North Atlantic Oscillation and fisheries management during global climate change

Abstract

The North Atlantic Oscillation (NAO) is the most important large-scale climatic oscillation affecting the North Atlantic region. The variability introduced by the NAO affects many meteorological parameters, including wind speed and direction, and differences in air temperature and rainfall, particularly during the boreal winter. The NAO is also known to affect the ocean by changing heat content, sea surface temperature, gyre circulation, mixed layer depth, salinity, high-latitude deep water formation, and sea ice cover. Consequently, the NAO has been widely used to analyze the variability of marine ecosystems. Several researchers found that fishery resources were teleconnected with the NAO variability, resulting in a significant relationship between this climatic oscillation and fishery yields. More precisely, the NAO affects the target species abundance, recruitment, catchability, and body condition. These effects can be cumulative over time and act synergistically. In this study, the available information about this topic is reviewed, and the importance of the NAO as a large-scale climatic oscillation in fisheries management is discussed using an ecosystem approach. We also discuss the possible effects of climate change on Atlantic and Mediterranean fisheries if this change were to affect the NAO pattern.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aceituno P (1992) El Niño, the Southern Oscillation and ENSO: confusing names for a complex ocean–atmosphere interaction. Bull Am Meteorol Soc 73:483–485

    Article  Google Scholar 

  2. Alheit J, Licandro P, Coombs S, García A, Giráldez A, Santamaría MTG, Slotte A, Tsikliras AC (2014) Atlantic Multidecadal Oscillation (AMO) modulates dynamics of small pelagic fishes and ecosystem regime shifts in the eastern North and Central Atlantic. J Mar Syst 133:88–102

    Article  Google Scholar 

  3. Alheit J, Gröger J, Licandro P, McQuinn IH, Pohlmann T, Tsikliras AC (2019) What happened in the mid-1990s? The coupled ocean-atmosphere processes behind climate-induced ecosystem changes in the Northeast Atlantic and the Mediterranean. Deep-Sea Res Pt II 159:130–142

    Article  Google Scholar 

  4. Amandè MJ, N’Cho AJ, Kouakou ND, N’Cho CM, Koffi KF, Kouadio ANC, Dewals P, Restrepo V (2017a) Utilization and trade of faux poisson landed in Abidjan. Collect Vol Sci Pap ICCAT 73(2):749–754

    Google Scholar 

  5. Amandè MJ, Dewals P, Amalatchy J, Pascual P, Cauquil P, Iries BY, Floch L, Bach P (2017b) Retaining bycatch to avoid wastage of fishery resources: How important is bycatch landed by purse-seiners in Abidjan? Collect Vol Sci Pap ICCAT 73(3):947–952

    Google Scholar 

  6. Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic Oscillation or North Atlantic Oscillation? J Clim 14:3495–3507

    Article  Google Scholar 

  7. Auber A, Travers-Trolet M, Villanueva MC, Ernande B (2015) Regime shift in an exploited fish community related to natural climate oscillations. PLoS ONE 10(7):e0129883. https://doi.org/10.1371/journal.pone.0129883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Ayilu RK, Antwi-Asare TO, Anoh P, Tall A, Aboya N, Chimatiro S, Dedi S (2016) Informal artisanal fish trade in West Africa: Improving cross-border trade. Penang, Malaysia: WorldFish Program Brief 2016:37

    Google Scholar 

  9. Báez JC (2016) Assessing the influence of the North Atlantic Oscillation on a migratory demersal predator in the Alboran Sea. J Mar Biol Assoc UK 96(7):1499–1505

    Article  Google Scholar 

  10. Báez JC, Bellido JJ, Ferri-Yáñez F, Castillo JJ, Martín JJ, Mons JL, Romero D, Real R (2011) The North Atlantic oscillation and sea surface temperature affect loggerhead abundance around the Strait of Gibraltar. Sci Mar 75(3):571–575. https://doi.org/10.3989/scimar.2011.75n3571.

  11. Báez JC, Camiñas JA, Hernández P, Vasconcellos M, García Barcelona S, Macías D (2020) North Atlantic Oscillation affects dolphinfish catch and bycatch in the Western Mediterranean Sea. Reg Stud Mar Sci. https://doi.org/10.1016/j.rsma.2020.101303

    Article  Google Scholar 

  12. Báez JC, Gimeno L, Gómez-Gesteira M, Ferri-Yáñez F, Real R (2013) Combined effects of the North Atlantic Oscillation and the Arctic Oscillation on Sea Surface Temperature in the Alborán Sea. PLoS ONE 8(4):e62201. https://doi.org/10.1371/journal.pone.0062201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Báez JC, Macías D, De Castro M, Gómez-Gesteira M, Gimeno L, Real R (2013) Analysis of the effect of atmospheric oscillations on physical condition of pre–reproductive bluefin tuna from the Strait of Gibraltar. Anim Biodiv Conserv 36(2):225–233

    Article  Google Scholar 

  14. Báez JC, Macías D, De Castro M, Gómez-Gesteira M, Gimeno L, Real R (2014) Assessing the responses of exploited marine populations in a context of rapid climate change: the case of blackspot seabream from Strait of Gibraltar. Anim Biodiv Conserv 37(1):35–47

    Article  Google Scholar 

  15. Báez JC, Macías D, García-Barcelona S, Real R (2014) Interannual differences for sea turtles by-catch in Spanish longliners from Western Mediterranean Sea. Sci World J 2014:861396. https://doi.org/10.1155/2014/861396

    Article  Google Scholar 

  16. Báez JC, Muñoz-Exposito P, Gómez-Vives MJ, Godoy-Garrido D, Macías D (2019) The NAO affects the reproductive potential of small tuna migrating from the Mediterranean Sea. Fish Res 216:41–46

    Article  Google Scholar 

  17. Báez JC, Ortiz De Urbina JM, Real R, Macías D (2011) Cumulative effect of the north Atlantic oscillation on age-class abundance of albacore (Thunnus alalunga). J Appl Ichthyol 27:1356–1359

    Article  Google Scholar 

  18. Báez JC, Ortuño G, García-Barcelona S, Ortiz de Urbina JM, Macías D (2015) Understanding pelagic stingray (Pteroplatytrygon violacea) bycatch by Spanish longliners in the Mediterranean Sea. J Mar Biol Assoc UK 96(7):1387–1394. https://doi.org/10.1017/S0025315415001253

    Article  Google Scholar 

  19. Báez JC, Pascual P, Ramos ML, Abascal FJ (2018) Tropical tunas: Global warming and food security, an overview. Rev Biol Mar Oceanog 53(1):1–8

    Article  Google Scholar 

  20. Báez JC, Real R (2011) The North Atlantic Oscillation affects the landings of Anchovy Engraulis encrasicolus in the Gulf of Cádiz (South of Spain). Jour Appl Ichthyol 27:1232–1235

    Article  Google Scholar 

  21. Báez JC, Real R, López-Rodas V, Costas E, Salvo AE, García-Soto C, Flores-Moya A (2014) The North Atlantic Oscillation and the Arctic Oscillation favour harmful algal blooms in SW Europe. Harmful Algae 39:121–126. https://doi.org/10.1016/j.hal.2014.07.008

    Article  Google Scholar 

  22. Báez JC, Rodríguez-Cabello C, Bañón R, Brito A, Falcón JM, Maño T, Baro J, Macías D, Meléndez MJ, Camiñas JA, Arias-García A, Gil J, Farias C, Artexe I, Sánchez F (2019c) Updating the national checklist of marine fishes in Spanish waters: an approach to priority hotspots and lessons for conservation. Mediterr Mar Sci 20(2):260–270. https://doi.org/10.12681/mms.18626.

  23. Báez JC, Salvo E, García-Soto C, Real R, Marquez AL, Flores-Moya A (2019) North Atlantic Oscillation (NAO) and meteorological variables effects on the honey bee production time series. J Apic Res 58(5):788–791. https://doi.org/10.1080/00218839.2019.1635424

    Article  Google Scholar 

  24. Báez JC, Santamaría MTG, García A, González JF, Hernández E, Ferri-Yáñez F (2019) Influence of the Arctic Oscillations on the sardine off northwest Africa during the period 1976/1996. Vie Milieu 69(1):71–77

    Google Scholar 

  25. Baldwin M, Dunkerton T (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi-biennial oscillation. Rev Geophys 39(2):179–229

    Article  Google Scholar 

  27. Baldwin MP, Dameris M, Shepherd TG (2007) Atmosphere: How will the stratosphere affect climate change? Science 316(5831):1576–1577

    CAS  PubMed  Article  Google Scholar 

  28. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation pattern. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  29. Bastos A, Janssens IA, Gouveia CM, Trigo RM, Ciais P, Chevallier F, Peñuelas J, Rödenbeck C, Piao S, Fridlingsteis P, Running SW (2016) European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat Commun 7:10315

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bellido, JJ, Báez, JC, Souviron-Priego, L, Ferri-Yañez, F, Salas, C, López, JA y Real, R (2020) Atmospheric indices allow anticipating the incidence of jellyfish coastal swarms. Medit Mar Sci 21:289–297. https://doi.org/10.12681/mms.20983.

  32. Berkeley SA, Chapman C, Sogard SM (2004) Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85:1258–1264

    Article  Google Scholar 

  33. Berkeley SA, Hixon MA, Larson RJ, Love MS (2004) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29:23–32

    Article  Google Scholar 

  34. Bertrand A, Lengaigne M, Takahashi K, Avadí A, Poulain F, Harrod C (2020) El Niño Southern Oscillation (ENSO) effects on fisheries and aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 660. Rome, FAO. https://doi.org/10.4060/ca8348en.

  35. Birkeland C, Dayton PK (2005) The importance in fishery management of leaving the big ones. Trends Ecol Evol 20:356–358

    PubMed  Article  Google Scholar 

  36. Borja A, Santiago J (2002) Does the North Atlantic Oscillation control some processes influencing recruitment of temperate tunes? ICCAT Col Vol Sci Pap 54:964–984

    Google Scholar 

  37. Brander K, Mohn RK (2011) Effect of North Atlantic Oscillation (NAO) on recruitment of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 61:1558–1564. https://doi.org/10.1139/f04-087

    Article  Google Scholar 

  38. Cadima EL (2003) Fish stock assessment manual. FAO Fisheries Technical Paper. No. 393. Rome, FAO. 161p.

  39. Checkley DM, Asch RG, Rykaczewski RR (2017) Climate, anchovy, and sardine. Annu Rev Mar Sci 9:469–493

    Article  Google Scholar 

  40. Cheung WWL, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries catch. Nature 497:365–368

    CAS  PubMed  Article  Google Scholar 

  41. Cohen J, Barlow M (2005) The NAO, the AO, and global warming: how closely related? J Clim 18:4498–4513

    Article  Google Scholar 

  42. Christiansen B (2007) The North Atlantic Oscillation or the Arctic Oscillation? Volcanic eruptions as Nature’s own experiments. Geophys Res Abs 9:1607

    Google Scholar 

  43. Comas-Bru L, McDermott F (2013) Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship. QJR Meteorol Soc 140:354–363. https://doi.org/10.1002/qj.2158

    Article  Google Scholar 

  44. Cominassi L, Moyano M, Claireaux G, Howald S, Mark FC, Zambonino-Infante J-L, Bayon NL, Peck MA (2019) Combined effects of ocean acidification and temperature on larval and juvenile growth, development and swimming performance of European sea bass (Dicentrarchus labrax). PLoS ONE 14(9):e0221283. https://doi.org/10.1371/journal.pone.0221283

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Costello C, Cao L, Gelcich S, Cisneros-Mata MA, Free CM, Froehlich HE, Golden CD, Ishimura G, Maier J, Macadam-Somer I, Mangin T, Melnychuk MC, Miyahara M, de Moor CL, Naylor R, Nøstbakken L, Ojea E, O’Reilly E, Parma AM, Plantinga AJ, Thilsted SH, Lubchenco J (2020) The future of food from the sea. Nature. https://doi.org/10.1038/s41586-020-2616-y

    Article  PubMed  Google Scholar 

  46. Cropper T, Hanna E, Valente MA, Jónsson T (2015) A daily Azores-Iceland North Atlantic Oscillation index back to 1850. Geosci Data J 2(1):12–24

    PubMed  PubMed Central  Article  Google Scholar 

  47. Cushing D (1995) Population production and regulation in the sea: a fisheries, perspective. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  48. Dell JT, Wilcox WC, Matear RJ, Chamberlain MA, Hobday AJ (2015) Potential impacts of climate change on the distribution of longline catches of yellowfin tuna (Thunnus albacores) in the Tasman Sea. Deep Sea Res II 113:235–245

    Article  Google Scholar 

  49. Deser C (2000) On the teleconnectivity of the ‘Arctic Oscillation.’ Geophys Res Lett 27:779–782

    Article  Google Scholar 

  50. Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143

    PubMed  Article  Google Scholar 

  51. Deser C, Hurrell JW, Phillips AS (2017) The role of the North Atlantic Oscillation in European climate projections. Clim Dyn 49:3141–3157. https://doi.org/10.1007/s00382-016-3502-z

    Article  Google Scholar 

  52. Deser C, Phillips AS (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Clim 22:396–413. https://doi.org/10.1175/2008JCLI2453.1

    Article  Google Scholar 

  53. Deser C, Phillips AS, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. https://doi.org/10.1007/s00382-010-0977-x

    Article  Google Scholar 

  54. Douville H (2009) Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys Res Lett 36:1–5

    Article  Google Scholar 

  55. Durkee J, Frye J, Fuhrmann C, Lacke M, Jeong H, Mote T (2008) Effects of the North Atlantic Oscillation on precipitation-type frequency and distribution in the eastern United States. Theor Appl Climatol 94:51–65. https://doi.org/10.1007/s00704-007-0345-x

    Article  Google Scholar 

  56. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  57. Erauskin-Extramiana M, Arrizabalaga H, Hobday AJ, Cabré A, Ibaibarriaga L, Arregui I, Murua H, Chust G (2019) Large-scale distribution of tuna species in a warming ocean. Glob Change Biol 25(6):2043–2060. https://doi.org/10.1111/gcb.14630

    Article  Google Scholar 

  58. Faillettaz R, Beaugrand G, Goberville E, Kirby RR (2019) Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci Adv 5(1):6993. https://doi.org/10.1126/sciadv.aar6993

    Article  Google Scholar 

  59. FAO (2014) Final report. https://www.un.org/Depts/los/general_assembly/contributions_2014/FAO%20contribution%20UN%20SG%20OLOS%20report%20Part%20I%20FINAL.pdf.

  60. FAO (2020) Final report. http://www.fao.org/in-action/globefish/fishery-information/resource-detail/en/c/1263892/

  61. Fernández IL, Báez JC, Rubio CJ, Muñoz P, Camiñas JA, Macías D (2020) Climate oscillations effects on market prices of commercial interest fishes in the northern Alboran Sea. Int J Biometeorol 64:689–699. https://doi.org/10.1007/s00484-020-01859-3

    Article  PubMed  Google Scholar 

  62. Frajka-Williams E, Beaulieu C (2017) Duchez A (2017) Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Sci Rep 7:11224. https://doi.org/10.1038/s41598-017-11046-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Frankcombe LM, von der Heydt A, Dijkstra HA (2010) North Atlantic Multidecadal climate variability: an investigation of dominant time scales and processes. J Climate 23:3626–3638. https://doi.org/10.1175/2010JCLI3471.1

    Article  Google Scholar 

  64. Free CM, Thorson JT, Pinsky ML, Oken KL, Wiedenmann J, Jensen OP (2019) Impacts of historical warming on marine fisheries production. Science 363(6430):979–983. https://doi.org/10.1126/science.aau1758

    CAS  Article  PubMed  Google Scholar 

  65. Fromentin J-M (2002) Is the recruitment a key biological process in the hypothetical NAO-Atlantic tunas relationships? Collect Vol Sci Pap ICCAT 54:1008–1016

    Google Scholar 

  66. Fromentin J-M, Planque B (1996) Calanus and environment in the eastern North Atlantic. II. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 134:111–118

    Article  Google Scholar 

  67. Gancedo U, Zorita E, Solari AP, Chust G, del Pino AS, Polanco J, Castro JJ (2009) What drove tuna catches between 1525 and 1756 in southern Europe? ICES J Mar Sci 66:1595–1604

    Article  Google Scholar 

  68. Gobler CJ, Merlo LR, Morrell BK, Griffith AW (2018) Temperature, Acidification, and Food Supply Interact to Negatively Affect the Growth and Survival of the Forage Fish, Menidia beryllina (Inland Silverside), and Cyprinodon variegatus (Sheepshead Minnow). Front Mar Sci 5:86. https://doi.org/10.3389/fmars.2018.00086

    Article  Google Scholar 

  69. Goñi N, Arrizabalaga H (2005) Analysis of juvenile North Atlantic Albacore (Thunnus alalunga) catch per unit effort by surface gears in relation to environmental variables. ICES J Mar Sci 62:1475–1482

    Article  Google Scholar 

  70. Gutiérrez-Estrada JC, Sanz-Fernández V, Pulido-Calvo I, Gil-Herrera J (2020) Improving the interpretability of the effects of environmental factors on abundance of fish stocks. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.106533

    Article  Google Scholar 

  71. Hallett TB, Coulson T, Pilkington JG, Clutton-Brock TH, Pemberton JM, Grenfell BT (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75

    CAS  PubMed  Article  Google Scholar 

  72. Heffernan JB, Soranno PA, Angilletta MJ Jr, Buckley LB, Gruner DS, Tim HK, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC (2014) Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14

    Article  Google Scholar 

  73. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92

    CAS  PubMed  Article  Google Scholar 

  74. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitations. Science 269:676–679

    CAS  PubMed  Article  Google Scholar 

  75. Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668

    Article  Google Scholar 

  76. Hurrell JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Marine Syst 78(1):28–41

    Article  Google Scholar 

  77. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph Series. American Geophysical Union, Washington, DC

    Google Scholar 

  78. Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  79. ICES (2006) Report of the Baltic Fisheries Assessment Working Group (WGBFAS). ICES Document CM 2006/ACFM: 24.

  80. Jianping LI, Wang JXL (2003) A New North Atlantic Oscillation Index and Its Variability. Adv Atmos Sci 20(5):661–676

    Article  Google Scholar 

  81. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450

    Article  Google Scholar 

  82. Jung T, Vitart F, Ferranti L, Morcrette J-J (2011) Origin and predictability of the extreme negative NAO winter of 2009/10. Geophys Res Lett 38:L07701. https://doi.org/10.1029/2011GL046786

    Article  Google Scholar 

  83. Kerr RA (2000) North Atlantic climate pacemaker for the centuries. Science 288:1984–1986

    CAS  PubMed  Article  Google Scholar 

  84. Knight J, Folland C, Scaife A (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  85. Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 2:178. https://doi.org/10.1038/ncomms1186

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Langley A, Briand K, Kirby D, Murtugudde R (2009) Influence of oceanographic variability on recruitment of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Can J Fish Aquat Sci 66:1462–1477. https://doi.org/10.1139/F09-096

    Article  Google Scholar 

  87. Le Bris A, Mills KE, Wahle RA, Chen Y, Alexander MA, Allyn AJ, Schuetz JG, Scott JD, Pershing AJ (2018) Climate vulnerability and resilience in the most valuable North American fishery. Proc Natl Acad Sci USA 115:1831–1836

    PubMed  Article  CAS  Google Scholar 

  88. Lehodey P, Senina I, Sibert J, Bopp L, Calmettes B, Hampton J, Murtugudde R (2010) Preliminary forecasts of population trends for Pacific bigeye tuna under the A2 IPCC scenario. Prog Oceanogr 86:302–315

    Article  Google Scholar 

  89. Lehodey P, Senina I, Calmettes B, Hampton J, Nicol S (2013) Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Clim Change 119:95–109

    Article  Google Scholar 

  90. López-Moreno JI, Vicente-Serrano SM, Morán-Tejeda E, Lorenzo-Lacruz J, Kenawy A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Glob Planet Change 77(1–2):62–76. https://doi.org/10.1016/j.gloplacha.2011.03.003

    Article  Google Scholar 

  91. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    CAS  PubMed  Article  Google Scholar 

  92. MacKenzie B, Köster F (2004) Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–794

    Article  Google Scholar 

  93. Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21(15):1863–1898. https://doi.org/10.1002/joc.693

    Article  Google Scholar 

  94. Martin-Vide J, Lopez-Bustins JA (2006) The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26(11):1455–1475

    Article  Google Scholar 

  95. Martin P, Sabatés A, Lloret J, Martin-Vide J (2012) Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim Change 110:925–939

    Article  Google Scholar 

  96. Mamouridis V, Klein N, Kneib T, Suarez C, Maynou F (2016) Structured additive distributional regression for analyzing landings per unit effort in fisheries research. Math Biosci. https://doi.org/10.1016/j.mbs.2016.11.016

    Article  PubMed  PubMed Central  Google Scholar 

  97. McClatchie S (2014) Regional fisheries oceanography of the California current system: the CalCOFI program. Springer, Netherlands

    Google Scholar 

  98. Mejuto J (1999) A possible relationship between the NAO and the swordfish recruitment index in the North Atlantic: hypothesis of reproduction and possible effects on recruitment levels. Collect Vol Sci Pap ICCAT 49(4):339–345

    Google Scholar 

  99. Meng KC, Oremus KL, Gaines SD (2016) New England cod collapse and the climate. PLoS ONE 11(7):e0158487. https://doi.org/10.1371/journal.pone.0158487

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    CAS  Article  Google Scholar 

  101. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    CAS  Article  Google Scholar 

  102. Möllmann C, Lindegren M, Blenckner T, Bergström L, Casini M, Diekmann R, Flinkman J, Müller-Karulis B, Neuenfeldt S, Schmidt JO, Tomczak M, Voss R, Gardmark A (2014) Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES J Mar Sci 71:1187–1197

    Article  Google Scholar 

  103. Morishita J (2008) What is the ecosystem approach for fisheries management? Mar Policy 32(1):19–26. https://doi.org/10.1016/j.marpol.2007.04.004

    Article  Google Scholar 

  104. Muñoz-Expósito P, Macías D, Ortíz De Urbina JM, García-Barcelona S, Gómeza MJ, Báez JC (2017) North Atlantic oscillation affects the physical condition of migrating bullet tuna Auxis rochei (Risso, 1810) from the Western Mediterranean Sea. Fish Res 194:84–88

    Article  Google Scholar 

  105. NOAA, National Oceanic and Atmospheric Administration (2005a) East Atlantic (EA. www.cpc.ncep.noaa.gov/data/teledoc/ea_tmap.shtml. Last accessed June 06–2020.

  106. NOAA, National Oceanic and Atmospheric Administration (2005b) Atlantic Multidecadal Oscillation (AMO. website: https://www.aoml.noaa.gov/phod/amo_faq.php. Last accessed June 06–2020.

  107. Ogilvie AEJ, Barlow LK, Jennings AE (2000) North Atlantic climate c. AD 1000: Millennial reflections on the Viking discoveries of Iceland. Greenland and North America Weather 55:34–45

    Google Scholar 

  108. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14. https://doi.org/10.1007/s004420100655

    Article  PubMed  PubMed Central  Google Scholar 

  109. Oremus KL (2019) Climate variability reduces employment in New England fisheries. Proc Natl Acad Sci USA 116(52):26444–26449. https://doi.org/10.1073/pnas.1820154116

    CAS  Article  Google Scholar 

  110. Overland JE, Alheit J, Bakun A, Hurrell JW, Mackas DL, Miller AJ (2010) Climate controls on marine ecosystems and fish populations. J Mar Syst 79:305–315

    Article  Google Scholar 

  111. Paiva VH, Pereira J, Ceia FRR, JA, (2017) Environmentally driven sexual segregation in a marine top predator. Sci Rep 7:2590. https://doi.org/10.1038/s41598-017-02854-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Peng S, Robinson WA, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29:1276–1280

    Article  Google Scholar 

  113. Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic oscillation. WIREs Clim Change 3:79–90. https://doi.org/10.1002/wcc.150

    Article  Google Scholar 

  114. Piontkovski SA, O’brien TD, Umani SF, Krupa EG, Stuge TS, Balymbetov KS, Grishaeva OV, Kasymov AG, (2006) Zooplankton and the North Atlantic Oscillation: a basin-scale analysis. J Plankton Res 28(11):1039–1046. https://doi.org/10.1093/plankt/fbl037

    Article  Google Scholar 

  115. Pope J (2002) Input and Output Controls: the practice of fishing effort and catch management in responsible fisheries. In Cochrane KL (ed.), A fishery manager’s guidebook. Management measures and their application. FAO Fisheries Technical Paper. No. 424. Rome, FAO. http://www.fao.org/3/y3427e/y3427e02.htm#TopOfPage

  116. Pranovi F, Caccin A, Franzoi P, Malavasi S, Zucchetta M, Torricelli P (2013) Vulnerability of artisanal fisheries to climate change in the Venice Lagoon. J Fish Biol 83:847–864. https://doi.org/10.1111/jfb.12124

    CAS  Article  PubMed  Google Scholar 

  117. Quaas MF, Reusch TBH, Schmidt JO, Tahvonen O, Voss R (2015) It is the economy, stupid! Projecting the fate of fish populations using ecological–economic modeling. Glob Change Biol 22(1):264–270. https://doi.org/10.1111/gcb.13060

    Article  Google Scholar 

  118. Raible CC, Luksch U, Fraedrich K, Voss R (2011) North Atlantic decadal regimes in a coupled GCM simulation. Clim Dyn 18:321–330

    Article  Google Scholar 

  119. Raible CC, Stocker TF, Yoshimori M, Renold M, Beyerle U, Casty C, Luterbacher J (2005) Northern Hemispheric trends of pressure indices and atmospheric circulation patterns in observations, reconstructions, and coupled GCM simulations. J Clim 18:3968–3982

    Article  Google Scholar 

  120. Real R, Báez JC (2013) The North Atlantic Oscillation affects the quality of Cava (Spanish sparkling wine). Int J Biometeorol 57:493–496. https://doi.org/10.1007/s00484-012-0573-3

    Article  PubMed  Google Scholar 

  121. Rogers JC (1984) The association between the North Atlantic Oscillation and the Southern Oscillation in the North Hemisphere. Mon Weather Rev 112:1999–2015

    Article  Google Scholar 

  122. Rubio CJ, Macías D, Camiñas JA, Fernández IL, Báez JC (2016) Effects of North Atlantic Oscillation (NAO) on Spanish catches of albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) in the north-east Atlantic Ocean. Anim Biodiv Conserv 39(2):195–198

    Article  Google Scholar 

  123. Rykaczewski RR, Checkley DM Jr (2008) Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc Natl Acad Sci USA 105(6):1965–1970. https://doi.org/10.1073/pnas.0711777105

    Article  PubMed  Google Scholar 

  124. Schirripa MJ, Goodyear C, Methot R (2009) Testing different methods of incorporating climate data into the assessment of US West Coast sablefish. ICES J Mar Sci 66:1605–1613

    Article  Google Scholar 

  125. Serpetti N, Baudron AR, Burrows MT, Payne BL, Helaouët P, Fernandes PG, Heymans JJ (2017) Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries. Sci Rep 7:13438. https://doi.org/10.1038/s41598-017-13220-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Shaltout M, Omstedt A (2014) Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56(3):411–443. https://doi.org/10.5697/oc.56-3.411

    Article  Google Scholar 

  127. Sharma R, Herrera M (2019) Using effort control measures to implement catch capacity limits in ICCAT PS fisheries. Collect Vol Sci Pap ICCAT 75(7):2169–2195

    Google Scholar 

  128. Sims DW, Genner MJ, Southward AJ, Hawkins SJ (2001) Timing of squid migration reflects North Atlantic climate variability. Proc R Soc Lond B 268:2607–2611. https://doi.org/10.1098/rspb.2001.1847

    CAS  Article  Google Scholar 

  129. Skliris N, Sofianos S, Gkanasos T, Mantziafou A, Vervatis V, Axaopoulos P, Lascaratos A (2011) Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn 62:13–30. https://doi.org/10.1007/s10236-011-0493-5

    Article  Google Scholar 

  130. Stenseth NC, Mysterud A (2005) Weather packages: finding the right scale and composition of climate in ecology. J Anim Ecol 74:1195–1198

    Article  Google Scholar 

  131. Stenseth NC, Mysterud A, Otter G, Hurrell JW, Chan KS, Lima M (2002) Ecological Effects of Climate Fluctuations. Science 297:1292–1296

    CAS  PubMed  Article  Google Scholar 

  132. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Ådlandsvik B (2003) Studying climate effects on ecology through the use of climate indices, the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond B 270:2087–2096. https://doi.org/10.1098/rspb.2003.2415

    Article  Google Scholar 

  133. Stige L, Ottersen G, Brander K, Chan K-S, Stenseth NC (2006) Cod and climate: effect of the North Atlantic Oscillation on recruitment in the North Atlantic. Mar Ecol-Progr Ser 325:227–241. https://doi.org/10.3354/meps325227

    Article  Google Scholar 

  134. Straile D, Stenseth NC (2007) The North Atlantic Oscillation and ecology: links between historical time-series, and lessons regarding future climate warming. Clim Res 34:259–269. https://doi.org/10.3354/cr00702

    Article  Google Scholar 

  135. Svendsen E, Aglen A, Iversen SA, Skagen DW, Smestad O (1995) Influence of climate on recruitment and migration of fish stocks in the North Sea. Can Spec Publ Fish Aquat Sci 121:641–653

    Google Scholar 

  136. Teixeira CM, Gamito R, Leitão F, Murta AG, Cabral HN, Erzini K, Costa MJ (2016) Environmental influence on commercial fishery landings of small pelagic fish in Portugal. Reg Environ Change 16:709–716. https://doi.org/10.1007/s10113-015-0786-1

    Article  Google Scholar 

  137. Tsimplis MN, Rixen M (2002) Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophys Res Lett 29(23):51.1-51.4. https://doi.org/10.1029/2002GL015870

    Article  Google Scholar 

  138. Thompson DWJ, Wallace JW (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  139. Tsiklirasa AC, Licandro P, Pardalou A, McQuinnd IH, Grögere JP, Alheitf J (2019) Synchronization of Mediterranean pelagic fish populations with the North Atlantic climate variability. Deep-Sea Res Pt II 159:143–151

    Article  Google Scholar 

  140. UN (2020). https://www.un.org/es/sections/issues-depth/population/index.html

  141. Vicente-Serrano S (2005) El Niño and La Niña influence on droughts at different timescales in the Iberian Peninsula. Water Resour Res 41:W12415. https://doi.org/10.1029/2004WR003908

    Article  Google Scholar 

  142. Vicente-Serrano S, Trigo R, López-Moreno JI, Liberato M, Lorenzo-Lacruz J, Beguería S, Morán Tejeda E, Kenawy A (2011) The 2010 extreme winter north hemisphere atmospheric variability in Iberian precipitation: anomalies, driving mechanisms and future projections. Clim Res 46:51–65. https://doi.org/10.3354/cr00977

    Article  Google Scholar 

  143. Visbeck MH, Hurrell JW, Polvani L, Cullen HM (2001) The North Atlantic Oscillation: Past, present, and future. Proc Natl Acad Sci USA 98:12876–12877

    CAS  PubMed  Article  Google Scholar 

  144. Walker GT (1924) Correlations in seasonal variations of weather IX. Mem Ind Meteorol Dept 24:275–332

    Google Scholar 

  145. Walker GT (1933) Seasonal weather and its prediction. Nature 25:805–808

    Article  Google Scholar 

  146. Walker GT, Bliss EW (1932) World weather V. Mem Roy Meteor Soc 4:53–84

    Google Scholar 

  147. Wang J, Chen X, Staples K, Chen Y (2018) A stock assessment for Illex argentinus in Southwest Atlantic using an environmentally dependent surplus production model. Acta Oceanol Sin 37:94–101. https://doi.org/10.1007/s13131-017-1131-y

    Article  Google Scholar 

  148. Wang L, Ting M, Kushner PJ (2017) A robust empirical seasonal prediction of winter NAO and surface climate. Sci Rep 7:279. https://doi.org/10.1038/s41598-017-00353-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. Wang J, Yu W, Chen X, Chen Y (2011) Stock assessment for the western winter-spring cohort of neon flying squid (Ommastrephes bartramii) using environmentally dependent surplus production models. Sci Mar 80: 69–78. https://doi.org/10.3989/scimar.04205.11A.

  150. Wulff CO, Greatbatch RJ, Domeisen DI, Gollan G, Hansen F (2017) Tropical forcing of the Summer East Atlantic pattern. Geophys Res Lett 44(21):11166–11173. https://doi.org/10.1002/2017GL075493

    Article  Google Scholar 

  151. Zeller D, Pauly D (2019) Viewpoint: Back to the future for fisheries, where will we choose to go? Glob Sustainability 2(e11):1–8. https://doi.org/10.1017/sus.2019.8

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers for their insightful comments, which improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José C. Báez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Báez, J.C., Gimeno, L. & Real, R. North Atlantic Oscillation and fisheries management during global climate change. Rev Fish Biol Fisheries (2021). https://doi.org/10.1007/s11160-021-09645-z

Download citation

Keywords

  • Large-scale climatic oscillation
  • North Atlantic region
  • Northern hemisphere
  • Global warming
  • Fisheries
  • Food security