Patterns of mitochondrial and microsatellite DNA markers describe historical and contemporary dynamics of the Humboldt squid Dosidicus gigas in the Eastern Pacific Ocean

Abstract

Dosidicus gigas is an economically important species distributed in the Eastern Pacific Ocean. Unraveling the genetic population structure of this species is crucial to ensure its fishery sustainability and management. Mitochondrial DNA sequences and nuclear neutral loci are useful to understand how historical and contemporary factors drive the genetic population structure of species. However, most studies investigating genetic structuring of D. gigas from its northern and southern populations rely on patterns identified using mitochondrial genes. The use of both types of DNA markers is especially relevant for marine species with high dispersal capabilities such as D. gigas. Here, we describe the genetic structure of D. gigas using partial sequences of the mitochondrial gene NADH dehydrogenase subunit 2 and nuclear microsatellite loci in populations of the northern hemisphere from the Costa Rica Thermal Dome and off Ecuador; and, of the southern hemisphere from the South Equatorial Current and off Peru. Statistical parsimony network and Bayesian analyses from mitochondrial sequences revealed three historical maternal lineages in both hemispheres, with high levels of genetic differentiation and signatures of population expansion during the late Pleistocene. Use of Discriminant Analysis of Principal Component (DAPC) with microsatellite loci of mature and immature individuals showed the presence of at least two contemporary genetic stocks homogeneously co-distributed in both northern and southern hemispheres, which can be explained by the biological characteristics of D. gigas and the variable oceanographic conditions of the Eastern Pacific Ocean. Overall, our findings indicate that cooperation between countries with intensive fishing will benefit the sustainability of D. gigas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adcock GJ, Carvalho GR, Rodhouse PGK, Shaw PW (1999a) Highly polymorphic microsatellite loci of the heavily fished squid genus Illex (Ommastrephidae). Mol Ecol 8:165–168

    CAS  Google Scholar 

  2. Adcock GJ, Shaw PW, Rodhouse PG, Carvalho GR (1999b) Microsatellite analysis of genetic diversity in the squid Illex argentinus during a period of intensive fishing. Mar Ecol Prog Ser 187:171–178

    Google Scholar 

  3. Addison JA, Hart MW (2005) Spawning, copulation and inbreeding coefficients in marine invertebrates. Biol Lett 1:450–453

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Alegre A, Ménard F, Tafur R et al (2014) Comprehensive model of Jumbo squid Dosidicus gigas trophic ecology in the Northern Humboldt current system. PLoS ONE 9:e85919

    PubMed  PubMed Central  Google Scholar 

  5. Argüelles Torres J, Taipe Yzarra A (2018) Spatio-temporal variability in the structure by size of Dosidicus gigas (d’Orbigny, 1835) ein Peruvian waters between 1958 and 2015. Bol Inst Mar Peru 33:167–177

    Google Scholar 

  6. Arkhipkin AI, Rodhouse PGK, Pierce GJ et al (2015) World squid fisheries. Rev Fish Sci Aquac 23:92–252

    Google Scholar 

  7. Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci 62:727–730

    Google Scholar 

  8. Astanei I, Gosling E, Wilson J, Powell E (2005) Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol Ecol 14:1655–1666

    CAS  PubMed  Google Scholar 

  9. Beaufort L, de Garidel-Thoron T, Mix AC, Pisias NG (2001) ENSO-like forcing on oceanic primary production during the late pleistocene. Science 293:2440–2444

    CAS  PubMed  Google Scholar 

  10. Birk MA, Paight C, Seibel BA (2017) Observations of multiple pelagic egg masses from small-sized jumbo squid (Dosidicus gigas) in the Gulf of California. J Nat Hist 51:2569–2584

    Google Scholar 

  11. Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol 10:e1003537

    PubMed  PubMed Central  Google Scholar 

  12. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    CAS  PubMed  Google Scholar 

  13. Clark PU, Dyke AS, Shakun JD et al (2009) The last glacial maximum. Science 325:710–714

    CAS  PubMed  Google Scholar 

  14. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    CAS  Google Scholar 

  15. Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205:19–31

    PubMed  Google Scholar 

  16. Corrander J, Marttinen P, Mäntyniemi S (2006) A Bayesian method for identification of stock mixtures from molecular marker data. Fish Bull 104:550–558

    Google Scholar 

  17. Csirke J, ArgüellesTorres J, AlegreNorzaSior ARP et al (2018) Biology, population structure and fishery of jumbo flying squid (Dosidicus gigas) in Peru. Bol Inst Mar Peru 33:302–364

    Google Scholar 

  18. Davis RW, Jaquet N, Gendron D et al (2007) Diving behavior of sperm whales in relation to behavior of a major prey species, the jumbo squid, in the Gulf of California, Mexico. Mar Ecol Prog Ser 333:291–302

    Google Scholar 

  19. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM Algorithm. J R Stat Soc Series B Stat Methodol 39:1–22

    Google Scholar 

  20. DeWoody J, Nason JD, Hipkins VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6:951–957

    CAS  Google Scholar 

  21. Doubleday ZA, Prowse TAA, Arkhipkin A et al (2016) Global proliferation of cephalopods. Curr Biol 26:R406–R407

    CAS  PubMed  Google Scholar 

  22. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian Coalescent Inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    CAS  PubMed  Google Scholar 

  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  25. FAO 2011–2020 Fisheries and aquaculture software. FishStatJ - Software for Fishery and Aquaculture Statistical Time Series. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 21 July 2016.

  26. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Garnier-Géré P, Chikhi L (2013) Population subdivision, Hardy-Weinberg equilibrium and the Wahlund effect. eLS. Wiley, Chichester, UK

    Google Scholar 

  29. Gilly WF, Elliger CA, Salinas CA et al (2006a) Spawning by jumbo squid Dosidicus gigas in San Pedro Mártir Basin, Gulf of California, Mexico. Mar Ecol Prog Ser 313:125–133

    Google Scholar 

  30. Gilly WF, Markaida U, Baxter CH et al (2006b) Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar Ecol Prog Ser 324:1–17

    Google Scholar 

  31. Grant WS (2015) Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. J Hered 106:333–346

    PubMed  Google Scholar 

  32. Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7:e45170

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    CAS  PubMed  Google Scholar 

  34. Hauser L, Adcock GJ, Smith PJ et al (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci U S A 99:11742–11747

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hudson RR (1990) Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology 7:44

    Google Scholar 

  36. Ibañez CM, Cubillos LA, Tafur R et al (2011) Genetic diversity and demographic history of Dosidicus gigas (Cephalopoda: Ommastrephidae) in the Humboldt Current System. Mar Ecol Prog Ser 431:163–171

    Google Scholar 

  37. Ichii T, Mahapatra K, Watanabe T et al (2002) Occurrence of jumbo flying squid Dosidicus gigas aggregations associated with the countercurrent ridge off the Costa Rica Dome during 1997 El Niño and 1999 La Niña. Mar Ecol Prog Ser 231:151–166

    Google Scholar 

  38. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    PubMed  PubMed Central  Google Scholar 

  40. Kaukinen KH, Supernault KJ, Miller KM (2004) Enrichment of tetranucleotide microsatellite loci from invertebrate species. J Shellfish Res 23:621–627

    Google Scholar 

  41. Keyl F, Argüelles J, Mariátegui L et al (2008) A hypothesis on range expansion and spatio-temporal shifts in size-at-maturity of jumbo squid (Dosidicus gigas) in the Eastern Pacific Ocean. CalCOFI Rep 49:119–128

    Google Scholar 

  42. Keyl F, Argüelles J, Tafur R (2011) Interannual variability in size structure, age, and growth of jumbo squid (Dosidicus gigas) assessed by modal progression analysis. ICES J Mar Sci 68:507–518

    Google Scholar 

  43. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302

    Google Scholar 

  45. Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Google Scholar 

  46. Li G, Hubert S, Bucklin K et al (2003) Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Mol Ecol Notes 3:228–232

    CAS  Google Scholar 

  47. Lyrholm T, Leimar O, Gyllensten U (1996) Low diversity and biased substitution patterns in the mitochondrial DNA control region of sperm whales: implications for estimates of time since common ancestry. Mol Biol Evol 13:1318–1326

    CAS  PubMed  Google Scholar 

  48. Markaida U, Rosenthal JJC, Gilly WF (2005) Tagging studies on the jumbo squid (Dosidicus gigas) in the Gulf of California, Mexico. Fish Bull 103:219–226

    Google Scholar 

  49. Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021

    CAS  PubMed  Google Scholar 

  50. Mcgoldrick D (2000) The transmission of microsatellite alleles in Australian and north American stocks of the Pacific oyster (Crassostrea gigas): selection and null alleles. J Shellfish Res 19:779–788

    Google Scholar 

  51. Morales-Bojórquez E, Cisneros-MataNevárez-Martínez MAMO, Hernández-Herrera A (2001) Review of stock assessment and fishery biology of Dosidicus gigas in the Gulf of California, Mexico. Fish Res 54:83–94

    Google Scholar 

  52. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, Columbia

    Google Scholar 

  53. Nigmatullin CM, Nesis KN, Arkhipkin AI (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish Res 54:9–19

    Google Scholar 

  54. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Google Scholar 

  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramos JE, Pecl GT, Moltschaniwskyj NA et al (2018) Population genetic signatures of a climate change driven marine range extension. Sci Rep 8:9558

    PubMed  PubMed Central  Google Scholar 

  57. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    CAS  PubMed  Google Scholar 

  58. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223

    PubMed  Google Scholar 

  59. Rodhouse PG (2001) Managing and forecasting squid fisheries in variable environments. Fish Res 54:3–8

    Google Scholar 

  60. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  61. Rosa R, Yamashiro C, Markaida U et al (2013) Dosidicus gigas, Humboldt squid. In: Rosa R, Pierce G, O'Dor RK (eds) Advances in squid biology, ecology and fisheries. New York, Nova Science Publishers, Part II - Oegopsid squids, pp 169–206

  62. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC et al (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    CAS  PubMed  Google Scholar 

  63. Sanchez G, Tomano S, Yamashiro C et al (2016) Population genetics of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers. Fish Res 175:1–9

    Google Scholar 

  64. Sandoval-Castellanos E, Uribe-Alcocer M, Díaz-Jaimes P (2010) Population genetic structure of the Humboldt squid (Dosidicus gigas d’Orbigny, 1835) inferred by mitochondrial DNA analysis. J Exp Mar Bio Ecol 385:73–78

    CAS  Google Scholar 

  65. Sandoval-Castellanos E, Uribe-Alcocer M, Díaz-Jaimes P (2007) Population genetic structure of jumbo squid (Dosidicus gigas) evaluated by RAPD analysis. Fish Res 83:113–118

    Google Scholar 

  66. Staaf DJ, Camarillo-Coop S, Haddock SHD et al (2008) Natural egg mass deposition by the Humboldt squid (Dosidicus gigas) in the Gulf of California and characteristics of hatchlings and paralarvae. J Mar Biol Assoc U K 88:759–770

    Google Scholar 

  67. Staaf DJ, Ruiz-Cooley RI, Elliger C et al (2010) Ommastrephid squids Sthenoteuthis oualaniensis and Dosidicus gigas in the eastern Pacific show convergent biogeographic breaks but contrasting population structures. Mar Ecol Prog Ser 418:165–178

    Google Scholar 

  68. Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    CAS  PubMed  Google Scholar 

  69. Tafur R, VillegasRabí PM, Yamashiro C (2001) Dynamics of maturation, seasonality of reproduction and spawning grounds of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in Peruvian waters. Fish Res 54:33–50

    Google Scholar 

  70. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  73. Waluda CM, Rodhouse PGK (2005) Dosidicus gigas fishing grounds in the Eastern Pacific as revealed by satellite imagery of the light-fishing fleet. PMBC Res Bull 66:321–328

    Google Scholar 

  74. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Google Scholar 

  75. Winkelmann I, Campos PF, Strugnell J et al (2013) Mitochondrial genome diversity and population structure of the giant squid Architeuthis: genetics sheds new light on one of the most enigmatic marine species. Proc R Soc B 280:20130273

    PubMed  Google Scholar 

  76. Zeidberg LD, Robison BH (2007) Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc Natl Acad Sci U S A 104:12948–12950

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Japanese Government through the Ministry of Education (Monbukagakusho: MEXT) and partially by FINCyT Perú (Contrato 060 PIN 115). We thank Diego Deville, MSc, for his suggestions on some of the methodological analyses, and Dr Shin-Yu Lee and two anonymous reviewers for their valuable comments to improve this article. We also thank Dr. Adina Staicov of the Writing Center at Hiroshima University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gustavo Sanchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 352 kb)

Supplementary file2 (XLSX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanchez, G., Kawai, K., Yamashiro, C. et al. Patterns of mitochondrial and microsatellite DNA markers describe historical and contemporary dynamics of the Humboldt squid Dosidicus gigas in the Eastern Pacific Ocean. Rev Fish Biol Fisheries (2020). https://doi.org/10.1007/s11160-020-09609-9

Download citation

Keywords

  • Humboldt squid
  • Eastern pacific
  • Microsatellite loci
  • Mitochondrial DNA
  • Genetic structure