Skip to main content
Log in

Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Photocatalytic degradation (PCD) reactions of cationic methylene blue (MB) and anionic humic acid (HA) were studied in naked TiO2 and fluorinated TiO2 (F-TiO2) suspensions in order to investigate how the modification of the TiO2 surface functional group influenced PCD reactions. Adsorption behaviors of MB and HA in the naked TiO2 followed a typical pH-dependent electrostatic interaction mechanism. On the other hand, those in the F-TiO2 were markedly changed and even showed a reversed dependence in specific pH ranges due to surface fluoride interrupting the interaction of substrates and surface titanol groups. PCD rates of MB (k MB) and its N-demethylation (Δλ max) were significantly increased by surface fluorination below circum-neutral pH range, in particular, by a factor of 12 and 54 at pH 2, respectively. In the case of HA, the fluorination had an insignificant effect on its degradation rate but appeared to change its degradation behavior. It has been suggested that, although the primary effect of fluorination enhances the photocatalytic production of hydroxyl radicals, the change in electrostatic interaction with substrates could affect PCD as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989)

    Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  3. W. Choi, Catal. Surv. Asia 10, 16 (2006)

    Article  CAS  Google Scholar 

  4. E. Bae, W. Choi, Environ. Sci. Technol. 37, 147 (2003)

    Article  CAS  Google Scholar 

  5. Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Environ. Sci. Technol. 35, 966 (2001)

    Article  CAS  Google Scholar 

  6. H. Park, E. Bae, J.-J. Lee, J. Park, W. Choi, J. Phys. Chem. B 110, 8740 (2006)

    Article  CAS  Google Scholar 

  7. J. Lee, W. Choi, J. Phys. Chem. B 109, 7399 (2005)

    Article  CAS  Google Scholar 

  8. H. Park, W. Choi, J. Phys. Chem. B 107, 3885 (2003)

    Article  CAS  Google Scholar 

  9. Z. Yu, S.S.C. Chuang, Appl. Catal. B 83, 277 (2008)

    Article  CAS  Google Scholar 

  10. H. Park, W. Choi, Langmuir 22, 2906 (2006)

    Article  CAS  Google Scholar 

  11. H. Park, W. Choi, J. Phys. Chem. B 109, 11667 (2005)

    Article  CAS  Google Scholar 

  12. M.S. Vohra, J. Lee, W. Choi, J. Appl. Electrochem. 35, 757 (2005)

    Article  CAS  Google Scholar 

  13. C. Minero, G. Mariella, V. Maurino, E. Pelizzetti, Langmuir 16, 2632 (2000)

    Article  CAS  Google Scholar 

  14. M. Lewandowski, D.F. Ollis, J. Catal. 217, 38 (2003)

    CAS  Google Scholar 

  15. H. Park, W. Choi, J. Phys. Chem. B 108, 4086 (2004)

    Article  CAS  Google Scholar 

  16. J.S. Park, W. Choi, Langmuir 20, 11523 (2004)

    Article  CAS  Google Scholar 

  17. J. Ryu, W. Choi, Environ. Sci. Technol. 38, 2928 (2004)

    Article  CAS  Google Scholar 

  18. H. Park, W. Choi, Catal. Today 101, 291 (2005)

    Article  CAS  Google Scholar 

  19. M. Mrowetz, E. Selli, Phys. Chem. Chem. Phys. 7, 1100 (2005)

    Article  CAS  Google Scholar 

  20. M. Mrowetz, E. Selli, New J. Chem. 30, 108 (2006)

    Article  CAS  Google Scholar 

  21. A. Jańczyk, E. Krakowska, G. Stochel, W. Macyk, J. Am. Chem. Soc. 128, 15574 (2006)

    Article  Google Scholar 

  22. H. Kim, W. Choi, Appl. Catal. B 69, 127 (2007)

    Article  CAS  Google Scholar 

  23. P. Calza, E. Pelizzetti, K. Mogyorósi, R. Kun, I. Dékány, Appl. Catal. B 72, 314 (2007)

    Article  CAS  Google Scholar 

  24. J. Tang, H. Quan, J. Ye, Chem. Mater. 19, 116 (2007)

    Article  CAS  Google Scholar 

  25. J. Kim, J. Lee, W. Choi, Chem. Commun. 756 (2008)

  26. K. Lv, C. Lu, Chem. Eng. Technol. 31, 1272 (2008)

    Article  CAS  Google Scholar 

  27. Q. Wang, C. Chen, D. Zhao, W. Ma, J. Zhao, Langmuir 24, 7338 (2008)

    Article  CAS  Google Scholar 

  28. D. Monllor-Satoca, R. Gómez, J. Phys. Chem. C 112, 139 (2008)

    Article  CAS  Google Scholar 

  29. J. Yu, W. Wang, B. Cheng, B.-L. Su, J. Phys. Chem. C 113, 6743 (2009)

    Article  CAS  Google Scholar 

  30. V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. 2627 (2005)

  31. Y.-C. Oh, W.S. Jenks, J. Photochem. Photobiol. A 162, 323 (2004)

    Article  CAS  Google Scholar 

  32. M.S. Vohra, S. Kim, W. Choi, J. Photochem. Photobiol. A 160, 55 (2003)

    Article  CAS  Google Scholar 

  33. Y. Xu, K. Lv, Z. Xiong, W. Leng, W. Du, D. Liu, X. Xue, J. Phys. Chem. C 111, 19024 (2007)

    Article  CAS  Google Scholar 

  34. Z. Yu, S.S.C. Chuang, J. Phys. Chem. C 111, 13813 (2007)

    Article  CAS  Google Scholar 

  35. A. Mills, J. Wang, J. Photochem. Photobiol. A 127, 123 (1999)

    Article  CAS  Google Scholar 

  36. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol. A 140, 163 (2001)

    Article  CAS  Google Scholar 

  37. X.Z. Li, C.M. Fan, Y.P. Sun, Chemosphere 48, 453 (2002)

    Article  CAS  Google Scholar 

  38. Y. Cho, W. Choi, J. Photochem. Photobiol. A 148, 129 (2002)

    Article  CAS  Google Scholar 

  39. A. Torrents, A.T. Stone, Environ. Sci. Technol. 27, 1060 (1993)

    Article  CAS  Google Scholar 

  40. W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, New York, 1996)

    Google Scholar 

  41. L. Sigg, W. Stumm, Colloids Surf. 2, 101 (1980)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Kyungpook National University Research Fund, 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwoong Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Choi, W. & Park, H. Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid. Res Chem Intermed 36, 127–140 (2010). https://doi.org/10.1007/s11164-010-0123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-010-0123-8

Keywords

Navigation