Reviews in Fish Biology and Fisheries

, Volume 25, Issue 1, pp 1–19 | Cite as

Nodularin and cylindrospermopsin: a review of their effects on fish

  • Benoît Sotton
  • Isabelle Domaizon
  • Orlane Anneville
  • Franck Cattanéo
  • Jean Guillard


Nodularin (NOD) and cylindrospermopsin (CYN) are hepatotoxic cyanotoxins that are present in numerous ecosystems where bloom episodes occur. In this review, the different effects of both of these cyanotoxins on the different ontogenic stages of various fish species were summarised to clarify the state-of-the-art scientific knowledge on this topic. It is clear that fish that are exposed to NOD and CYN were negatively impacted in every studied ontogenic stage. Indeed, these cyanotoxins can accumulate in various organs of fish, leading to deleterious effects on the physiology. This review highlights the fact that all of the previously published studies on the topic have focused only on the short-term effects of a given cyanotoxin on fish. However, during cyanobacterial blooms, fish can be exposed chronically to a variety of toxic compounds with which the fish interact, leading to stronger effects than those observed with a single toxin tested over a short timeframe. Thus, it is essential to conduct additional studies to better understand the actual toxic effects of cyanobacterial blooms on fish populations over medium- and long-term time scales.


Cyanobacteria Cyanotoxins Cylindrospermopsin Effects Fish Nodularins 


  1. Amado L, Monserrat J (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235CrossRefPubMedGoogle Scholar
  2. Azevedo SMF, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181–182:441–446CrossRefPubMedGoogle Scholar
  3. Bernard C, Harvey M, Briand JF, Biré R, Krys S, Fontaine JJ (2003) Toxicological comparison of diverse Cylindrospermopsis raciborskii strains: evidence of liver damage caused by a French C. raciborskii strain. Environ Toxicol 18:176–186CrossRefPubMedGoogle Scholar
  4. Berry JP, Gibbs PDL, Schmale MC, Saker ML (2009) Toxicity of cylindrospermopsin, and other apparent metabolites from Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum, to the zebrafish (Danio rerio) embryo. Toxicon 53:289–299CrossRefPubMedCentralPubMedGoogle Scholar
  5. Berry JP, Jaja-Chimedza A, Davalos-Lind L, Lind O (2012) Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Addit Contam A 29:37–41CrossRefGoogle Scholar
  6. Buynder G, Oughtred T, Kirkby B, Phillips S, Eaglesham G, Thomas K, Burch M (2001) Nodularin uptake by seafood during a cyanobacterial Bloom. Environ Toxicol 16:468–471CrossRefPubMedGoogle Scholar
  7. Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11:268–287CrossRefPubMedCentralPubMedGoogle Scholar
  8. Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, p 416Google Scholar
  9. Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharm 203:264–272CrossRefGoogle Scholar
  10. Di Giulio R, Hinton D (2008) The toxicology of fishes. Taylor & Francis, London, p 1096CrossRefGoogle Scholar
  11. Engström-Öst J, Lehtiniemi M, Green S, Kozlowsky-Suzuki B, Viitasalo M (2002) Does cyanobacterial toxin accumulate in mysid shrimps and fish via copepods? J Exp Mar Biol Ecol 276:95–107CrossRefGoogle Scholar
  12. Falconer IR, Humpage AR (2006) Cyanobacterial (Blue-Green Algal) toxins in water supplies: cylindrospermopsins. Environ Toxicol 21:299–304CrossRefPubMedGoogle Scholar
  13. Ferrão-Filho ADS, Kozlowsky-Suzuki B (2011) Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs 9:2729–2772CrossRefPubMedCentralGoogle Scholar
  14. Fladmark KE, Serres MH, Larsen NL, Yasumoto T, Aune T, Døskeland SO (1998) Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon 36:1101–1114CrossRefPubMedGoogle Scholar
  15. Froscio SM, Humpage AR, Burcham PC, Falconer IR (2003) Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ Toxicol 18:243–251CrossRefPubMedGoogle Scholar
  16. Gutiérrez-Praena D, Jos A, Pichardo S, Cameán AM (2011a) Oxidative stress responses in tilapia (Oreochromis niloticus) exposed to a single dose of pure cylindrospermopsin under laboratory conditions: influence of exposure route and time of sacrifice. Aquat Toxicol 105:100–106CrossRefPubMedGoogle Scholar
  17. Gutiérrez-Praena D, Pichardo S, Jos A, Cameán AM (2011b) Toxicity and glutathione implication in the effects observed by exposure of the liver fish cell line PLHC-1 to pure cylindrospermopsin. Ecotox Environ Safe 74:1567–1572CrossRefGoogle Scholar
  18. Gutiérrez-Praena D, Jos A, Pichardo S, Moyano R, Blanco A, Monterde JG, Cameán AM (2012) Time-dependent histopathological changes induced in tilapia (Oreochromis niloticus) after acute exposure to pure cylindrospermopsin by oral and intraperitoneal route. Ecotox Environ Safe 76:102–113CrossRefGoogle Scholar
  19. Gutiérrez-Praena D, Jos A, Pichardo S, Moreno IM, Cameán AM (2013a) Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Food Chem Toxicol 53:139–152CrossRefPubMedGoogle Scholar
  20. Gutiérrez-Praena D, Jos A, Pichardo S, Puerto M, Cameán AM (2013b) Influence of the exposure way and the time of sacrifice on the effects induced by a single dose of pure Cylindrospermopsin on the activity and transcription of glutathione peroxidase and glutathione-S-transferase enzymes in tilapia (Oreochromis niloticus). Chemosphere 90:986–992CrossRefPubMedGoogle Scholar
  21. Guzmán-Guillén R, Prieto AI, Vasconcelos VM, Cameán AM (2013a) Cyanobacterium producing cylindrospermopsin cause oxidative stress at environmentally relevant concentrations in sub-chronically exposed tilapia (Oreochromis niloticus). Chemosphere 90:1184–1194CrossRefPubMedGoogle Scholar
  22. Guzmán-Guillén R, Prieto AI, Vázquez CM, Vasconcelos V, Cameán AM (2013b) The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus). Aquat Toxicol 132–133:141–150CrossRefPubMedGoogle Scholar
  23. Ibelings B, Havens K (2008) Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Adv Exp Med Biol 619:675–732CrossRefPubMedGoogle Scholar
  24. Kankaanpää H, Vuorinen PJ, Sipiä V, Keinänen M (2002) Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) exposed orally to Nodularia spumigena under laboratory conditions. Aquat Toxicol 61:155–168CrossRefPubMedGoogle Scholar
  25. Kankaanpää H, Turunen AK, Karlsson K, Bylund G, Meriluoto J, Sipiä V (2005) Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002. Chemosphere 59:1091–1097CrossRefPubMedGoogle Scholar
  26. Karjalainen M (2005) Fate and effects of Nodularia spumigena and its toxin, nodularin, in Baltic Sea planktonic food webs. 34 ppGoogle Scholar
  27. Karjalainen M, Reinikainen M, Spoof L, Meriluoto JAO, Sivonen K, Viitasalo M (2005) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environ Toxicol 20:354–362CrossRefPubMedGoogle Scholar
  28. Karjalainen M, Engström-Ost J, Korpinen S, Peltonen H, Pääkkönen JP, Rönkkönen S, Suikkanen S, Viitasalo M (2007) Ecosystem consequences of cyanobacteria in the northern Baltic Sea. Ambio 36:195–202CrossRefPubMedGoogle Scholar
  29. Karjalainen M, Pääkkönen JP, Peltonen H, Sipiä V, Valtonen T, Viitasalo M (2008) Nodularin concentrations in Baltic Sea zooplankton and fish during a cyanobacterial bloom. Mar Biol 155:483–491CrossRefGoogle Scholar
  30. Karlsson K, Sipiä V, Krause E, Meriluoto J, Pflugmacher S (2003) Mass spectrometric detection and quantification of nodularin-R in flounder livers. Environ Toxicol 18:284–288CrossRefPubMedGoogle Scholar
  31. Kinnear S (2010) Cylindrospermopsin: a decade of progress on bioaccumulation. Mar Drugs 8:542–564CrossRefPubMedCentralPubMedGoogle Scholar
  32. Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214CrossRefGoogle Scholar
  33. Liebel S, Oliveira Ribeiro CA, Silva RC, Ramsdorf WA, Cestari MM, Magalhães VF, Garcia JRE, Esquivel BM, Filipak Neto F (2011) Cellular responses of Prochilodus lineatus hepatocytes after cylindrospermopsin exposure. Toxicol In Vitro 25:1493–1500CrossRefPubMedGoogle Scholar
  34. Looper RE, Runnegar MTC, Williams RM (2005) Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis. Angew Chem 44:3879–3881CrossRefGoogle Scholar
  35. MacKintosh RW, Dalby KN, Campbell DG, Cohen PTW, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371:236–240CrossRefPubMedGoogle Scholar
  36. Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25:72–86CrossRefPubMedGoogle Scholar
  37. Martins J, Vasconcelos V (2009) Microcystin dynamics in aquatic organisms. J Toxicol Environ Health B 12:65–82CrossRefGoogle Scholar
  38. Mazur-marzec H, Tyminska A, Szafranek J, Plinski M (2007) Accumulation of nodularin in sediments, mussels, and fish from the gulf of Gdansk, southern Baltic Sea. Environ Toxicol 4:101–111CrossRefGoogle Scholar
  39. Messineo V, Melchiorre S, Corcia AD, Gallo P, Bruno M (2009) Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, Central Italy. Environ Toxicol 25:18–27Google Scholar
  40. O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  41. Pääkkönen JP, Rönkkönen S, Karjalainen M, Viitasalo M (2008) Physiological effects in juvenile three-spined sticklebacks feeding on toxic cyanobacterium Nodularia spumigena-exposed zooplankton. J Fish Biol 72:485–499CrossRefGoogle Scholar
  42. Paerl HW, Paul VJ (2011) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363CrossRefPubMedGoogle Scholar
  43. Paskerová H, Hilscherová K, Bláha L (2012) Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass. Environ Sci Pollut R 19:2024–2037CrossRefGoogle Scholar
  44. Pearson L, Mihali T, Moffit M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680CrossRefPubMedCentralPubMedGoogle Scholar
  45. Persson KJ, Legrand C, Olsson T (2009) Detection of nodularin in European flounder (Platichthys flesus) in the west coast of Sweden: evidence of nodularin mediated oxidative stress. Harmful Algae 8:832–838CrossRefGoogle Scholar
  46. Puerto M, Jos A, Pichardo S, Gutiérrez-Praena D, Cameán AM (2011) Acute effects of pure cylindrospermopsin on the activity and transcription of antioxidant enzymes in tilapia (Oreochromis niloticus) exposed by gavage. Ecotoxicology 20:1852–1860CrossRefPubMedGoogle Scholar
  47. Puerto M, Jos A, Pichardo S, Moyano R, Blanco A, Cameán AM (2012a) Acute exposure to pure cylindrospermopsin results in oxidative stress and pathological alterations in tilapia (Oreochromis niloticus). Environ Toxicol 29:371–385CrossRefPubMedGoogle Scholar
  48. Puerto M, Jos A, Pichardo S, Moyano R, Blanco A, Cameán AM (2012b) Acute exposure to pure cylindrospermopsin results in oxidative stress and pathological alterations in tilapia (Oreochromis niloticus). Environ Toxicol 29:371–385Google Scholar
  49. Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan PE, Beasley VR, Dahlem AM, Carmichael WW (1988) Nodularin, microcystin and the configuration of ADDA. J Am Chem Soc 110:8557–8558CrossRefGoogle Scholar
  50. Rücker J, Stüken A, Nixdorf B, Fastner J, Chorus I, Wiedner C (2007) Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon 50:800–809CrossRefPubMedGoogle Scholar
  51. Runnegar MT, Kong SM, Zhong YZ, Ge JL, Lu SC (1994) The role of glutathione in the toxicity of a novel cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Biophys Res Commun 201:235–241Google Scholar
  52. Saker ML, Eaglesham GK (1999) The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the redclaw crayfish Cherax quadricarinatus. Toxicon 37:1065–1077CrossRefPubMedGoogle Scholar
  53. Sipiä V, Kankaanpää H, Lahti K, Carmichael WW, Meriluoto JA (2001a) Detection of nodularin in flounders and cod from the Baltic Sea. Environ Toxicol 16:121–126CrossRefPubMedGoogle Scholar
  54. Sipiä VO, Kankaanpää HT, Flinkman J, Lahti K, Meriluoto JA (2001b) Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environ Toxicol 16:330–336CrossRefPubMedGoogle Scholar
  55. Sipiä VO, Kankaanpää HT, Pflugmacher S, Flinkman J, Furey A, James KJ (2002) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea. Ecotox Environ Safe 53:305–311CrossRefGoogle Scholar
  56. Sipiä VO, Sjövall O, Valtonen T, Barnaby DL, Codd GA, Metcalf JS, Kilpi M, Mustonen O, Meriluoto JAO (2006) Analysis of nodularin-R in eider (Somateria mollissima), roach (Rutilus rutilus L.), and flounder (Platichthys flesus L.) liver and muscle samples from the western Gulf of Finland, northern Baltic Sea. Environ Toxicol Chem 25:2834–2839CrossRefPubMedGoogle Scholar
  57. Sipiä V, Kankaanpää H, Peltonen H, Vinni M, Meriluoto JA (2007) Transfer of nodularin to three-spined stickleback (Gasterosteus aculeatus L.), herring (Clupea harengus L.), and salmon (Salmo salar L.) in the northern Baltic Sea. Ecotox Environ Safe 66:421–425CrossRefGoogle Scholar
  58. Stewart I, Eaglesham GK, McGregor GB, Chong R, Seawright AA, Wickramasinghe WA, Sadler R, Hunt L, Graham G (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub-tropical Australia. II. Bioaccumulation of nodularin in isolated populations of mullet (Mugilidae). Int J Environ Res Pub Health 9:2412–2443CrossRefGoogle Scholar
  59. Van Apeldoorn ME, Van Egmond HP, Speijers GJA, Bakker GJI (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60CrossRefPubMedGoogle Scholar
  60. Vuorinen PJ, Sipiä VO, Karlsson K, Keinänen M, Furey A, Allis O, James K, Perttilä U, Rimaila-Pärnänen E, Meriluoto JAO (2009) Accumulation and effects of nodularin from a single and repeated oral doses of cyanobacterium Nodularia spumigena on flounder (Platichthys flesus L.). Arch Environ Contam Toxicol 57:164–173CrossRefPubMedGoogle Scholar
  61. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218CrossRefPubMedGoogle Scholar
  62. Zegura B, Straser A, Filipic M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins—a review. Mutat Res 727:16–41CrossRefPubMedGoogle Scholar
  63. Zhang H, Shao D, Wu Y, Cai C, Hu C, Shou X, Dai B, Ye B, Wang M, Jia X (2012) Apoptotic responses of Carassius auratus lymphocytes to nodularin exposure in vitro. Fish Shellfish Immunol 33:1229–1237CrossRefPubMedGoogle Scholar
  64. Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health B 8:1–37CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Benoît Sotton
    • 1
  • Isabelle Domaizon
    • 1
  • Orlane Anneville
    • 1
  • Franck Cattanéo
    • 2
  • Jean Guillard
    • 1
  1. 1.INRA–UMR CARRTELThonon Les BainsFrance
  2. 2.HEPIA, Earth - Nature - Environment InstituteUniversity of Applied Sciences Western SwitzerlandJussySwitzerland

Personalised recommendations