Research on Chemical Intermediates

, Volume 36, Issue 6–7, pp 775–784 | Cite as

Properties and consolidation of nanocrystalline 3Cu–Al2O3 composite by rapid sintering

  • In-Yong Ko
  • Na-Ri Kim
  • Jin-Yeoung Lee
  • Na-Ra Park
  • Jung-Mann Doh
  • In-Jin Shon


Nanopowders of Cu and Al2O3 were synthesized from 3CuO and 2Al powders by high-energy ball milling. Nanocrystalline Al2O3 reinforced composite was consolidated by pulsed-current activated sintering method within 2 min from mechanically synthesized powders of Al2O3 and Cu. The relative density of the composite was 96%. The average hardness and fracture toughness values obtained were 540 kg/mm2 and 6.3 MPa m1/2, respectively.


Rapid sintering Composite Nanophase Mechanical properties Cu–Al2O3 



We are grateful for the financial support from the Korea Institute of Science and Technology, which was provided through the program for study on Development of Surface Treatment for Light Metals.


  1. 1.
    K. Friedrich, Engineering Materials Handbook, vol. 4-Ceramics and Glasses (ASM, Materials Park, 1991)Google Scholar
  2. 2.
    M.F. Ashby, D.R.H. Jones, Engineering Materials 1 (International Series on Materials Science and Technology), vol. 34 (Pergamon, Oxford, 1986)Google Scholar
  3. 3.
    M.S. El-Eskandarany, J. Alloys Compd. 305, 225–238 (2000)CrossRefGoogle Scholar
  4. 4.
    J. Shang, T. Zhu, S.D. Xie, Res. Chem. Intermed. 35, 667–673 (2009)CrossRefGoogle Scholar
  5. 5.
    K. Niihara, Nikahira (Elsevier Scientific Publishing Co., Trieste, 1990)Google Scholar
  6. 6.
    S. Berger, R. Porat, R. Rosen, Prog. Mater. Sci. 42, 311–320 (1997)CrossRefGoogle Scholar
  7. 7.
    I.J. Shon, D.K. Kim, I.Y. Ko, J.K. Yoon, K.T. Hong, Mater. Sci. Forum 525–528, 534–536 (2007)Google Scholar
  8. 8.
    Z. Fang, J.W. Eason, Int. J. Refract. Met. Hard Mater. 13, 297–303 (1995)CrossRefGoogle Scholar
  9. 9.
    A.I.Y. Tok, L.H. Luo, F.Y.C. Boey, Mater. Sci. Eng. A 383, 229–234 (2004–2005)Google Scholar
  10. 10.
    M. Sommer, W.D. Schubert, E. Zobetz, P. Warbichler, Int. J. Refract. Met. Hard Mater. 20, 41–50 (2002)CrossRefGoogle Scholar
  11. 11.
    I.J. Shon, D.K. Kim, K.T. Lee, K.S. Nam, Met. Mater. Int. 14, 593–598 (2008)CrossRefGoogle Scholar
  12. 12.
    I.J. Shon, D.H. Rho, H.C. Kim, Met. Mater. Int. 6, 533–538 (2000)Google Scholar
  13. 13.
    C. Suryanarayana, M. Grant Norton, X-Ray Diffraction: A Practical Approach (Plenum, New York, 1998), p. 213Google Scholar
  14. 14.
    J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, S.C. Glade, P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004)CrossRefGoogle Scholar
  15. 15.
    J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Intermetallics 12, 589 (2004)CrossRefGoogle Scholar
  16. 16.
    J.E. Garay, J.E. Garay, U. Anselmi-Tamburini, Z.A. Munir, Acta Mater. 51, 4487 (2003)CrossRefGoogle Scholar
  17. 17.
    G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 533–538 (1981)CrossRefGoogle Scholar
  18. 18.
    K. Niihara, R. Morena, D.P.H. Hasselman, J. Mater. Sci. Lett. 1, 12–16 (1982)CrossRefGoogle Scholar
  19. 19.
    M.N. Rahaman, A. Yao, B.S. Bal, J.P. Garino, M.D. Ries, J. Am. Ceram. Soc. 90, 1965–1988 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • In-Yong Ko
    • 1
  • Na-Ri Kim
    • 1
  • Jin-Yeoung Lee
    • 1
  • Na-Ra Park
    • 1
  • Jung-Mann Doh
    • 2
  • In-Jin Shon
    • 1
  1. 1.Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering CollegeChonbuk National UniversityChonbukRepublic of Korea
  2. 2.Advanced Functional Materials Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations