Advertisement

Research on Chemical Intermediates

, Volume 35, Issue 1, pp 43–53 | Cite as

Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol–gel process

  • Yuta Yokosuka
  • Kyoichi Oki
  • Hiromasa Nishikiori
  • Yukichi Tatsumi
  • Nobuaki Tanaka
  • Tsuneo Fujii
Article

Abstract

Visible-light-driven N-doped TiO2 was prepared by a simple sol–gel process using nitric acid not only as the acid catalyst of the sol–gel reaction but also as the source of nitrogen. The photocatalytic performance of the N-doped TiO2 was investigated by using FTIR spectroscopy to monitor the degradation of trichloroethylene (TCE) during UV and visible irradiation. The photocatalytic degradation of TCE was well-reproduced several times. The activity of Ti–O–N species was supported experimentally. The N-doped TiO2 was found to be responsive to visible light and was stable during repeated runs and maintained the nitrogen species and its activity for at least four months.

Keywords

N-doped TiO2 Photocatalyst Trichloroethylene Sol–gel method Nitric acid 

Notes

Acknowledgments

The authors thank Ms A. Momozawa of this university for her experimental assistance during the first stage of this study.

References

  1. 1.
    T. Ohno, T. Tsubota, M. Toyofuku, R. Inaba, Catal. Lett. 98, 255 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Anpo, M. Takeuchi, Int. J. Photoenergy 3, 89 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Sato, Chem. Phys. Lett. 123, 126 (1986)CrossRefGoogle Scholar
  4. 4.
    T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Appl. Catal. B: Environ. 42, 403 (2003)CrossRefGoogle Scholar
  5. 5.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  6. 6.
    Y. Cong, L. Xiao, J. Zhang, F. Chen, M. Anpo, Res. Chem. Intermed. 32, 717 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Yang, L. Gao, J. Am. Ceram. Soc. 87, 1803 (2004)CrossRefGoogle Scholar
  8. 8.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, Res. Chem. Intermed. 331, 31 (2005)Google Scholar
  9. 9.
    S. Sato, R. Nakamura, S. Abe, Appl. Catal. A 131, 284 (2005)Google Scholar
  10. 10.
    S.K. Joung, T. Amemiya, M. Murabayashi, K. Itoh, Chem. Eur. J. 12, 5526 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Wicikowski, B. Kusz, L. Murawski, K. Szaniawska, B. Susla, Vacuum 54, 221 (1999)CrossRefGoogle Scholar
  12. 12.
    J.L. Gole, J.D. Stout, J. Phys. Chem. A 108, 1230 (2004)Google Scholar
  13. 13.
    R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108, 10617 (2004)CrossRefGoogle Scholar
  14. 14.
    A.R. Gandhe, S.P. Naik, J.B. Fernandes, Microporous Mesoporous Mater. 87, 103 (2005)CrossRefGoogle Scholar
  15. 15.
    X. Yan, T. Ohno, K. Nishijima, R. Abe, B. Ohtani, Chem. Phys. Lett. 429, 606 (2006)CrossRefGoogle Scholar
  16. 16.
    K. Oki, S. Tsuchida, H. Nishikiori, N. Tanaka, T. Fujii, Int. J. Photoenergy 5, 11 (2003)CrossRefGoogle Scholar
  17. 17.
    K. Oki, S. Yamada, S. Tsuchida, H. Nishikiori, N. Tanaka, T. Fujii, Res. Chem. Intermed. 29, 827 (2003)CrossRefGoogle Scholar
  18. 18.
    C.X. Dong, A.P. Xian, E.H. Ham, J.K. Shang, J. Mater. Sci. 41, 6168 (2006)CrossRefGoogle Scholar
  19. 19.
    M.R. Nimlos, W.A. Jacoby, D.M. Blake, T.A. Milne, Environ. Sci. Technol. 27, 732 (1993)CrossRefGoogle Scholar
  20. 20.
    S.J. Hwang, C. Petucci, D. Raftery, J. Am. Chem. Soc. 120, 4388 (1998)CrossRefGoogle Scholar
  21. 21.
    P.B. Amama, K. Itoh, M. Murabayashi, J. Mol. Catal. A: Chem. 176, 165 (2001)CrossRefGoogle Scholar
  22. 22.
    J.S. Kim, K. Itoh, M. Murabayashi, B.A. Kim, Chemosphere 38, 2969 (1999)CrossRefGoogle Scholar
  23. 23.
    K.H. Wang, H.H. Tsai, Y.H. Hsieh, Appl. Catal. B: Environ. 17, 313 (1998)CrossRefGoogle Scholar
  24. 24.
    K.H. Wang, H.H. Tsai, Y.H. Hsieh, Chemosphere 36, 2763 (1998)CrossRefGoogle Scholar
  25. 25.
    S. Yamazaki-Nishida, S. Cervera-March, K.J. Nagano, M.A. Anderson, K. Hori, J. Phys. Chem. 99, 15814 (1995)CrossRefGoogle Scholar
  26. 26.
    M. Kang, J.H. Lee, S.H. Lee, C.H. Chung, K.J. Yoon, K. Ogino, S. Miyata, S.J. Choung, J. Mol. Catal. A: Chem. 193, 273 (2003)CrossRefGoogle Scholar
  27. 27.
    P. Tarte, in Physics of Non-Crystalline Solids, ed. by J.A. Prins, (North Holland, Amsterdam, 1965), p. 549Google Scholar
  28. 28.
    M.L. Galzada, L. Delolmo, J. Non-Cryst. Solids 121, 413 (1990)CrossRefGoogle Scholar
  29. 29.
    S.B. Amor, G. Baud, J.P. Besse, M. Jacquet, Mater. Sci. Eng. B47, 110 (1997)CrossRefGoogle Scholar
  30. 30.
    L. Castañeda, J.C. Alonso, A. Ortiz, E. Andrade, J.M. Saniger, J.G. Bañuelos, Mater. Chem. Phys. 77, 938 (2002)CrossRefGoogle Scholar
  31. 31.
    T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, Y. Iriyama, J. Master. Sci. 36, 4201 (2001)CrossRefGoogle Scholar
  32. 32.
    S.K. Joung, T. Amemiya, M. Murabayashi, K. Itoh, J. Photochem. Photobiol. A: Chem. 184, 273 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yuta Yokosuka
    • 1
  • Kyoichi Oki
    • 1
    • 2
  • Hiromasa Nishikiori
    • 1
  • Yukichi Tatsumi
    • 3
  • Nobuaki Tanaka
    • 1
  • Tsuneo Fujii
    • 1
  1. 1.Department of Environmental Science and Technology, Graduate School of Science and TechnologyShinshu UniversityNaganoJapan
  2. 2.Miyama Co., LtdNaganoJapan
  3. 3.Department of Natural Science, Faculty of EducationShinshu UniversityNaganoJapan

Personalised recommendations