Research on Chemical Intermediates

, Volume 36, Issue 2, pp 127–140 | Cite as

Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid

  • Jungwon Kim
  • Wonyong Choi
  • Hyunwoong Park


Photocatalytic degradation (PCD) reactions of cationic methylene blue (MB) and anionic humic acid (HA) were studied in naked TiO2 and fluorinated TiO2 (F-TiO2) suspensions in order to investigate how the modification of the TiO2 surface functional group influenced PCD reactions. Adsorption behaviors of MB and HA in the naked TiO2 followed a typical pH-dependent electrostatic interaction mechanism. On the other hand, those in the F-TiO2 were markedly changed and even showed a reversed dependence in specific pH ranges due to surface fluoride interrupting the interaction of substrates and surface titanol groups. PCD rates of MB (k MB) and its N-demethylation (Δλ max) were significantly increased by surface fluorination below circum-neutral pH range, in particular, by a factor of 12 and 54 at pH 2, respectively. In the case of HA, the fluorination had an insignificant effect on its degradation rate but appeared to change its degradation behavior. It has been suggested that, although the primary effect of fluorination enhances the photocatalytic production of hydroxyl radicals, the change in electrostatic interaction with substrates could affect PCD as well.


TiO2 Photocatalyst Fluorination Hydroxyl radical Dyes 



This research was supported by the Kyungpook National University Research Fund, 2008.


  1. 1.
    N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989)Google Scholar
  2. 2.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  3. 3.
    W. Choi, Catal. Surv. Asia 10, 16 (2006)CrossRefGoogle Scholar
  4. 4.
    E. Bae, W. Choi, Environ. Sci. Technol. 37, 147 (2003)CrossRefGoogle Scholar
  5. 5.
    Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Environ. Sci. Technol. 35, 966 (2001)CrossRefGoogle Scholar
  6. 6.
    H. Park, E. Bae, J.-J. Lee, J. Park, W. Choi, J. Phys. Chem. B 110, 8740 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Lee, W. Choi, J. Phys. Chem. B 109, 7399 (2005)CrossRefGoogle Scholar
  8. 8.
    H. Park, W. Choi, J. Phys. Chem. B 107, 3885 (2003)CrossRefGoogle Scholar
  9. 9.
    Z. Yu, S.S.C. Chuang, Appl. Catal. B 83, 277 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Park, W. Choi, Langmuir 22, 2906 (2006)CrossRefGoogle Scholar
  11. 11.
    H. Park, W. Choi, J. Phys. Chem. B 109, 11667 (2005)CrossRefGoogle Scholar
  12. 12.
    M.S. Vohra, J. Lee, W. Choi, J. Appl. Electrochem. 35, 757 (2005)CrossRefGoogle Scholar
  13. 13.
    C. Minero, G. Mariella, V. Maurino, E. Pelizzetti, Langmuir 16, 2632 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Lewandowski, D.F. Ollis, J. Catal. 217, 38 (2003)Google Scholar
  15. 15.
    H. Park, W. Choi, J. Phys. Chem. B 108, 4086 (2004)CrossRefGoogle Scholar
  16. 16.
    J.S. Park, W. Choi, Langmuir 20, 11523 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Ryu, W. Choi, Environ. Sci. Technol. 38, 2928 (2004)CrossRefGoogle Scholar
  18. 18.
    H. Park, W. Choi, Catal. Today 101, 291 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Mrowetz, E. Selli, Phys. Chem. Chem. Phys. 7, 1100 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Mrowetz, E. Selli, New J. Chem. 30, 108 (2006)CrossRefGoogle Scholar
  21. 21.
    A. Jańczyk, E. Krakowska, G. Stochel, W. Macyk, J. Am. Chem. Soc. 128, 15574 (2006)CrossRefGoogle Scholar
  22. 22.
    H. Kim, W. Choi, Appl. Catal. B 69, 127 (2007)CrossRefGoogle Scholar
  23. 23.
    P. Calza, E. Pelizzetti, K. Mogyorósi, R. Kun, I. Dékány, Appl. Catal. B 72, 314 (2007)CrossRefGoogle Scholar
  24. 24.
    J. Tang, H. Quan, J. Ye, Chem. Mater. 19, 116 (2007)CrossRefGoogle Scholar
  25. 25.
    J. Kim, J. Lee, W. Choi, Chem. Commun. 756 (2008)Google Scholar
  26. 26.
    K. Lv, C. Lu, Chem. Eng. Technol. 31, 1272 (2008)CrossRefGoogle Scholar
  27. 27.
    Q. Wang, C. Chen, D. Zhao, W. Ma, J. Zhao, Langmuir 24, 7338 (2008)CrossRefGoogle Scholar
  28. 28.
    D. Monllor-Satoca, R. Gómez, J. Phys. Chem. C 112, 139 (2008)CrossRefGoogle Scholar
  29. 29.
    J. Yu, W. Wang, B. Cheng, B.-L. Su, J. Phys. Chem. C 113, 6743 (2009)CrossRefGoogle Scholar
  30. 30.
    V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. 2627 (2005)Google Scholar
  31. 31.
    Y.-C. Oh, W.S. Jenks, J. Photochem. Photobiol. A 162, 323 (2004)CrossRefGoogle Scholar
  32. 32.
    M.S. Vohra, S. Kim, W. Choi, J. Photochem. Photobiol. A 160, 55 (2003)CrossRefGoogle Scholar
  33. 33.
    Y. Xu, K. Lv, Z. Xiong, W. Leng, W. Du, D. Liu, X. Xue, J. Phys. Chem. C 111, 19024 (2007)CrossRefGoogle Scholar
  34. 34.
    Z. Yu, S.S.C. Chuang, J. Phys. Chem. C 111, 13813 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Mills, J. Wang, J. Photochem. Photobiol. A 127, 123 (1999)CrossRefGoogle Scholar
  36. 36.
    T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, J. Photochem. Photobiol. A 140, 163 (2001)CrossRefGoogle Scholar
  37. 37.
    X.Z. Li, C.M. Fan, Y.P. Sun, Chemosphere 48, 453 (2002)CrossRefGoogle Scholar
  38. 38.
    Y. Cho, W. Choi, J. Photochem. Photobiol. A 148, 129 (2002)CrossRefGoogle Scholar
  39. 39.
    A. Torrents, A.T. Stone, Environ. Sci. Technol. 27, 1060 (1993)CrossRefGoogle Scholar
  40. 40.
    W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, New York, 1996)Google Scholar
  41. 41.
    L. Sigg, W. Stumm, Colloids Surf. 2, 101 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.School of Physics and Energy ScienceKyungpook National UniversityDaeguKorea

Personalised recommendations