Advertisement

Reviews in Fish Biology and Fisheries

, Volume 28, Issue 1, pp 153–176 | Cite as

The behavioural diversity of Atlantic cod: insights into variability within and between individuals

  • Justin J. Meager
  • Anders Fernö
  • Jon Egil Skjæraasen
Reviews
  • 198 Downloads

Abstract

Cod (Gadus morhua) are an iconic fish species of cultural, historical and economical significance across the Atlantic and adjacent seas. Among many scholarly investigations, this interest has prompted behavioural research, rendering cod one of the few commercially harvested marine fishes for which behaviour has been studied in a comprehensive manner. In our review of this behavioural work, we examine the variability in cod behaviour across five functional domains: foraging, predation, social interactions, migration and reproduction. Research to date suggests a high level of behavioural sophistication in cod that is underpinned by complex learning strategies and long-term memory. Cod also demonstrate substantial variability in how they respond to different ecological circumstances. Considerable variation is evident both within and between individuals, and in some instances, between populations. There are a number of pathways from which this variation appears to arise, such as asocial and social learning, environmental control of phenotypic plasticity and genetic control, but there are no known examples of behaviours that are purely the result of one of these mechanisms. Behavioural variation is therefore likely to result from a combination of these factors, underscoring the need for a quantitative, multivariate approach to understand behavioural variation in cod.

Keywords

Behavioural flexibility Cognition Gadus morhua Learning Personality Population differentiation 

References

  1. Adlerstein SA, Welleman HC (2000) Diel variation of stomach contents of North Sea cod (Gadus morhua) during a 24-h fishing survey: an analysis using generalized additive models. Can J Fish Aquat Sci 57:2363–2367CrossRefGoogle Scholar
  2. Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337PubMedCrossRefGoogle Scholar
  3. Andersen Ø et al (2009) Haemoglobin polymorphisms affect the oxygen-binding properties in Atlantic cod populations. Proc R Soc Lond B Biol Sci 276:833–841CrossRefGoogle Scholar
  4. Andersen Ø et al (2015) Evolutionary history and adaptive significance of the polymorphic Pan I in migratory and stationary populations of Atlantic cod (Gadus morhua). Mar Genom 22:45–54.  https://doi.org/10.1016/j.margen.2015.03.009 CrossRefGoogle Scholar
  5. Anderson JL, Laurel BJ, Brown JA (2007) Diel changes in behaviour and habitat use by age-0 Atlantic cod (Gadus morhua L.) in the laboratory and field. J Exp Mar Biol Ecol 351:267–275CrossRefGoogle Scholar
  6. Ansell AD, Gibson RN (1993) The effect of sand and light on predation of juvenile plaice (Pleuronectes platessa) by fishes and crustaceans. J Fish Biol 43:837–845CrossRefGoogle Scholar
  7. Anthony PD (1981a) Fish behaviour studies. In: Annon (ed) Triennial review of research 1979–1981. Department of Agriculture and Fisheries for Scotland, Edinburgh, pp 23–27Google Scholar
  8. Anthony PD (1981b) Visual contrast thresholds in the cod Gadus morhua L. J Fish Biol 19:87–103CrossRefGoogle Scholar
  9. Anthony PD, Hawkins AD (1983) Spectral sensitivity of the cod, Gadus morhua L. Mar Behav Physiol 10:145–165CrossRefGoogle Scholar
  10. Armstrong MP et al (2013) The application of small scale fishery closures to protect Atlantic cod spawning aggregations in the inshore Gulf of Maine. Fish Res 141:62–69.  https://doi.org/10.1016/j.fishres.2012.09.009 CrossRefGoogle Scholar
  11. Arnason E, Hernandez UB, Kristinsson K (2009) Intense habitat-specific fisheries-induced selection at the molecular Pan I locus predicts imminent collapse of a major cod fishery. PLoS ONE.  https://doi.org/10.1371/journal.pone.0005529 PubMedPubMedCentralGoogle Scholar
  12. Arnott SA, Neil DM, Ansell AD (1998) Escape trajectories of the brown shrimp Crangon crangon, and a theoretical consideration of initial escape angles from predators. J Exp Biol 201:1771–1784PubMedGoogle Scholar
  13. Arntz WE (1973) Periodicity of diel food-intake of cod Gadus morhua in Kiel Bay. Oikos 15:138–145Google Scholar
  14. Astrup J, Møhl B (1993) Detection of intense ultrasound by the cod Gadus morhua. J Exp Biol 182:71–80Google Scholar
  15. Astrup J, Møhl B (1998) Discrimination between high and low repetition rates of ultrasonic pulses by the cod. J Fish Biol 52:205–208CrossRefGoogle Scholar
  16. Barnard CJ (2004) Animal behavior: mechanism, development, function, and evolution. Pearson Education, HarlowGoogle Scholar
  17. Bekkevold D, Hansen MM, Nielsen EE (2006) Genetic impact of gadoid culture on wild fish populations: predictions, lessons from salmonids, and possibilities for minimizing adverse effects. ICES J Mar Sci 63:198–208.  https://doi.org/10.1016/j.icesjms.2005.11.003 CrossRefGoogle Scholar
  18. Bell AM (2007) Future directions in behavioural syndromes research. Proc R Soc B Biol Sci 274:755–761.  https://doi.org/10.1098/rspb.2006.0199 CrossRefGoogle Scholar
  19. Bell AM (2008) The genetics of fish behaviour. In: Magnhagen C, Braithwaite V, Forsgren E, Kapoor NN (eds) fish behaviour. Science Publishers, Enfield, pp 151–187CrossRefGoogle Scholar
  20. Bendesky A, Bargmann CI (2011) Genetic contributions to behavioural diversity at the gene–environment interface. Nat Rev Genet 12:809–820PubMedCrossRefGoogle Scholar
  21. Benoît HP, Swain DP, Bowen W, Breed GA, Hammill MO, Harvey V (2011) Evaluating the potential for grey seal predation to explain elevated natural mortality in three fish species in the southern Gulf of St. Lawrence. Mar Ecol Prog Ser 442:149–167CrossRefGoogle Scholar
  22. Berg PR et al (2016) Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. Sci Rep.  https://doi.org/10.1038/srep23246 Google Scholar
  23. Beukema JJ (1969) Angling experiments with carp (Cyprinus carpio L.). Neth J Zool 20:81–92.  https://doi.org/10.1163/002829670X00088 CrossRefGoogle Scholar
  24. Biro PA, Post JR (2008) Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc Natl Acad Sci U S A 105:2919–2922.  https://doi.org/10.1073/pnas.0708159105 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Björnsson B, Reynisson P (2013) Synchronous and vertically undulating swimming behaviour of Atlantic cod Gadus morhua. Aquat Biol 19:13–18.  https://doi.org/10.3354/ab00516 CrossRefGoogle Scholar
  26. Blom G, Folkvord A (1997) A snapshot of cannibalism in 0-group Atlantic cod (Gadus morhua) in a marine pond. J Appl Ichthyol 13:177–181CrossRefGoogle Scholar
  27. Bone M, Marshall NB, Blaxter JHS (2004) Biology of fishes, 2nd edn. Bios Scientific Publishers, AbingtonGoogle Scholar
  28. Braithwaite VA, Salvanes AGV (2005) Environmental variability in the early rearing environment generates behaviourally flexible cod: implications for rehabilitating wild populations. Proc R Soc B Biol Sci 272:1107–1113.  https://doi.org/10.1098/rspb.2005.3062 CrossRefGoogle Scholar
  29. Braithwaite VA, Huntingford F, van den Bos R (2013) Variation in emotion and cognition among fishes. J Agric Environ Ethics 26:7–23CrossRefGoogle Scholar
  30. Brännäs E, Johnsson J (2008) Behaviour and welfae in farmed fish. In: Magnhagen C, Braithwaite V, Forsgren E, Kapoor NN (eds) Fish behaviour. Science Publishers Inc., Enfield, pp 593–627CrossRefGoogle Scholar
  31. Brawn VM (1961a) Aggressive behaviour in the cod (Gadus callarias L.). Behaviour 18:107–147CrossRefGoogle Scholar
  32. Brawn VM (1961b) Reproductive behaviour of the cod (Gadus callarias L.). Behaviour 18:177–197CrossRefGoogle Scholar
  33. Brawn VM (1961c) Sound production by the cod (Gadus callarias L.). Behaviour 18:177–198CrossRefGoogle Scholar
  34. Brawn VM (1969) Feeding behaviour of cod (Gadus morhua). J Fish Res Board Can 26:583–596CrossRefGoogle Scholar
  35. Breden F, Scott MA, Michel E (1987) Genetic differentiation for antipredator behaviour in the trinidad guppy, Poecilia reticulata. Anim Behav 35:618–620CrossRefGoogle Scholar
  36. Brix O, Thorkildsen S, Colosimo A (2004) Temperature acclimation modulates the oxygen binding properties of the Atlantic cod (Gadus morhua L.) genotypes Hbi*1/1, Hbi*1/2, and Hbi*2/2 by changing the concentrations of their major hemoglobin components (results from growth studies at different temperatures). Comp Biochem Physiol A Mol Integr Physiol 138:241–251PubMedCrossRefGoogle Scholar
  37. Brooks CC, Scherer PE, Cleveland K, Whittemore JL, Lodish HF, Cheatham B (2000) Pantophysin is a phosphoprotein component of adipocyte transport vesicles and associates with GLUT4-containing vesicles. J Biol Chem 275:2029–2036PubMedCrossRefGoogle Scholar
  38. Brosnan SF, Salwiczek L, Bshary R (2010) The interplay of cognition and cooperation. Philos Trans R Soc B 365:2699–2710CrossRefGoogle Scholar
  39. Brown C, Warburton K (1999) Differences in timidity and escape responses between predator-naive and predator-sympatric rainbowfish populations. Ethology 105:491–502CrossRefGoogle Scholar
  40. Brown JA, Minkoff G, Puvanendran V (2003) Larviculture of Atlantic cod (Gadus morhua): progress, protocols and problems. Aquac 227:357–372CrossRefGoogle Scholar
  41. Brown C, Laland K, Krause J (2011) Fish cognition and behaviour, 2nd edn. Blackwell Publishing, Oxford, p 450CrossRefGoogle Scholar
  42. Brown GE, Ferrari MCO, Chivers DP (2013) Adaptive forgetting: why predator recognition training might not enhance poststocking survival. Fisheries 38:16–25CrossRefGoogle Scholar
  43. Budaev SV (1997) “Personality” in the guppy (Poecilia reticulata): a correlational study of exploratory behavior and social tendency. J Comp Psychol 111:399–411CrossRefGoogle Scholar
  44. Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod (Gadus morhua). J Comp Physiol 85:147–167CrossRefGoogle Scholar
  45. Chinarina AD, Troshicheva NV (1975) Food-procuring reactions of the Atlantic cod, Gadus morhua, and the short-horn sculpin, Myoxocephalus scorpius, in the absence of visual recognition. J Ichthyol 15:990–997Google Scholar
  46. Clark DS, Green JM (1990) Activity and movement patterns of juvenile Atlantic cod, Gadus morhua, in Conception Bay, Newfoundland, as determined by sonic telemetry. Can J Zool 68:1434–1442CrossRefGoogle Scholar
  47. Conrad JL, Weinersmith KL, Brodin T, Saltz JB, Sih A (2011) Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J Fish Biol 78:395–435.  https://doi.org/10.1111/j.1095-8649.2010.02874.x PubMedCrossRefGoogle Scholar
  48. Coppens CM, de Boer SF, Koolhaas JM (2010) Coping styles and behavioural flexibility: towards underlying mechanisms. Philos Trans R Soc B 365:4021–4028.  https://doi.org/10.1098/rstb.2010.0217 CrossRefGoogle Scholar
  49. Corten A (2002) The role of “conservatism” in herring migrations. Rev Fish Biol Fish.  https://doi.org/10.1023/a:1021347630813 Google Scholar
  50. Dean MJ, Hoffman WS, Zemeckis DR, Armstrong MP (2014) Fine-scale diel and gender-based patterns in behaviour of Atlantic cod (Gadus morhua) on a spawning ground in the Western Gulf of Maine. ICES J Mar Sci.  https://doi.org/10.1093/icesjms/fsu040 Google Scholar
  51. Dingemanse NJ, Wolf M (2013) Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim Behav 85:1031–1039.  https://doi.org/10.1016/j.anbehav.2012.12.032 CrossRefGoogle Scholar
  52. Dingemanse NJ, Kazem AJN, Réale D, Wright J (2010) Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25:81–89PubMedCrossRefGoogle Scholar
  53. Domenici P, Booth D, Blagburn JM, Bacon JP (2008) Cockroaches keep predators guessing by using preferred escape trajectories. Curr Biol 18:1792–1796.  https://doi.org/10.1016/j.cub.2008.09.062 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Døving KB, Selset R (1980) Behaviour patterns in cod released by electrical stimulation of olfactory tract bundlets. Science 207:559–560PubMedCrossRefGoogle Scholar
  55. Drangsholt TMK, Damsgård B, Olesen I (2014) Quantitative genetics of behavioral responsiveness in Atlantic cod (Gadus morhua L.). Aquaculture 420–421:282–287.  https://doi.org/10.1016/j.aquaculture.2013.11.004 CrossRefGoogle Scholar
  56. Drinkwater KF (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62:1327–1337.  https://doi.org/10.1016/j.icejms.2005.05.015 CrossRefGoogle Scholar
  57. Ebbesson LO, Braithwaite VA (2012) Environmental effects on fish neural plasticity and cognition. J Fish Biol 81:2151–2174.  https://doi.org/10.1111/j.1095-8649.2012.03486.x PubMedCrossRefGoogle Scholar
  58. Ellingsen OF, Døving KB (1986) Chemical fractionation of shrimp extracts inducing bottom search behaviour in cod (Gadus morhua L.). J Chem Ecol 12:155–168PubMedCrossRefGoogle Scholar
  59. Fernö A, Huse I (1983) The effect of experience on the behaviour of cod (Gadus morhua L) towards a baited hook. Fish Res 2:19–28CrossRefGoogle Scholar
  60. Fernö A, Olsen S (1994) Marine fish behaviour in capture and abundance estimation. Fishing News Books, OxfordGoogle Scholar
  61. Fernö A, Huse G, Jakobsen PJ, Kristiansen TS, Nilsson J (2011) Fish behaviour, learning aquaculture and fisheries. Fish cognition and behavior, 2nd edn. Wiley-Blackwell, Oxford, pp 359–404CrossRefGoogle Scholar
  62. Fevolden SE, Westgaard JI, Pedersen T, Præbel K (2012) Settling-depth vs. genotype and size vs. genotype correlations at the Pan I locus in 0-group Atlantic cod Gadus morhua. Mar Ecol Prog Ser 468:267–278.  https://doi.org/10.3354/meps09990 CrossRefGoogle Scholar
  63. Fevolden SE, Westgaard JI, Pedersen T (2015) Extreme male-skewed sex ratios on spawning grounds for Atlantic cod Gadus morhua with typical coastal cod signatures of the Pan I (pantophysin) locus. Sex Early Dev Aquat Org 1:133–142.  https://doi.org/10.3354/sedao00013 CrossRefGoogle Scholar
  64. Floeter J, Temming A (2003) Explaining diet composition of North Sea cod (Gadus morhua): prey size preference vs. prey availability. Can J Fish Aquat Sci 60:140–150CrossRefGoogle Scholar
  65. Folkvord A (1991) Growth, survival and cannibalism of cod juveniles (Gadus morhua L.): effects of feed type, starvation and fish size. Aquaculture 97:41–59CrossRefGoogle Scholar
  66. Foster SA (1999) The geography of behaviour: an evolutionary perspective. Trends Ecol Evol 14:190–195.  https://doi.org/10.1016/S0169-5347(98)01577-8 PubMedCrossRefGoogle Scholar
  67. Frith HR, Blake RW (1991) Mechanics of the startle response in the northern pike, Esox lucius. Can J Zool 69:2831–2839CrossRefGoogle Scholar
  68. Fuiman LA, Magurran AE (1994) Development of predator defences in fishes. Rev Fish Biol Fish 4:145–183CrossRefGoogle Scholar
  69. Godø OR (1995) Transplantation-tagging-experiments in preliminary studies of migration of cod off Norway. ICES J Mar Sci 52:955–962CrossRefGoogle Scholar
  70. Godø OR, Michalsen K (2000) Migratory behaviour of north–east Arctic cod, studied by use of data storage tags. Fish Res 48:127–140CrossRefGoogle Scholar
  71. Gorman AM, Gregory RS, Schneider DC (2009) Eelgrass patch size and proximity to the patch edge affect predation risk of recently settled age 0 cod (Gadus). J Exp Mar Biol Ecol 371:1–9CrossRefGoogle Scholar
  72. Gosling SD, John OP (1999) Personality dimensions in nonhuman animals: a cross-species review. Curr Dir Psychol Sci 8:69–75CrossRefGoogle Scholar
  73. Gotceitas V, Brown JA (1993) Substrate selection by juvenile Atlantic cod (Gadus morhua) effects of predation risk. Oecologia 93:31–37PubMedCrossRefGoogle Scholar
  74. Gotceitas V, Fraser S, Brown JA (1995) Habitat use by juvenile Atlantic cod (Gadus morhua) in the presence of an actively foraging and non-foraging predator. Mar Biol (Berl) 123:421–430CrossRefGoogle Scholar
  75. Grabowski TB, Thorsteinsson V, McAdam BJ, Marteinsdottir G (2011) Evidence of segregated spawning in a single marine fish stock: sympatric divergence of ecotypes in Icelandic cod? PLoS ONE.  https://doi.org/10.1371/journal.pone.0017528 Google Scholar
  76. Grabowski TB, Boswell KM, McAdam BJ, Wells RJ, Marteinsdottir G (2012) Characterization of Atlantic cod spawning habitat and behavior in Icelandic coastal waters. PLoS ONE 7:e51321.  https://doi.org/10.1371/journal.pone.0051321 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Grabowski TB, Thorsteinsson V, Marteinsdottir G (2014) Spawning behavior in Atlantic cod: analysis by use of data storage tags. Mar Ecol Prog Ser 506:279–290.  https://doi.org/10.3354/meps10787 CrossRefGoogle Scholar
  78. Grant JWA (1993) Whether or not to defend? The influence of resource distribution. Mar Freshw Behav Physiol 23:137–153CrossRefGoogle Scholar
  79. Grant SM, Brown JA (1998a) Diel foraging cycles and interactions among juvenile Atlantic cod (Gadus morhua) at a nearshore site in Newfoundland. Can J Fish Aquat Sci 55:1307–1316CrossRefGoogle Scholar
  80. Grant SM, Brown JA (1998b) Nearshore settlement and localized populations of Atlantic cod (Gadus morhua) in shallow coastal waters of Newfoundland. Can J Fish Aquat Sci 55:1317–1327CrossRefGoogle Scholar
  81. Griffiths SW, Magurran AE (1997) Schooling preferences for familiar fish vary with group size in a wild guppy population. Proc R Soc Lond Ser B Biol Sci 264:547–551CrossRefGoogle Scholar
  82. Groothuis TG, Carere C (2005) Avian personalities: characterization and epigenesis. Neurosci Biobehav Rev 29:137–150.  https://doi.org/10.1016/j.neubiorev.2004.06.010 PubMedCrossRefGoogle Scholar
  83. Hansen LA, Dale T, Damsgård B, Uglem I, Aas K, Bjørn P-A (2008) Escape-related behaviour of Atlantic cod, Gadus morhua L., in a simulated farm situation. Aquac Res 40:26–34CrossRefGoogle Scholar
  84. Hardie D, Renaud C, Ponomarenko V, Mukhina N, Yaragina N, Skjæraasen J, Hutchings JA (2008) The isolation of Atlantic cod, Gadus morhua (Gadiformes), populations in northern meromictic lakes: a recurrent arctic phenomenon. J Ichthyol 48:230–240CrossRefGoogle Scholar
  85. Hart PJB, Salvanes AGV (2000) Individual variation in competitive performance of juvenile cod and its consequences for growth. J Mar Biol Assoc U K 80:569–570CrossRefGoogle Scholar
  86. Hatlen B, Grisdale-Helland B, Helland SJ (2006) Growth variation and fin damage in Atlantic cod (Gadus morhua L.) fed at graded levels of feed restriction. Aquaculture 261:1212–1221.  https://doi.org/10.1016/j.aquaculture.2006.09.027 CrossRefGoogle Scholar
  87. Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362.  https://doi.org/10.1111/j.1467-2979.2008.00299.x CrossRefGoogle Scholar
  88. Hawkins AD, Urquart GG, Smith GW (1980) Ultrasonic tracking of juvenile cod by means of a large spaced hydrophone array. Pergamon Press, OxfordCrossRefGoogle Scholar
  89. Helfman GS, Schultz ET (1984) Social transmission of behavioural traditions in a coral reef fish. Anim Behav 32:379–384CrossRefGoogle Scholar
  90. Hemmer-Hansen J et al (2013) A genomic island linked to ecotype divergence in Atlantic cod. Mol Ecol 22:2653–2667.  https://doi.org/10.1111/mec.12284 PubMedCrossRefGoogle Scholar
  91. Hernandez KM et al (2013) Acoustic monitoring of Atlantic cod (Gadus morhua) in Massachusetts Bay: implications for management and conservation. ICES J Mar Sci.  https://doi.org/10.1093/icesjms/fst003 Google Scholar
  92. Hobson VJ, Righton D, Metcalfe JD, Hays GC (2007) Vertical movements of North Sea cod. Mar Ecol Prog Ser 347:15–20CrossRefGoogle Scholar
  93. Hobson VJ, Righton D, Metcalfe JD, Hays GC (2009) Link between vertical and horizontal movement patterns of cod in the North Sea. Aquat Biol 5:133–142CrossRefGoogle Scholar
  94. Höglund J, Alatalo RV (1995) Leks. Monographs in behavior and ecology. Princeton University Press, PrincetonGoogle Scholar
  95. Höglund E, Bakke MJ, Øverli Ø, Winberg S, Nilsson GE (2005) Suppression of aggressive behaviour in juvenile Atlantic cod (Gadus morhua) by l-tryptophan supplementation. Aquaculture 249:525–531CrossRefGoogle Scholar
  96. Holt RE, Jørgensen C (2015) Climate change in fish: effects of respiratory constraints on optimal life history and behaviour. Biol Lett.  https://doi.org/10.1098/rsbl.2014.1032 PubMedPubMedCentralGoogle Scholar
  97. Huse I, Fernö A (1990) Fish behaviour studies as an aid to improved longline hook design. Fish Res 9:287–297CrossRefGoogle Scholar
  98. Huse G, Fernö A, Holst JC (2010) Establishment of new wintering areas in herring co-occurs with peaks in the ‘first time/repeat spawner’ ratio. Mar Ecol Prog Ser 409:189–198.  https://doi.org/10.3354/meps08620 CrossRefGoogle Scholar
  99. Hutchings JA, Myers RA (1993) Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can J Fish Aquat Sci 50:2468–2474CrossRefGoogle Scholar
  100. Hutchings JA, Rowe S (2008) Consequences of sexual selection for fisheries-induced evolution: an exploratory analysis. Evol App 1:129–136CrossRefGoogle Scholar
  101. Hutchings JA, Bishop TD, McGregor-Shaw CR (1999) Spawning behaviour of Atlantic cod, Gadus morhua: evidence of mate competition and mate choice in a broadcast spawner. Can J Fish Aquat Sci 56:97–104CrossRefGoogle Scholar
  102. Hutchings JA, Swain DP, Rowe S, Eddington JD, Puvanendran V, Brown JA (2007) Genetic variation in life-history reaction norms in a marine fish. Proc R Soc B Biol Sci 274:1693–1699.  https://doi.org/10.1098/rspb.2007.0263 CrossRefGoogle Scholar
  103. Jakobsdóttir KB, Pardoe H, Magnússon Á, Björnsson H, Pampoulie C, Ruzzante DE, Marteinsdóttir G (2011) Historical changes in genotypic frequencies at the Pantophysin locus in Atlantic cod (Gadus morhua) in Icelandic waters: evidence of fisheries-induced selection? Evol Appl 4:562–573.  https://doi.org/10.1111/j.1752-4571.2010.00176.x PubMedPubMedCentralCrossRefGoogle Scholar
  104. Johnstone ADF (1980) The detection of dissolved amino acids by the Atlantic cod, Gadus morhua L. J Fish Biol 17:219–230CrossRefGoogle Scholar
  105. Jørgensen C, Dunlop ES, Opdal AF, Fiksen Ø (2008) The evolution of spawning migrations: state dependence and fishing-induced changes. Ecology 89:3436–3448PubMedCrossRefGoogle Scholar
  106. Karlsen BO et al (2013) Genomic divergence between the migratory and stationary ecotypes of Atlantic cod. Mol Ecol 22:5098–5111PubMedCrossRefGoogle Scholar
  107. Ketterson ED, Atwell JW, McGlothlin JW (2009) Phenotypic integration and independence: hormones, performance, and response to environmental change. Integr Comp Biol 49:365–379.  https://doi.org/10.1093/icb/icp057 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kirubakaran TG et al (2016) Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol Ecol 25:2130–2143.  https://doi.org/10.1111/mec.13592 PubMedCrossRefGoogle Scholar
  109. Kjesbu OS (1989) The spawning activity of cod, Gadus morhua L. J Fish Biol 34:195–206CrossRefGoogle Scholar
  110. Knutsen H, Olsen EM, Jorde PE, Espeland SH, André C, Stenseth NC (2011) Are low but statistically significant levels of genetic differentiation in marine fishes ‘biologically meaningful’? A case study of coastal Atlantic cod. Mol Ecol 20:768–783.  https://doi.org/10.1111/j.1365-294X.2010.04979.x PubMedCrossRefGoogle Scholar
  111. Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 31:307–321.  https://doi.org/10.1016/j.yfrne.2010.04.001 PubMedCrossRefGoogle Scholar
  112. Kristiansen TS, Ottera H, Svasand T (2000) Size-dependent mortality of juvenile reared Atlantic cod released in a small fjord. J Fish Biol 56:792–801CrossRefGoogle Scholar
  113. Laland KN (2004) Social learning strategies. Learn Behav 32:4–14PubMedCrossRefGoogle Scholar
  114. Laland KN, Janik VM (2006) The animal cultures debate. Trends Ecol Evol 21:542–547.  https://doi.org/10.1016/j.tree.2006.06.005 PubMedCrossRefGoogle Scholar
  115. Laurel BJ, Brown JA (2006) Influence of cruising and ambush predators on 3-dimensional habitat use in age 0 juvenile Atlantic cod Gadus morhua. J Exp Mar Biol Ecol 329:34–46CrossRefGoogle Scholar
  116. Laurel BJ, Gregory RS, Brown JA, Hancock JK, Schneider DC (2004) Behavioural consequences of density-dependent habitat use in juvenile cod Gadus morhua and G. ogac: the role of movement and aggregation. Mar Ecol Prog Ser 272:257–270CrossRefGoogle Scholar
  117. Le Bris A, Fréchet A, Galbraith PS, Wroblewski JS (2013) Evidence for alternative migratory behaviours in the northern Gulf of St Lawrence population of Atlantic cod (Gadus morhua L.). ICES J Mar Sci 70:793–804.  https://doi.org/10.1093/icesjms/fst068 CrossRefGoogle Scholar
  118. Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions: what are the ecological effects of anti-predator decision-making? Bioscience 48:25–34CrossRefGoogle Scholar
  119. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool Rev Can Zool 68:619–640CrossRefGoogle Scholar
  120. Linehan JE, Gregory RS, Schneider DC (2001) Predation risk of age-0 cod (Gadus) relative to depth and substrate in coastal waters. J Exp Mar Biol Ecol 263:25–44CrossRefGoogle Scholar
  121. Løkkeborg S (1998) Feeding behaviour of cod, Gadus morhua: activity rhythm and chemically mediated food search. Anim Behav 56:371–378PubMedCrossRefGoogle Scholar
  122. Løkkeborg S, Fernö A (1999) Diel activity pattern and food search behaviour in cod, Gadus morhua. Environ Biol Fishes 54:345–353CrossRefGoogle Scholar
  123. Løkkeborg S, Bjordal A, Fernö A (1989) Responses of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to baited hooks in the natural-environment. Can J Fish Aquat Sci 46:1478–1483CrossRefGoogle Scholar
  124. Lönnstedt OM, McCormick MI, Meekan MG, Ferrari MCO, Chivers DP (2012) Learn and live: predator experience and feeding history determines prey behaviour and survival. Proc R Soc B Biol Sci 279:2091–2098.  https://doi.org/10.1098/rspb.2011.2516 CrossRefGoogle Scholar
  125. Luttbeg B, Trussell GC (2013) How the informational environment shapes how prey estimate predation risk and the resulting indirect effects of predators. Am Nat 181:182–194PubMedCrossRefGoogle Scholar
  126. Mackay B (1974) Conditioned food aversion produced by toxicosis in Atlantic cod. Behav Biol 12:347–355PubMedCrossRefGoogle Scholar
  127. MacKenzie BR, Kiorboe T (1995) Encounter rates and swimming behavior of pause-travel and cruise larval fish predators in calm and turbulent laboratory environments. Limnol Oceanogr 40:1278–1289CrossRefGoogle Scholar
  128. Magurran AE, Pitcher TJ (1987) Provenance, shoal size and the sociobiology of predator-evasion behavior in minnow shoals. Proc R Soc Lond Ser B Biol Sci 229:439–465CrossRefGoogle Scholar
  129. Martinez M, Guderley H, Nelson JA, Webber D, Dutil JD (2002) Once a fast cod, always a fast cod: maintenance of performance hierarchies despite changing food availability in cod (Gadus morhua). Physiol Biochem Zool 75:90–100PubMedCrossRefGoogle Scholar
  130. Martinez M, Bédard M, Dutil JD, Guderley H (2004) Does condition of Atlantic cod (Gadus morhua) have a greater impact upon swimming performance at U-Crit or sprint Speeds? J Exp Biol 207:2979–2990PubMedCrossRefGoogle Scholar
  131. Mattson S (1990) Food and feeding habits of fish species over a soft sublittoral bottom in the northeast Atlantic. 1. Cod (Gadus morhua L.) (Gadidae). Sarsia 75:247–260CrossRefGoogle Scholar
  132. Mayer I, Meager J, Skjæraasen J, Rodewald P, Sverdrup G, Fernö A (2011) Domestication causes rapid changes in heart and brain morphology in Atlantic cod (Gadus morhua). Environ Biol Fishes 92:181–186.  https://doi.org/10.1007/s10641-011-9831-1 CrossRefGoogle Scholar
  133. Meager JJ, Batty RS (2007) Effects of turbidity on the spontaneous and prey-searching activity of juvenile Atlantic cod (Gadus morhua). Philos Trans R Soc B 362:2123–2130CrossRefGoogle Scholar
  134. Meager JJ, Solbakken T, Utne-Palm AC, Oen T (2005) Effects of turbidity on the reaction distance, search time, and foraging success of juvenile Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 62:1978–1984CrossRefGoogle Scholar
  135. Meager JJ, Domenici P, Shingles A, Utne-Palm AC (2006) Escape responses in juvenile Atlantic cod Gadus morhua L.: the effects of turbidity and predator speed. J Exp Biol 209:4174–4184.  https://doi.org/10.1242/jeb.02489 PubMedCrossRefGoogle Scholar
  136. Meager JJ, Skjæraasen JE, Fernö A, Karlsen Ø, Løkkeborg S, Michalsen K, Utskot SO (2009) Vertical dynamics and reproductive behaviour of farmed and wild Atlantic cod Gadus morhua. Mar Ecol Prog Ser 389:233–243CrossRefGoogle Scholar
  137. Meager JJ, Moberg O, Strand E, Utne-Palm AC (2010a) Effects of light intensity on visual prey detection by juvenile Atlantic cod (Gadus morhua L). Mar Freshw Behav Physiol 43:99–108CrossRefGoogle Scholar
  138. Meager JJ, Skjæraasen JE, Fernö A, Løkkeborg S (2010b) Reproductive interactions between fugitive farmed and wild Atlantic cod (Gadus morhua) in the field. Can J Fish Aquat Sci 67:1221–1231CrossRefGoogle Scholar
  139. Meager JJ, Rodewald P, Domenici P, Fernö A, Skjæraasen JE, Järvi T, Sverdrup GK (2011) Behavioural responses of hatchery-reared and wild cod (Gadus morhua L.) to mechano-acoustic predator signals. J Fish Biol 78:1437–1450PubMedCrossRefGoogle Scholar
  140. Meager JJ et al (2012a) Multidimensionality of behavioural phenotypes in Atlantic cod, Gadus morhua. Physiol Behav 106:462–470PubMedCrossRefGoogle Scholar
  141. Meager JJ et al (2012b) Environmental regulation of individual depth on a cod spawning ground. Aquat Biol 17:211–221CrossRefGoogle Scholar
  142. Metcalfe JD, Righton D, Eastwood P, Hunter E (2008) Migration and habitat choice in marine fishes. In: Magnhagen C, Braithwaite V, Forsgren E, Kapoor NN (eds) Fish behaviour. Science Publishers, Enfield, pp 187–233CrossRefGoogle Scholar
  143. Metcalfe N, Van Leeuwen T, Killen S (2016) Does individual variation in metabolic phenotype predict fish behaviour and performance? J Fish Biol 88:298–321PubMedCrossRefGoogle Scholar
  144. Michalsen K, Johannesen E, Bogstad B (2008) Feeding of mature cod (Gadus morhua) on the spawning grounds in Lofoten. ICES J Mar Sci 65:571–580CrossRefGoogle Scholar
  145. Millot S, Nilsson J, Fosseidengen JE, Bégout M-L, Kristiansen T (2012) Evaluation of self-feeders as a tool to study diet preferences in groups of Atlantic cod (Gadus morhua). Aquat Living Resour 25:251–258CrossRefGoogle Scholar
  146. Millot S, Nilsson J, Fosseidengen JE, Bégout ML, Fernö A, Braithwaite VA, Kristiansen TS (2014) Innovative behaviour in fish: Atlantic cod can learn to use an external tag to manipulate a self-feeder. Anim Cogn 17:779–785.  https://doi.org/10.1007/s10071-013-0710-3 PubMedCrossRefGoogle Scholar
  147. Monk J, Puvanendran V, Brown JA (2006) Do different light regimes affect the foraging behaviour, growth and survival of larval cod (Gadus morhua L.)? Aquaculture 257:287–293CrossRefGoogle Scholar
  148. Morgan MJ, Trippel EA (1996) Skewed sex ratios in spawning shoals of Atlantic cod (Gadus morhua). ICES J Mar Sci 53:820–826CrossRefGoogle Scholar
  149. Neat FC et al (2006) Residency and depth movements of a coastal group of Atlantic cod (Gadus morhua L.). Mar Biol 148:643–654CrossRefGoogle Scholar
  150. Neat FC et al (2014) Movement of Atlantic cod around the British Isles: implications for finer scale stock management. J Appl Ecol 51:1564–1574CrossRefGoogle Scholar
  151. Neilson JD, Perry RI (1990) Diel vertical migrations of marine fishes: an obligate or facultative process. Adv Mar Biol 26:115–168CrossRefGoogle Scholar
  152. Neuenfeldt S et al (2013) Analysing migrations of Atlantic cod Gadus morhua in the north–east Atlantic Ocean: then, now and the future. J Fish Biol 82:741–763.  https://doi.org/10.1111/jfb.12043 PubMedCrossRefGoogle Scholar
  153. New JG (2002) Multimodal integration in the feeding behaviors of predatory teleost fishes. Brain Behav Evol 59:177–189PubMedCrossRefGoogle Scholar
  154. Nicolaisen O, Bolla S (2016) Behavioural responses to visual environment in early stage Atlantic cod Gadus morhua L. larvae. Aquac Res 47:189–198CrossRefGoogle Scholar
  155. Nilsson J, Torgersen T (2010) Exploration and learning of demand-feeding in Atlantic cod (Gadus morhua). Aquaculture 306:384–387.  https://doi.org/10.1016/j.aquaculture.2010.05.029 CrossRefGoogle Scholar
  156. Nilsson J, Kristiansen T, Fosseidengen J, Fernö A, van den Bos R (2008a) Learning in cod (Gadus morhua): long trace interval retention. Anim Cogn 11:215–222.  https://doi.org/10.1007/s10071-007-0103-6 PubMedCrossRefGoogle Scholar
  157. Nilsson J, Kristiansen T, Fosseidengen J, Fernö A, van den Bos R (2008b) Sign- and goal-tracking in Atlantic cod (Gadus morhua). Anim Cogn 11:651–659PubMedCrossRefGoogle Scholar
  158. Nilsson J, Stien LH, Fosseidengen JE, Olsen RE, Kristiansen TS (2012) From fright to anticipation: reward conditioning versus habituation to a moving dip net in farmed Atlantic cod (Gadus morhua). Appl Anim Behav Sci 138:118–124.  https://doi.org/10.1016/j.applanim.2012.02.014 CrossRefGoogle Scholar
  159. Nødvedt M, Fernö A, Gjøsæter J, Steingrund P (1999) Anti-predator behaviour of hatchery-reared and wild juvenile Atlantic cod (Gadus morhua L.), and the effect of predator training. In: Howell BR, Moksness E, Svåsand T (eds) Stock enhancement and sea ranching. Fishing News Books, Oxford, pp 350–362Google Scholar
  160. Nordeide JT (1998) Coastal cod and north–east Arctic cod: do they mingle at the spawning grounds in Lofoten? Sarsia 83:373–379CrossRefGoogle Scholar
  161. Nordeide J, Folstad I (2000) Is cod lekking or a promiscuous group spawner. Fish Fish 1:90–93CrossRefGoogle Scholar
  162. Nordeide JT, Svåsand T (1990) The behaviour of wild and reared juvenile cod (Gadus morhua L.) towards a potential predator. Aquac Fish Manag 21:317–325Google Scholar
  163. Odling-Smee L, Braithwaite VA (2003) The influence of habitat stability on landmark use during spatial learning in the three-spined stickleback. Anim Behav 65:701–707CrossRefGoogle Scholar
  164. Odling-Smee L, Simpson SD, Braithwaite VA (2006) The role of learning in fish orientation. In: Brown C, Laland K, Krause J (eds) Fish cognition and behaviour. Fish and aquatic resources 11, vol 4. Blackwell Publishing, Oxford, pp 119–133Google Scholar
  165. Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–935.  https://doi.org/10.1038/nature02430 PubMedCrossRefGoogle Scholar
  166. Olsen EM, Heupel MR, Simpfendorfer CA, Moland E (2012) Harvest selection on Atlantic cod behavioral traits: implications for spatial management. Ecol Evol 2:1549–1562.  https://doi.org/10.1002/ece3.244 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Otterå H, Folkvord A (1993) Allometric growth in juvenile cod (Gadus morhua L.) and possible effects on cannibalism. J Fish Biol 43:643–645CrossRefGoogle Scholar
  168. Ottera H, Jorstad KE, Svasand T, Kristiansen TS (1999) Migration patterns and recapture rates of north–east Arctic and Norwegian coastal cod reared and released under similar conditions. J Fish Biol 54:213–217CrossRefGoogle Scholar
  169. Pampoulie C, Jakobsdóttir K, Marteinsdóttir G, Thorsteinsson V (2008) Are vertical behaviour patterns related to the pantophysin locus in the atlantic cod (Gadus morhua L.)? Behav Genet 38:76–81PubMedCrossRefGoogle Scholar
  170. Pampoulie C et al (2015) Rhodopsin gene polymorphism associated with divergent light environments in Atlantic cod. Behav Genet 96:236–244.  https://doi.org/10.1007/s10519-014-9701-7 CrossRefGoogle Scholar
  171. Persson A, Ljungberg P, Andersson M, Götzman E, Nilsson PA (2012) Foraging performance of juvenile Atlantic cod Gadus morhua and profitability of coastal habitats. Mar Ecol Prog Ser 456:245–253.  https://doi.org/10.3354/meps09705 CrossRefGoogle Scholar
  172. Petersen MF, Steffensen JF (2003) Preferred temperature of juvenile Atlantic cod (Gadus morhua) with different haemoglobin genotypes at normoxia and moderate hypoxia. J Exp Biol 206:359–364PubMedCrossRefGoogle Scholar
  173. Pihl L (1982) Food intake of young cod and flounder in a shallow bay on the Swedish west coast. Neth J Sea Res 15:419–432CrossRefGoogle Scholar
  174. Pörtner HO, Bock C, Knust R, Lannig G, Lucassen M, Mark FC, Sartoris FJ (2008) Cod and climate in a latitudinal cline: physiological analyses of climate effects in marine fishes. Clim Res 37:253–270.  https://doi.org/10.3354/cr00766 CrossRefGoogle Scholar
  175. Puvanendran V, Brown JA (1998) Effect of light intensity on the foraging and growth of Atlantic cod larvae: interpopulation difference? Mar Ecol Prog Ser 167:207–214CrossRefGoogle Scholar
  176. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318PubMedCrossRefGoogle Scholar
  177. Reidy SP, Kerr SR, Nelson JA (2000) Aerobic and anaerobic swimming performance of individual Atlantic cod. J Exp Biol 203:347–357PubMedGoogle Scholar
  178. Righton D, Metcalfe J, Connolly P (2001) Fisheries: different behaviour of north and Irish sea cod. Nature 411:156PubMedCrossRefGoogle Scholar
  179. Righton D, Quayle VA, Hetherington S, Burt G (2007) Movements and distribution of cod (Gadus morhua) in the southern North Sea and English Channel: results from conventional and electronic tagging experiments. J Mar Biol Assoc U K 87:599–613CrossRefGoogle Scholar
  180. Righton DA et al (2010) Thermal niche of Atlantic cod Gadus morhua: limits, tolerance and optima. Mar Ecol Prog Ser 420:1–13.  https://doi.org/10.3354/meps08889 CrossRefGoogle Scholar
  181. Rillahan C, Chambers MD, Howell WH, Watson Iii WH (2011) The behavior of cod (Gadus morhua) in an offshore aquaculture net pen. Aquaculture 310:361–368.  https://doi.org/10.1016/j.aquaculture.2010.10.038 CrossRefGoogle Scholar
  182. Robichaud D, Rose GA (2004) Migratory behaviour and range in Atlantic cod: inference from a century of tagging. Fish Fish 5:185–214CrossRefGoogle Scholar
  183. Rodriguez F, Broglio C, Duran E, Gomez A, Salas C (2006) Neural mechanisms of learning in a teleost fish. In: Brown C, Laland KN, Krause J (eds) Fish cognition and behavior. Blackwell, Oxford, pp 243–277Google Scholar
  184. Rose GA (1993) Cod spawning on a migration highway in the north–west Atlantic. Nature 366:458–461CrossRefGoogle Scholar
  185. Rosenlund G, Halldorsson O (2007) Cod juvenile production: research and commercial developments. Aquaculture 268:188–194CrossRefGoogle Scholar
  186. Rowe S, Hutchings JA (2003) Mating systems and the conservation of commercially exploited marine fish. Trends Ecol Evol 18:567–572.  https://doi.org/10.1016/j.tree.2003.09.004 CrossRefGoogle Scholar
  187. Rowe S, Hutchings JA (2006a) Phenotypic and behavioural correlates of individual variation in Atlantic cod reproductive success. J Fish Biol 69:255Google Scholar
  188. Rowe S, Hutchings JA (2006b) Sound production by Atlantic cod during spawning. Trans Am Fish Soc 135:529–538CrossRefGoogle Scholar
  189. Rowe S, Hutchings JA (2008) A link between sound producing musculature and mating success in Atlantic cod. J Fish Biol 72:500–511CrossRefGoogle Scholar
  190. Rowe S, Hutchings JA, Skjæraasen JE, Bezanson L (2008) Morphological and behavioural correlates of reproductive success in Atlantic cod Gadus morhua. Mar Ecol Prog Ser 354:257–265.  https://doi.org/10.3354/meps07175 CrossRefGoogle Scholar
  191. Ryan MR, Killen SS, Gregory RS, Snelgrove PVR (2012) Predators and distance between habitat patches modify gap crossing behaviour of juvenile Atlantic cod (Gadus morhua, L. 1758). J Exp Mar Biol Ecol 422–423:81–87.  https://doi.org/10.1016/j.jembe.2012.04.017 CrossRefGoogle Scholar
  192. Ryer CH, Olla BL (1991) Agonistic behaviour in a schooling fish: form, function and ontogeny. Environ Biol Fishes 31:355–363CrossRefGoogle Scholar
  193. Salvanes AGV, Braithwaite VA (2005) Exposure to variable spatial information in the early rearing environment generates asymmetries in social interactions in cod (Gadus morhua). Behav Ecol Sociobiol 59:250–257CrossRefGoogle Scholar
  194. Salvanes AGV, Braithwaite V (2006) The need to understand the behaviour of fish reared for mariculture or restocking. ICES J Mar Sci 63:346–354.  https://doi.org/10.1016/j.icesjms.2005.11.010 CrossRefGoogle Scholar
  195. Salvanes AGV, Giske J, Nordeide JT (1994) Life-history approach to habitat shifts for coastal cod, Gadus morhua L. Aquac Fish Manag 25:215–228Google Scholar
  196. Salvanes AGV, Skjæraasen JE, Nilsen T (2004) Sub-populations of coastal cod with different behaviour and life-history strategies. Mar Ecol Prog Ser 267:241–251CrossRefGoogle Scholar
  197. Salvanes AGV, Moberg O, Braithwaite VA (2007) Effects of early experience on group behaviour in fish. Anim Behav 74:805–811CrossRefGoogle Scholar
  198. Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204PubMedGoogle Scholar
  199. Schack HB, Malte H, Madsen PT (2008) The responses of Atlantic cod (Gadus morhua L.) to ultrasound-emitting predators: stress, behavioural changes or debilitation? J Exp Biol 211:2079–2086PubMedCrossRefGoogle Scholar
  200. Schuijf A, Buwalda RJA (1975) On the mechanism of directional hearing in cod (Gadus morhua L.). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 98:333–343CrossRefGoogle Scholar
  201. Sih A, Bell A, Johnson JC (2004) Behavioural syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378PubMedCrossRefGoogle Scholar
  202. Skajaa K (2006) Starvation-induced effects on antipredatory behaviour in larval and juvenile marine fish. Ph.D., University of BergenGoogle Scholar
  203. Skajaa K, Browman HI (2007) The escape response of food-deprived cod larvae (Gadus morhua L.). J Exp Mar Biol Ecol 353:135–144CrossRefGoogle Scholar
  204. Skajaa K, Fernö A, Folkvord A (2003) Swimming, feeding and predator avoidance in cod larvae (Gadus morhua L.): trade-offs between hunger and predation risk. In: Howard IB, Anne Berit S (eds) The big fish bang. Proceedings of the 26th annual larval fish conference. Institute of Marine Research, Bergen, pp 106–121Google Scholar
  205. Skjæraasen J, Hutchings J (2010) Shifting reproductive success in a shoal of Atlantic cod, Gadus morhua L. Environ Biol Fishes 88:311–318CrossRefGoogle Scholar
  206. Skjæraasen JE, Rowe S, Hutchings JA (2006) Sexual dimorphism in pelvic fin length of Atlantic cod. Can J Zool Rev Can Zool 84:865–870CrossRefGoogle Scholar
  207. Skjæraasen JE, Meager JJ, Karlsen O (2008) The expression of secondary sexual characteristics in recruit- and repeat-spawning farmed and wild Atlantic cod (Gadus morhua). ICES J Mar Sci 65:1710–1716.  https://doi.org/10.1093/icesjms/fsn147 CrossRefGoogle Scholar
  208. Skjæraasen JE, Meager JJ, Hutchings JA (2010a) A cost of reproduction in male Atlantic cod (Gadus morhua). Can J Zool 88:595–600CrossRefGoogle Scholar
  209. Skjæraasen JE et al (2010b) Mating competition between farmed and wild cod: wild females choose wild males. Mar Ecol Prog Ser 412:247–258.  https://doi.org/10.3354/meps08670 CrossRefGoogle Scholar
  210. Skjæraasen JE, Meager JJ, Karlsen Ø, Hutchings JA, Fernö A (2011) Extreme spawning-site fidelity in Atlantic cod. ICES J Mar Sci 68:1472–1477.  https://doi.org/10.1093/icesjms/fsr055 CrossRefGoogle Scholar
  211. Skjæraasen JE, Meager JJ, Heino M (2012) Secondary sexual characteristics in codfishes (Gadidae) in relation to sound production, habitat use and social behaviour. Mar Biol Res 8:201–209.  https://doi.org/10.1080/17451000.2011.637562 CrossRefGoogle Scholar
  212. Sólmundsson J, Jónsdóttir IG, Björnsson B, Ragnarsson SÁ, Tómasson GG, Thorsteinsson V (2015) Home ranges and spatial segregation of cod Gadus morhua spawning components. Mar Ecol Prog Ser 520:217–233.  https://doi.org/10.3354/meps11106 CrossRefGoogle Scholar
  213. Sørensen C, Johansen IB, Øverli T (2013) Neural plasticity and stress coping in teleost fishes. Gen Comp Endocrinol 181:25–34.  https://doi.org/10.1016/j.ygcen.2012.12.003 PubMedCrossRefGoogle Scholar
  214. Stamps JA, Groothuis TGG (2010) Developmental perspectives on personality: implications for ecological and evolutionary studies of individual differences. Philos Trans R Soc B 365:4029–4041.  https://doi.org/10.1098/rstb.2010.0218 CrossRefGoogle Scholar
  215. Star B et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  216. Steingrund P (2009) The near-collapse of the Faroe Plateau cod (Gadus morhua L.) stock in the 1990s: the effect of food availability on spatial distribution recruitment, natural production and fishery. Ph.D., University of BergenGoogle Scholar
  217. Steingrund P, Fernö A (1997) Feeding behaviour of reared and wild cod and the effect of learning: two strategics of feeding on the two-spotted goby. J Fish Biol 51:334–348CrossRefGoogle Scholar
  218. Stenseth NC, Dunlop ES (2009) Evolution: unnatural selection. Nature 457:803–804PubMedCrossRefGoogle Scholar
  219. Strand E, Huse G (2007) Vertical migration in adult Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 64:1747–1760CrossRefGoogle Scholar
  220. Strand DA, Utne-Palm AC, Jakobsen PJ, Braithwaite VA, Jensen KH, Salvanes AGV (2010) Enrichment promotes learning in fish. Mar Ecol Prog Ser 412:273–282.  https://doi.org/10.3354/meps08682 CrossRefGoogle Scholar
  221. Sund O (1935) Echo sounding in fishery research. Nature 135:953CrossRefGoogle Scholar
  222. Svåsand T (1998) Cod enhancement studies in Norway: background and results with emphasis ion releases in the period 1983-1990. Bull Mar Sci 62:313–324Google Scholar
  223. Svåsand T, Kristiansen TS, Pedersen T, Salvanes AG, Engelsen R, Nævdal G, Nødvedt M (2000) The enhancement of cod stocks. Fish Fish 1:173–205CrossRefGoogle Scholar
  224. Svedäng H, Righton D, Jonsson P (2007) Migratory behaviour of Atlantic cod Gadus morhua: natal homing is the prime stock-separating mechanism. Mar Ecol Prog Ser 345:1–12CrossRefGoogle Scholar
  225. Sverdrup GK, Meager JJ, Fernö A, Skjæraasen JE, Rodewald P, Salvanes AGV, Järvi T (2011) Territorial and agonistic interactions between farmed and wild cod (Gadus morhua). Aquac Res 42:1539–1548.  https://doi.org/10.1111/j.1365-2109.2010.02746.x CrossRefGoogle Scholar
  226. Tamdrari H, Brethes JC, Castonguay M, Duplisea DE (2012) Homing and group cohesion in Atlantic cod Gadus morhua revealed by tagging experiments. J Fish Biol 81:714–727.  https://doi.org/10.1111/j.1095-8649.2012.03367.x PubMedCrossRefGoogle Scholar
  227. Theodorou P, Ólafsdóttir GÁ, Snorrason SS (2012) Reaching the limit: constrained behavioural flexibility of juvenile Atlantic cod (Gadus morhua) at current coastal temperatures. J Exp Mar Biol Ecol 413:192–197.  https://doi.org/10.1016/j.jembe.2011.12.009 CrossRefGoogle Scholar
  228. Thorsteinsson V, Pálsson ÓK, Tómasson GG, Jónsdóttir IG, Pampoulie C (2012) Consistency in the behaviour types of the Atlantic cod: repeatability, timing of migration and geo-location. Mar Ecol Prog Ser 462:251–260.  https://doi.org/10.3354/meps09852 CrossRefGoogle Scholar
  229. Toms CN, Echevarria DJ, Jouandot DJ (2010) A methodological review of personality-related studies in fish: focus on the shy-bold axis of behaviour. Int J Comp Psychol 23:1–25Google Scholar
  230. Tullrot A, Sundberg P (1991) The conspicuous nudibranch Polycera quadrilineata: aposematic coloration and individual selection. Anim Behav 41:175–176CrossRefGoogle Scholar
  231. Tupper M, Boutilier RG (1995a) Effects of habitat on settlement, growth and postsettlement survival of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 52:1834–1841CrossRefGoogle Scholar
  232. Tupper M, Boutilier RG (1995b) Size and priority at settlement determine growth and competitive success of newly settled Atlantic cod. Mar Ecol Prog Ser 118:295–300CrossRefGoogle Scholar
  233. Uglem I, Kjørsvik E, Gruven K, Lamberg A (2009) Behavioural variation in cultivated juvenile Atlantic cod (Gadus morhua L.) in relation to stocking density and size disparity. Appl Anim Behav Sci 117:201–209.  https://doi.org/10.1016/j.applanim.2009.01.006 CrossRefGoogle Scholar
  234. Uusi-Heikkilä S, Wolter C, Klefoth T, Arlinghaus R (2008) A behavioral perspective on fishing-induced evolution. Trends Ecol Evol 23:419–421PubMedCrossRefGoogle Scholar
  235. van der Meeren T, Ivannikov VP (2006) Seasonal shift in spawning of Atlantic cod (Gadus morhua L.) by photoperiod manipulation: egg quality in relation to temperature and intensive larval rearing. Aquac Res 37:898–913CrossRefGoogle Scholar
  236. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198PubMedCrossRefGoogle Scholar
  237. Vollset KW, Folkvord A, Browman HI (2011) Foraging behaviour of larval cod (Gadus morhua) at low light intensities. Mar Biol.  https://doi.org/10.1007/s00227-011-1635-5 PubMedPubMedCentralGoogle Scholar
  238. Walker JA, Ghalambor CK, Griset OL, Kenney DM, Reznick DN (2005) Do faster starts increase the probability of evading predators? Funct Ecol 19:808–815CrossRefGoogle Scholar
  239. Warburton K (2006) Learning of foraging skills by fishes. In: Brown C, Laland KN, Krause J (eds) Fish cognition and behavior. Blackwell, Oxford, pp 9–27Google Scholar
  240. Wilson DS, Coleman K, Clark AB, Biederman L (1993) Shy bold continuum in pumpkinseed sunfish (Lepomis gibbosus): an ecological study of a psychological trait. J Comp Psychol 107:250–260CrossRefGoogle Scholar
  241. Windle M, Rose G (2006) Do cod form spawning leks? Evidence from a Newfoundland spawning ground. Mar Biol 150:671–680CrossRefGoogle Scholar
  242. Wolf M, Weissing FJ (2010) An explanatory framework for adaptive personality differences. Philos Trans R Soc B 365:3959–3968.  https://doi.org/10.1098/rstb.2010.0215 CrossRefGoogle Scholar
  243. Wolf M, van Doorn GS, Weissing FJ (2008) Evolutionary emergence of responsive and unresponsive personalities. Proc Natl Acad Sci U S A 105:15825–15830.  https://doi.org/10.1073/pnas.0805473105 PubMedPubMedCentralCrossRefGoogle Scholar
  244. Woodhead A (1959) Variations in the activity of the thyroid gland of the cod, Gadus callarias L., in relation to its migrations in the Barents Sea II. The ‘dummy of run’of the immature fish. J Mar Biol Assoc U K 38:417–422CrossRefGoogle Scholar
  245. Wright D, Nakamichi R, Krause J, Butlin RK (2006) QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36:271–284.  https://doi.org/10.1007/s10519-005-9029-4 PubMedCrossRefGoogle Scholar
  246. Würbel H (2001) Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci 24:207–211.  https://doi.org/10.1016/S0166-2236(00)01718-5 PubMedCrossRefGoogle Scholar
  247. Wyman RL, Hotaling L (1988) A test of the model of the economic defendability of a resource and territoriality using young Etroplus maculatus and Pelmatochromis subocellatus kribensis. Environ Biol Fishes 21:69–76CrossRefGoogle Scholar
  248. Zemeckis DR, Dean MJ, Cadrin SX (2014a) Spawning dynamics and associated management implications for Atlantic cod. N Am J Fish Manag 34:424–442.  https://doi.org/10.1080/02755947.2014.882456 CrossRefGoogle Scholar
  249. Zemeckis DR, Hoffman WS, Dean MJ, Armstrong MP, Cadrin SX (2014b) Spawning site fidelity by Atlantic cod (Gadus morhua) in the Gulf of Maine: implications for population structure and rebuilding. ICES J Mar Sci 71:1356–1365.  https://doi.org/10.1093/icesjms/fsu117 CrossRefGoogle Scholar
  250. Zimmermann EW, Purchase CF, Fleming IA (2012) Reducing the incidence of net cage biting and the expression of escape-related behaviors in Atlantic cod (Gadus morhua) with feeding and cage enrichment. Appl Anim Behav Sci 141:71–78.  https://doi.org/10.1016/j.applanim.2012.07.009 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Justin J. Meager
    • 1
  • Anders Fernö
    • 2
  • Jon Egil Skjæraasen
    • 3
  1. 1.LandsboroughAustralia
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.Institute of Marine ResearchBergenNorway

Personalised recommendations