Skip to main content
Log in

Quenching dynamics study on photoinduced excited triplet duroquinone by TEMPO in 1,2-propandiol

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Chemically induced dynamic electron polarization (CIDEP) spectrum and transient absorptive spectrum are recorded in photolysis of duroquinone (DQ) in 1,2-propanodiol (PG). Durosemiquinone neutral radical DQH and PG ketyl radical \({\text{CH}}_{3}{{{\dot{\text{C}}}\text{OHCH}}}_{2}{\text{OH}}\) are produced through hydrogen transfer reaction from PG to 3DQ*. When stable radical TEMPO is added to DQ/PG solution, photolysis results in CIDEP on TEMPO, which can be interpreted as a quartet precursor radical-triplet pair mechanism (QP-RTPM). There is competition between PG and TEMPO to quench 3DQ*. The CIDEP intensity of DQH decreases with the increase of TEMPO concentration. The quenching dynamics in photolysis of DQ/TEMPO/PG system is analyzed in detail. Based on the dynamics analysis and the measurement of the lifetime of 3DQ* by its transient absorbance decay, the quenching rate constant of 3DQ* by TEMPO in PG is obtained as 1.34 × 107 L mol−1 s−1. This quenching rate constant is closely diffusion-controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.E. Kagan, P.J. Quinn, Q. Coenzyme (eds.), Molecular Mechanisms in Health and Disease (CRC, Boca Raton, FL, 2001)

    Google Scholar 

  2. M.A. Hangarter, A. Hörmann, Y. Kamdzhilov, J. Wirz, Photochem. Photobiol. Sci. 2, 524 (2003)

    Article  CAS  Google Scholar 

  3. A. Brunmark, E. Cadenas, Free Radic. Biol. Med. 7, 435 (1989)

    Article  CAS  Google Scholar 

  4. Y. Kumagai, S. Koide, K. Taguchi, A. Endo, Y. Nakai, T. Yoshikawa, N. Shimojo, Chem. Res. Toxicol. 15, 483 (2002)

    Article  CAS  Google Scholar 

  5. R. Sugimoto, Y. Kumagai, Y. Nakai, T. Ishii, Free Radic. Biol. Med. 38, 388 (2005)

    Article  CAS  Google Scholar 

  6. S.W. Chung, H.Y. Chung, A. Toriba, T. Kameda, N. Tang, R. Kizu, K. Hayakawa, Toxicol. Sci. 95, 348 (2007)

    Article  CAS  Google Scholar 

  7. R.H. Bisby, A.W. Parker, Biophys. Biochem. Res. Commun. 244, 263 (1998)

    Article  CAS  Google Scholar 

  8. R.H. Bisby, A.W. Parker, J. Am. Chem. Soc. 117, 5664 (1995)

    Article  CAS  Google Scholar 

  9. Y. Nishioku, K. Ohara, K.M. Nagaoka, J. Phys. Chem. B 105, 5032 (2001)

    Article  CAS  Google Scholar 

  10. K. Ohara, Y. Hashimoto, C. Hamada, S. Nagaoka, J. Photochem. Photobiol. A 200, 239 (2008)

    Article  CAS  Google Scholar 

  11. T. Tachikawa, Y. Kobori, K. Akiyama, Chem. Phys. Lett. 36, 13 (2002)

    Article  Google Scholar 

  12. P.J. Hore, K.A. Mclauchan, S. Frydkjaer, Chem. Phys. Lett. 77, 127 (1981)

    Article  CAS  Google Scholar 

  13. C. Blattler, F. Jent, H. Paul, Chem. Phys. Lett. 166, 375 (1990)

    Article  Google Scholar 

  14. A. Kawai, K. Obi, Res. Chem. Intermed. 19, 865 (1993)

    Article  CAS  Google Scholar 

  15. G. He, C. Chen, J. Yang, G. Xu, J. Phys. Chem. A 102, 2865 (1998)

    Article  CAS  Google Scholar 

  16. X. Xinsheng, Z. Xianyi, C. Zhifeng, T. Lu, Chem. Phys. Lett. 369, 579 (2003)

    Article  Google Scholar 

  17. K. Bhattacharyy, P.K. Das, R.W. Fessenden, M.V. George, K.R. Gopidas, G.L. Hug, J. Phys. Chem. 89, 4164 (1985)

    Article  Google Scholar 

  18. X. Zhang, X. Xu, Z. Cui, T. Lu, Chin. J. Chem. 18, 683 (2000)

    CAS  Google Scholar 

  19. X. Xu, G. Zhu, W. Zhang, X. Ji, Z. Cui, T. Lu, Chin. J. Atom. Mol. 22, 127 (2005)

    CAS  Google Scholar 

  20. T. Lu, Q. Wei, Q. Yu, Chin. J. Sci. Instrum. 14, 262 (1993)

    Google Scholar 

  21. X. Xu, L. Jia, G. Zhu, Z. Cui, Res. Chem. Intermed. 35, 55 (2009)

    Article  CAS  Google Scholar 

  22. G. Zhu, X. Xu, X. Ji, Z.-f. Cui, T.-x. Lu, G.-z. Wu, Chin. J. Atom. Mol. 24, 331 (2007)

    Google Scholar 

  23. L.T. Muus, P.W. Atkins, K.A. Mclauchan, J.B. Pedersen, Chemically Induced Magnetic Polarization (Reidel, Dordrecht, 1977)

    Google Scholar 

  24. R.W. Eveson, K.A. Mclauchlan, Mol. Phys. 96, 133 (1999)

    CAS  Google Scholar 

  25. J.H. Dymond, M.A. Awan, N.F. Glen, J.D. Isdale, Int. J. Thermophys. 12, 433 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Scientific Research Starting Foundation for teachers with Ph.D. in Anhui Normal University. We are grateful to Professor Limin Zhang for his help in transient absorptive spectrum measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Jia, L., Shi, L. et al. Quenching dynamics study on photoinduced excited triplet duroquinone by TEMPO in 1,2-propandiol. Res Chem Intermed 36, 259–267 (2010). https://doi.org/10.1007/s11164-010-0138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-010-0138-1

Keywords

Navigation