Research on Chemical Intermediates

, Volume 36, Issue 5, pp 511–522 | Cite as

Terminal C≡C triple bond hydrogenation using immobilized Wilkinson’s catalyst

  • Eliška Leitmannová
  • Petr Jirásek
  • Jakub Rak
  • Lucie Potucká
  • Petr Kačer
  • Libor Červený


In this work, we try to hydrogenate selectively phenylacetylene to styrene and 3-phenylpropyne to allylbenzene using immobilized or pure Wilkinson’s catalyst. The catalyst was immobilized using two approaches—immobilization using ionic exchange and immobilization using covalent bonding. In the first case, the smectite minerals (hectorite and montmorillonite) were used as the supports. In the second case, MCM-41 and SBA-15 were used as the supports. Both types of immobilization were successful and the solid products were characterized. For the covalent bond formation, it was necessary to first modify the surface of the silica material. The modification was carried out using two substances, one adding an amino group to the silica material, and the second adding a phenyl group to the material. The selectivity of hydrogenation of both substances was higher using heterogeneous catalyst in the case of phenylacetylene. In the case of phenylpropyne, no difference in selectivity using Wilkinson’s catalyst in homogeneous or heterogeneous arrangement was observed. The type of immobilization has no influence on either activity or selectivity of catalyst.


Hydrogenation Immobilization Phenylacetylene Wilkinson’s catalyst 



Financial support of the Ministry of Education of the Czech Republic no.: MSM6056137301 and Grant Agency of Czech Republic Grants No: 104/07/1239 and 203/08/H032-1.


  1. 1.
    B. Cornils, W.A. Herrmann, R. Schögl, C.H. Wong, Catalysis from A to Z. A Concise Encyclopedia (Wiley-VCH, Weinheim, 2000)Google Scholar
  2. 2.
    J. Sedláček, J. Vohlídal, Collect. Czech. Chem. Commun. 68, 1745 (2003)CrossRefGoogle Scholar
  3. 3.
    J.A. Osborn, F.H. Jardine, J.F.Young, G. Wilkinson, J. Chem. Soc. 1, 1711 (1966)Google Scholar
  4. 4.
    J.V. Crivello, M. Fan, J. Polym. Sci. Polym. Chem. 30, 1 (1992)CrossRefGoogle Scholar
  5. 5.
    I.D. Kostas, K.A. Vallianatou, P. Kyritsis, J. Zedník, J. Vohlídal, Inorg. Chim. Acta 357(10), 3084 (2004)CrossRefGoogle Scholar
  6. 6.
    A. Biffis, E. Castello, M. Zecca, M. Basato, Tetrahedron 57, 10391 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Murai, R. Sugise, N. Sonoda, Angew. Chem. Int. Ed. Engl. 20, 481 (1981)CrossRefGoogle Scholar
  8. 8.
    F. Solymosi, A. Erdöhelyi, in New Horizons in Catalysis, Studies in Surface Science and Catalysis 7B, ed. by T. Seiyama, K. Tanabe (Elsevier, Amsterdam, 1980), pp. 1448–1449Google Scholar
  9. 9.
    R. Bertani, R.A. Michelin, M. Mozzon, A. Sassi, M. Basato, A. Biffis, G. Martinati, M. Zecca, Inorg. Chem. Commun. 4, 281 (2001)CrossRefGoogle Scholar
  10. 10.
    A. Nakazato, I. Saeed, T. Katsumata, M. Shiotsuki, T. Masuda, J. Zednik, J. Vohlidal, J. Polym. Sci. Polym. Chem. 43, 19–4530 (2005)CrossRefGoogle Scholar
  11. 11.
    T. Opstal, J. Zedník, J. Sedláček, J. Svoboda, J. Vohlídal, F. Verpoort, Collect. Czech. Chem. Commun. 67, 1858 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Vohlídal, J. Sedláček, N. Patev, O. Lavastre, P.H. Dixneuf, S. Cabioch, H. Balcar, J. Pfleger, V. Blechta, Macromolecules 32, 6439 (1999)CrossRefGoogle Scholar
  13. 13.
    R.D. Gillard, J.A. Osborn, P.B. Stockwell, G. Wilkinson, Proc. Chem. Soc. 1, 284 (1964)Google Scholar
  14. 14.
    J.A. Osborn, G. Wilkinson, J.F. Young, Chem. Commun. 2, 17 (1965)Google Scholar
  15. 15.
    J.F. Young, J.A. Osborn, F.H. Jardine, G. Wilkinson, Chem. Commun. 131 (1965)Google Scholar
  16. 16.
    M.M. Taqui Khan, M.R.H. Siddiqui, S.A. Samad, Inorg. Chem. 28, 4427 (1989)CrossRefGoogle Scholar
  17. 17.
    M.M. Taqui Khan, M.R.H. Siddiqui, H.C. Bajaj, G. Ramachandraiah, Polyhedron 10, 2729 (1991)Google Scholar
  18. 18.
    M. Bartók, G. Szöllösi, Á. Mastalir, I. Dékány, J. Mol. Catal. 139, 227 (1999)CrossRefGoogle Scholar
  19. 19.
    L. Huang, J.Ch. Wu, S. Kavi, React. Kinet. Catal. Lett. 82, 65 (2004)Google Scholar
  20. 20.
    C. Merckle, S. Haubrich, J. Blumel, J. Organomet. Chem. 627, 44 (2001)CrossRefGoogle Scholar
  21. 21.
    J. Kramer, E. Nollen, W. Buis, W.L. Driessen, J. Reedijk, React. Funct. Pol. 57, 1 (2003)CrossRefGoogle Scholar
  22. 22.
    C. Merckle, J. Blumel, Top. Catal. 34, 5 (2005)CrossRefGoogle Scholar
  23. 23.
    I.V. Koptyug, K.V. Kovtunov, S.R. Burt, M.S. Anwar, H.S. Christian, A. Pines, R.Z. Sagdeev, J. Am. Chem. Soc. 129, 5580 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Balcar, J. Sedláček, J. Čejka, J. Vohlídal, Macromol. Rapid Commun. 23, 32 (2002)CrossRefGoogle Scholar
  25. 25.
    H. Balcar, J. Sedláček, J. Svoboda, N. Žilková, J. Vohlídal, M. Pacovská, Collect. Czech. Chem. Commun. 68, 1861 (2003)CrossRefGoogle Scholar
  26. 26.
    P. Kooyman, M. Slabová, V. Bosáček, J. Čejka, J. Rathouský, A. Zukal, Collect. Czech. Chem. Commun. 66, 555 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Eliška Leitmannová
    • 1
  • Petr Jirásek
    • 1
  • Jakub Rak
    • 2
  • Lucie Potucká
    • 1
  • Petr Kačer
    • 1
  • Libor Červený
    • 1
  1. 1.Faculty of Chemical Technology, Department of Organic TechnologyInstitute of Chemical Technology in PraguePrague 6Czech Republic
  2. 2.Faculty of Chemical Engineering, Department of Analytical ChemistryInstitute of Chemical Technology in PraguePragueCzech Republic

Personalised recommendations