Research on Chemical Intermediates

, Volume 36, Issue 1, pp 83–93 | Cite as

Synthesis of Fe3+ doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall

  • Xiao-Li Yuan
  • Jin-Long Zhang
  • Masakazu Anpo
  • Dan-Nong He


Fe3+ doped mesoporous TiO2 with ordered mesoporous structure were successfully prepared by the solvent evaporation-induced self-assembly process using P123 as soft template. The properties and structure of Fe3+ doped mesoporous TiO2 were characterized by means of XRD, EPR, BET, TEM, and UV–vis absorption spectra. The characteristic results clearly show that the amount of Fe3+ dopant affects the mesoporous structure as well as the visible light absorption of the catalysts. The photocatalytic activity of the prepared mesoporous TiO2 was evaluated from an analysis of the photodegradation of methyl orange under visible light irradiation. The results indicate that the sample of 0.50%Fe–MTiO2 exhibits the highest visible light photocatalytic activity compared with other catalysts.


Fe3+ doped Mesoporous TiO2 Photocatalytic activity Methyl orange 



This work has been supported by the Science and Technology Commission of Shanghai Municipality (07JC14015); Shanghai Nanotechnology Promotion Centre (0752nm001), National Nature Science Foundation of China (20773039), National Basic Research Program of China (973 Program,2007CB613301, 2004CB719500) and the Ministry of Science and Technology of China (2006AA06Z379, 2006DFA52710).


  1. 1.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  2. 2.
    A.L. Linsebigler, G.Q. Lu, J. T. Yates Jr., Chem. Rev. 95, 735 (1995)Google Scholar
  3. 3.
    A.D. Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, J. Phys. Chem. B 106, 637 (2002)CrossRefGoogle Scholar
  4. 4.
    J.C. Yu, X.C. Wang, X.Z. Fu, Chem. Mater. 16, 1523 (2004)CrossRefGoogle Scholar
  5. 5.
    D.M. Antonelli, J.Y. Ying, Angew. Chem. Int. Ed. Engl. 34, 2014 (1995)CrossRefGoogle Scholar
  6. 6.
    D. Grosso, G.J. de A.A. Soler-Illia, E.L. Crepaldi, F. Cagnol, C. Sinturel, A. Bourgeois, A. Brunet-Nruneau, H. Amenitsch, P.A. Albouy, C. Sanchez, Chem. Mater. 15, 4562 (2003)Google Scholar
  7. 7.
    H.X. Li, Z.F. Bian, J. Zhu, Y.N. Huo, H. Li, Y.F. Lu, J. Am. Chem. Soc. 129, 4538 (2007)CrossRefGoogle Scholar
  8. 8.
    Z. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, J. Phys. Chem. C 112, 6258 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Yuan, Q.R. Sheng, J.L. Zhang, F. Chen, M. Anpo, Q.H. Zhang, Micropor. Mesopor. Mater. 79, 93 (2005)CrossRefGoogle Scholar
  10. 10.
    C.W. Wu, T. Ohsuna, M. Kuwabara, K. Kuroda, J. Am. Chem. Soc. 128, 4544 (2006)CrossRefGoogle Scholar
  11. 11.
    J.F. Zhu, F. Chen, J.L. Zhang, H.J. Chen, M. Anpo, J. Photochem. Photobiol. A Chem. 180, 196 (2006)CrossRefGoogle Scholar
  12. 12.
    X.C. Wang, J.C. Yu, Y.L. Chen, L. Wu, X.Z. Fu, Environ. Sci. Technol. 40, 2369 (2006)CrossRefGoogle Scholar
  13. 13.
    J.H. Pan, W.I. Lee, Chem. Mater. 18, 847 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Choi, M.G. Antoniou, M. Pelaez, Armah.A.D. Cruz, J.A. Shoemaker, D.D. Dionysiou, Environ. Sci. Technol. 41, 7530 (2007)CrossRefGoogle Scholar
  15. 15.
    F.D. Angelis, S. Fantacci, A. Selloni, M.K. Nazeeruddin, M. Gratzel, J. Am. Chem. Soc. 129, 14156 (2007)CrossRefGoogle Scholar
  16. 16.
    K.S. Praveen, J.T. Rajesh, V.J. Raksh, Ind. Eng. Chem. Res. 46, 6196 (2007)CrossRefGoogle Scholar
  17. 17.
    Y. Cong, J.L. Zhang, F. Chen, M. Anpo, D. He, J. Phys. Chem. C 111, 10618 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Zhu, J. Ren, Y.N. Huo, Z.F. Bian, H.X. Li, J. Phys. Chem. C 111, 18965 (2007)CrossRefGoogle Scholar
  19. 19.
    M.H. Zhou, J.G. Yua, B. Cheng, J. Hazard Mater. B 137, 1838 (2006)CrossRefGoogle Scholar
  20. 20.
    O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
  21. 21.
    T.Y. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao, J. Phys. Chem. 109, 4947 (2005)Google Scholar
  22. 22.
    J.F. Zhu, Z.G. Deng, F. Chen, J.L. Zhang, H.J. Chen, M. Anpo, J.Z. Huang, L.Z. Zhang, Appl. Catal. B Environ. 62, 329 (2006)CrossRefGoogle Scholar
  23. 23.
    Z.M. Wang, G. Yang, P. Biswas, W. Bresser, P. Boolchand, Powder Technol. 114, 197 (2001)CrossRefGoogle Scholar
  24. 24.
    K.S. Sing, D.H. Everett, R.A. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  25. 25.
    P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11, 2813 (1999)CrossRefGoogle Scholar
  26. 26.
    M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169 (2001)CrossRefGoogle Scholar
  27. 27.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asail, J. Phys. Chem. Solids 63, 1909 (2002)CrossRefGoogle Scholar
  28. 28.
    J.F. Zhu, W. Zheng, B. He, J.L. Zhang, M. Anpo, J. Mol. Catal. A Chem. 216, 35 (2004)Google Scholar
  29. 29.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xiao-Li Yuan
    • 1
  • Jin-Long Zhang
    • 1
  • Masakazu Anpo
    • 2
  • Dan-Nong He
    • 3
  1. 1.Lab for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan
  3. 3.Shanghai National Engineering Research Center for NanotechnologyShanghaiPeople’s Republic of China

Personalised recommendations