Research on Chemical Intermediates

, Volume 36, Issue 3, pp 259–267 | Cite as

Quenching dynamics study on photoinduced excited triplet duroquinone by TEMPO in 1,2-propandiol

  • Xinsheng Xu
  • Lixia Jia
  • Lei Shi
  • Zhifeng Cui


Chemically induced dynamic electron polarization (CIDEP) spectrum and transient absorptive spectrum are recorded in photolysis of duroquinone (DQ) in 1,2-propanodiol (PG). Durosemiquinone neutral radical DQH and PG ketyl radical \({\text{CH}}_{3}{{{\dot{\text{C}}}\text{OHCH}}}_{2}{\text{OH}}\) are produced through hydrogen transfer reaction from PG to 3DQ*. When stable radical TEMPO is added to DQ/PG solution, photolysis results in CIDEP on TEMPO, which can be interpreted as a quartet precursor radical-triplet pair mechanism (QP-RTPM). There is competition between PG and TEMPO to quench 3DQ*. The CIDEP intensity of DQH decreases with the increase of TEMPO concentration. The quenching dynamics in photolysis of DQ/TEMPO/PG system is analyzed in detail. Based on the dynamics analysis and the measurement of the lifetime of 3DQ* by its transient absorbance decay, the quenching rate constant of 3DQ* by TEMPO in PG is obtained as 1.34 × 107 L mol−1 s−1. This quenching rate constant is closely diffusion-controlled.


Quenching dynamics Duroquinone TR-ESR Transient absorptive spectrum 



This work is supported in part by the Scientific Research Starting Foundation for teachers with Ph.D. in Anhui Normal University. We are grateful to Professor Limin Zhang for his help in transient absorptive spectrum measurement.


  1. 1.
    V.E. Kagan, P.J. Quinn, Q. Coenzyme (eds.), Molecular Mechanisms in Health and Disease (CRC, Boca Raton, FL, 2001)Google Scholar
  2. 2.
    M.A. Hangarter, A. Hörmann, Y. Kamdzhilov, J. Wirz, Photochem. Photobiol. Sci. 2, 524 (2003)CrossRefGoogle Scholar
  3. 3.
    A. Brunmark, E. Cadenas, Free Radic. Biol. Med. 7, 435 (1989)CrossRefGoogle Scholar
  4. 4.
    Y. Kumagai, S. Koide, K. Taguchi, A. Endo, Y. Nakai, T. Yoshikawa, N. Shimojo, Chem. Res. Toxicol. 15, 483 (2002)CrossRefGoogle Scholar
  5. 5.
    R. Sugimoto, Y. Kumagai, Y. Nakai, T. Ishii, Free Radic. Biol. Med. 38, 388 (2005)CrossRefGoogle Scholar
  6. 6.
    S.W. Chung, H.Y. Chung, A. Toriba, T. Kameda, N. Tang, R. Kizu, K. Hayakawa, Toxicol. Sci. 95, 348 (2007)CrossRefGoogle Scholar
  7. 7.
    R.H. Bisby, A.W. Parker, Biophys. Biochem. Res. Commun. 244, 263 (1998)CrossRefGoogle Scholar
  8. 8.
    R.H. Bisby, A.W. Parker, J. Am. Chem. Soc. 117, 5664 (1995)CrossRefGoogle Scholar
  9. 9.
    Y. Nishioku, K. Ohara, K.M. Nagaoka, J. Phys. Chem. B 105, 5032 (2001)CrossRefGoogle Scholar
  10. 10.
    K. Ohara, Y. Hashimoto, C. Hamada, S. Nagaoka, J. Photochem. Photobiol. A 200, 239 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Tachikawa, Y. Kobori, K. Akiyama, Chem. Phys. Lett. 36, 13 (2002)CrossRefGoogle Scholar
  12. 12.
    P.J. Hore, K.A. Mclauchan, S. Frydkjaer, Chem. Phys. Lett. 77, 127 (1981)CrossRefGoogle Scholar
  13. 13.
    C. Blattler, F. Jent, H. Paul, Chem. Phys. Lett. 166, 375 (1990)CrossRefGoogle Scholar
  14. 14.
    A. Kawai, K. Obi, Res. Chem. Intermed. 19, 865 (1993)CrossRefGoogle Scholar
  15. 15.
    G. He, C. Chen, J. Yang, G. Xu, J. Phys. Chem. A 102, 2865 (1998)CrossRefGoogle Scholar
  16. 16.
    X. Xinsheng, Z. Xianyi, C. Zhifeng, T. Lu, Chem. Phys. Lett. 369, 579 (2003)CrossRefGoogle Scholar
  17. 17.
    K. Bhattacharyy, P.K. Das, R.W. Fessenden, M.V. George, K.R. Gopidas, G.L. Hug, J. Phys. Chem. 89, 4164 (1985)CrossRefGoogle Scholar
  18. 18.
    X. Zhang, X. Xu, Z. Cui, T. Lu, Chin. J. Chem. 18, 683 (2000)Google Scholar
  19. 19.
    X. Xu, G. Zhu, W. Zhang, X. Ji, Z. Cui, T. Lu, Chin. J. Atom. Mol. 22, 127 (2005)Google Scholar
  20. 20.
    T. Lu, Q. Wei, Q. Yu, Chin. J. Sci. Instrum. 14, 262 (1993)Google Scholar
  21. 21.
    X. Xu, L. Jia, G. Zhu, Z. Cui, Res. Chem. Intermed. 35, 55 (2009)CrossRefGoogle Scholar
  22. 22.
    G. Zhu, X. Xu, X. Ji, Z.-f. Cui, T.-x. Lu, G.-z. Wu, Chin. J. Atom. Mol. 24, 331 (2007)Google Scholar
  23. 23.
    L.T. Muus, P.W. Atkins, K.A. Mclauchan, J.B. Pedersen, Chemically Induced Magnetic Polarization (Reidel, Dordrecht, 1977)Google Scholar
  24. 24.
    R.W. Eveson, K.A. Mclauchlan, Mol. Phys. 96, 133 (1999)Google Scholar
  25. 25.
    J.H. Dymond, M.A. Awan, N.F. Glen, J.D. Isdale, Int. J. Thermophys. 12, 433 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations