical EngineeringHanyang UniversityGyeonggiKorea
  3. 3.Department of PhysicsYeungnam UniversityGyeongbukKorea
  4. 4.Composite Materials Research Group, Korea Institute of Materials ScienceGyeongnamKorea
  5. 5.Department of Materials EngineeringKorea Aerospace UniversityGyeonggiKorea

Personalised recommendations