Reviews in Fish Biology and Fisheries

, Volume 24, Issue 3, pp 919–941 | Cite as

Differential invasion success of salmonids in southern Chile: patterns and hypotheses

  • Ivan Arismendi
  • Brooke E. Penaluna
  • Jason B. Dunham
  • Carlos García de Leaniz
  • Doris Soto
  • Ian A. Fleming
  • Daniel Gomez-Uchida
  • Gonzalo Gajardo
  • Pamela V. Vargas
  • Jorge León-Muñoz
Research Paper


Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including human influences, characteristics of the invader, and biotic interactions. We apply this framework by contrasting hypotheses and available evidence to explain variability in invasion success for 12 salmonids introduced to Chile. The success of Oncorhynchus mykiss and Salmo trutta seems to be influenced by a context-specific combination of their phenotypic plasticity, low ecosystem resistance, and propagule pressure. These well-established invaders may limit the success of subsequently introduced salmonids, with the possible exception of O. tshawytscha, which has a short freshwater residency and limited spatial overlap with trout. Although propagule pressure is high for O. kisutch and S. salar due to their intensive use in aquaculture, their lack of success in Chile may be explained by environmental resistance, including earlier spawning times than in their native ranges, and interactions with previously established and resident Rainbow Trout. Other salmonids have also failed to establish, and they exhibit a suite of ecological traits, environmental resistance, and limited propagule pressure that are variably associated with their lack of success. Collectively, understanding how the various drivers of invasion success interact may explain the differential success of invaders and provide key guidance for managing both positive and negative outcomes associated with their presence.


Salmonids Biological invasions Propagule pressure Environmental resistance Biotic resistance Non-native species Chile 



Cristian Correa, four anonymous reviewers and the Associated Editor William Ardren provided comments that improved the manuscript. Funded by Fondo Nacional de Desarrollo Regional (FNDR Región de los Lagos); Fondo de Investigación Pesquera of Chile FIP 2000–2024; Comisión Nacional de Ciencia y Tecnología of Chile FONDECYT Grant 1020183; Millennium Nucleus Forest Ecosystem Services (FORECOS) P04-065-F Ministerio de Planificación of Chile; and, Department for Environment Food and Rural Affairs (DEFRA, UK) Darwin Initiative Grants # 162-15-020 and EIDPOC 041. Fondo de Financiamiento de Centros de Excelencia en Investigación FONDAP 15110027. Carlos Jara, Antonio Lara, Stefan Woelfl, Guillermo Giannico, and Jose Luis Iriarte provided comments on an early version of the manuscript. Tiffany Garcia and Kate Boersma provided comments on the conceptual framework figure and Kathryn Ronnenberg helped with its design. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Supplementary material

11160_2014_9351_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 53 kb)
11160_2014_9351_MOESM2_ESM.doc (124 kb)
Supplementary material 2 (DOC 124 kb)


  1. Alarcón PAE, Macchi PJ, Trejo A, Alonso MF (2012) Diet of the neotropical cormorant (Phalacrocorax brasilianus) in a Patagonian freshwater environment invaded by exotic fish. Waterbirds 35:149–153Google Scholar
  2. Arenas J (1978) Análisis de la alimentación de Salmo gairdnieri Richardson en el lago Riñihue y río San Pedro, Chile. Medio Ambiente 3:50–58Google Scholar
  3. Arismendi I (2009) The success of non-native salmon and trout in southern Chile: human, environmental and invader dimensions in a conceptual model of biological invasion processes. Dissertation, Universidad Austral de Chile, Valdivia, ChileGoogle Scholar
  4. Arismendi I, Nahuelhual L (2007) Non-native salmon and trout recreational fishing in Lake Llanquihue, southern Chile: economic benefits and management implications. Rev Fish Sci 15:311–325Google Scholar
  5. Arismendi I, Soto D (2012) Are salmon-derived nutrients being incorporated in food webs of invaded streams? Evidence from southern Chile. Knowl Manag Aquat Ecosyst 405:01Google Scholar
  6. Arismendi I, Soto D, Penaluna B, Jara C, Leal C, León-Muñoz J (2009) Aquaculture, non-native salmonid invasions and associated declines of native fishes in northern Patagonian lakes. Freshw Biol 54:1135–1147Google Scholar
  7. Arismendi I, Penaluna B, Soto D (2011a) Body condition indices as a rapid assessment of the abundance of introduced salmonids in oligotrophic lakes of southern Chile. Lake Reserv Manag 27:61–69Google Scholar
  8. Arismendi I, Sanzana J, Soto D (2011b) Seasonal age distributions of introduced resident Rainbow Trout (Oncorhynchus mykiss Walbaum) reveal lake-inlet fish movements in southern Chile. Int J Limnol 47:133–140Google Scholar
  9. Arismendi I, González J, Soto D, Penaluna B (2012) Piscivory and diet overlap between two non-native fishes in southern Chile. Austral Ecol 37:346–354Google Scholar
  10. Armstrong JD, Kemp PS, Kennedy GJA, Ladle M, Milner NJ (2003) Habitat requirements of Atlantic Salmon and Brown Trout in rivers and streams. Fish Res 62:143–170Google Scholar
  11. Astorga MP, Valenzuela C, Arismendi I, Iriarte JL (2008) Naturalized Chinook Salmon in the northern Chilean Patagonia: do they originate from salmon farming? Rev Biol Mar Oceanogr 43:669–674Google Scholar
  12. Baroudy E, Elliott JM (1994) Tolerance of parr of Arctic Charr, Salvelinus alpinus, to reduced dissolved oxygen concentrations. J Fish Biol 44:736–738Google Scholar
  13. Basulto S (2003) El largo viaje de los salmones. Una crónica olvidada, Maval Editorial, Santiago de ChileGoogle Scholar
  14. Becker LA, Pascual MA, Basso NG (2007) Colonization of the southern Patagonia ocean by exotic Chinook Salmon. Conserv Biol 21:1347–1352PubMedGoogle Scholar
  15. Bell G, Gonzalez A (2009) Evolutionary rescue can prevent extinction following environmental change. Ecol Lett 12:942–948PubMedGoogle Scholar
  16. Best RJ, Arcese P (2009) Exotic herbivores directly facilitate the exotic grasses they graze: mechanisms for an unexpected positive feedback between invaders. Oecologia 159:139–150PubMedGoogle Scholar
  17. Bondad-Reantaso MG, Arthur JR, Subasinghe RP (2008) Understanding and applying risk analysis in aquaculture. FAO Fisheries and Aquaculture Technical Paper 519, Rome, Italy, 304 ppGoogle Scholar
  18. Bravo S, Nuñez M, Silva MT (2013) Efficacy of the treatments used for the control of Caligus rogercresseyi infecting Atlantic Salmon, Salmo salar L., in a new fish-farming location in Region XI, Chile. J Fish Dis 36:221–228PubMedGoogle Scholar
  19. Burnett KM, Reeves GH, Miller DJ, Clarke S, Vance-Borland K, Christiansen K (2007) Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation. Ecol Appl 17:66–80PubMedGoogle Scholar
  20. Buschmann AH, Riquelme VA, Hernández-González MC, Varela D, Jiménez JE, Henríquez LA, Vergara PA, Guíñez R, Filún L (2006) A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. ICES J Mar Sci 63:1338–1345Google Scholar
  21. Cabello FC (2007) Salmon aquaculture and transmission of the fish tapeworm. Emerg Infect Dis 13:169–171PubMedCentralPubMedGoogle Scholar
  22. Cadwallader PL (1996) Overview of the impacts of introduced salmonids on Australian native fauna. Australian Nature Conservation Agency, BPD Graphic Associates, CanberraGoogle Scholar
  23. Campos H (1984) Limnological study of Araucanian lakes (Chile). Verh Int Verein Limnol 22:1319–1327Google Scholar
  24. Campos H (1985) Distribution of the fishes in the Andean rivers in the South of Chile. Arch Hydrobiol 104:169–191Google Scholar
  25. Campos H, Arenas J, Steffen W, Aguero G, Villalobos L, Gonzalez G (1986) Investigación de la capacidad de carga para el cultivo de salmonídeos de las hoyas hidrográficas del país. II Antecedentes limnológicos hoya lago Villarrica. CORFO AP 86/28. Santiago, ChileGoogle Scholar
  26. Campos H, Dazarola G, Dyer B, Fuentes L, Gavilán J, Huaquín L, Martínez G, Menéndez R, Pequeño G, Ponce F, Ruiz V, Sielfeld W, Soto D, Vega R, Vila I (1998) Categorías de conservación de peces nativos de aguas continentales de Chile. Boletín del Museo Nacional de Historia Natural (Chile) 47:101–222Google Scholar
  27. Carvajal J, González L, George-Nascimento M (1998) Native sea lice (Copepoda: Caligidae) infestation of salmonids reared in netpen systems in southern Chile. Aquaculture 66:241–246Google Scholar
  28. Casal C (2006) Global documentation of fish introductions: the growing crisis and recommendations for action. Biol Invasions 8:3–11Google Scholar
  29. Chase JM, Leibold MA (2003) Ecological niches: interspecific interactions. The University of Chicago Press, ChicagoGoogle Scholar
  30. Chizinski CJ, Higgins CL, Shavlik CE, Pope KL (2006) Multiple hypotheses testing of fish incidence patterns in an urbanized ecosystem. Aquat Ecol 40:97–109Google Scholar
  31. Colautti RI (2005) Are characteristics of introduced salmonid fishes biased by propagule pressure? Can J Fish Aquat Sci 62:950–959Google Scholar
  32. Colihueque N, Vergara N, Parraguez M (2003) Genetic characterization of naturalized populations of Brown Trout Salmo trutta L. in southern Chile using allozyme and microsatellite markers. Aquac Res 34:525–533Google Scholar
  33. Collyer MC, Stockwell CA, Adams DC, Reiser MH (2007) Phenotypic plasticity and contemporary evolution in introduced populations: evidence from translocated populations of White Sands Pupfish (Cyprinodon tularosa). Ecol Res 22:902–910Google Scholar
  34. Connell JH (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am Nat 122:661–696Google Scholar
  35. Consuegra S, Phillips N, Gajardo G, García de Leaniz C (2011) Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native Rainbow Trout. Evol Appl 4:660–671PubMedCentralGoogle Scholar
  36. Correa C, Gross MR (2008) Chinook Salmon invade southern South America. Biol Invasions 10:615–639Google Scholar
  37. Correa C, Hendry AP (2012) Invasive salmonids and lake order interact in the decline of Puye Grande Galaxias platei in western Patagonian lakes. Ecol Appl 22:828–842PubMedGoogle Scholar
  38. Correa C, Bravo AP, Hendry AP (2012) Reciprocal trophic niche shifts in native and invasive fish: salmonids and galaxiids in Patagonian lakes. Freshw Biol 57:1769–1781Google Scholar
  39. Crawford SS (2001) Salmonine introductions to the Laurentian Great Lakes: an historical review and evaluation of ecological effects. Canadian Special Publication of Fisheries and Aquatic Sciences 132, National Research Council Canada Monograph Series, NRC Research Press, Ottawa, CanadaGoogle Scholar
  40. Crawford SS, Muir AM (2008) Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev Fish Biol Fish 18:313–344Google Scholar
  41. Crowder LB, Squires DD, Rice JA (1997) Nonadditive effects of terrestrial and aquatic predators on juvenile estuarine fish. Ecology 78:1796–1804Google Scholar
  42. Crowl TA, Towsend CR, McIntosh A (1992) The impact of introduced Brown and Rainbow Trout on native fish: the case of Australasia. Rev Fish Biol Fish 2:217–241Google Scholar
  43. Cutts CJ, Metcalfe NB, Taylor AC (1999) Competitive asymmetries in territorial juvenile Atlantic Salmon, Salmo salar. Oikos 86:479–486Google Scholar
  44. Davidson FA, Hutchinson SJ (1938) The geographic distribution and environmental limitations of the Pacific salmon (Genus Oncorhynchus). Bull Bureau Fish 48(26):667–692Google Scholar
  45. DeVries P (1997) Riverine salmonid egg burial depths: review of published data and implications for scour studies. Can J Fish Aquat Sci 54:1685–1698Google Scholar
  46. Di Prinzio CY, Pascual MA (2008) The establishment of exotic Chinook Salmon (Oncorhynchus tshawytscha) in Pacific rivers of Chubut, Patagonia, Argentina. Int J Limnol 1:61–68Google Scholar
  47. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449PubMedGoogle Scholar
  48. Dunham JB, Adams SB, Schroeter R, Novinger DC (2002) Alien invasions in aquatic ecosystems: toward an understanding of Brook Trout invasions and potential impacts on inland cutthroat trout in western North America. Rev Fish Biol Fish 12:373–391Google Scholar
  49. Dunham JB, Pilliod DS, Young MK (2004) Assessing the consequences of nonnative trout in headwater ecosystems in western North America. Fisheries 29:18–26Google Scholar
  50. Dyer B (2000) Systematic review and biogeography of the freshwater fishes of Chile. Estudios Oceanológicos 19:77–98Google Scholar
  51. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80Google Scholar
  52. Elliott JM (1991) Tolerance and resistance to thermal stress in juvenile Atlantic Salmon, Salmo salar. Freshw Biol 25:61–70Google Scholar
  53. Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, New YorkGoogle Scholar
  54. Elton CS (1927) Animal ecology. Sidgwick and Jackson, LondonGoogle Scholar
  55. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  56. Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135PubMedGoogle Scholar
  57. Faundez V, Blanco G, Vásquez E, Sánchez JE (1997) Allozyme variability in Brown Trout Salmo trutta in Chile. Freshw Biol 37:507–514Google Scholar
  58. Fausch KD (2007) Introduction, establishment and effects of non-native salmonids: considering the risk of Rainbow Trout invasion in the United Kingdom. J Fish Biol 71:1–32Google Scholar
  59. Fausch KD, White RJ (1986) Competition among juveniles of Coho Salmon, Brook Trout, and Brown Trout in a laboratory stream, and implications for Great Lakes tributaries. Trans Am Fish Soc 115:363–381Google Scholar
  60. Fausch KD, Rieman BE, Young MK, Dunham JB (2006) Strategies for conserving native salmonid populations at risk from nonnative fish invasions: tradeoffs in using barriers to upstream movement. Gen. Tech. Rep. RMRS-GTR-174. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USAGoogle Scholar
  61. Figueroa R, Ruiz VH, Berrios P, Palma A, Villegas P, Andreu-Soler A (2010) Trophic ecology of native and introduced fish species from the Chillán River, South-Central Chile. J Appl Ichthyol 26:78–83Google Scholar
  62. Fleming IA (1998) Pattern and variability in the breeding system of Atlantic Salmon, with comparisons to other salmonids. Can J Fish Aquat Sci 55:59–76Google Scholar
  63. Fleming IA, Petersson E (2001) The ability of released, hatchery salmonids to breed and contribute to the natural productivity of wild populations. Nord J Freshw Res 75:71–98Google Scholar
  64. Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc R Soc B Sci 267:1517–1524Google Scholar
  65. Gajardo G (1997) Caracterización genética, hematológica y química sanguínea de salmónidos silvestres y de cultivo. Informe Final FIP 95-35. Valparaiso, ChileGoogle Scholar
  66. Gajardo G, Laikre L (2003) Chilean aquaculture boom is based on exotic salmon resources: a conservation paradox. Conserv Biol 17:1173–1174Google Scholar
  67. Gajardo G, Diaz O, Crespo JE (1998) Allozymic variation and differentiation in naturalized populations of Rainbow Trout, Oncorhynchus mykiss (Walbaum), from southern Chile. Aquac Res 29:785–790Google Scholar
  68. García de Leaniz C, Gajardo G, Consuegra S (2010) From best to pest: changing perspectives on the impact of exotic salmonids in the Southern Hemisphere. Syst Biodivers 8:447–459Google Scholar
  69. García-Berthou E (2007) The characteristics of invasive fishes: what has been learned so far? J Fish Biol 71:33–55Google Scholar
  70. Glova GJ (2003) A test for interaction between Brown Trout (Salmo trutta) and Inanga (Galaxias maculatus) in an artificial stream. Ecol Freshw Fish 12:247–253Google Scholar
  71. Godoy M, Kibene F, Aedo A, Kibenge M, Groman D, Grothusen H, Lisperguer A, Calbucura M, Avendano F, Imilan M, Jarpa M (2008) Primera Detección, Aislamiento y Caracterización Molecular de ISA-v en Salmón del Atlántico (Salmo salar) de Cultivo en Chile. Salmociencia 2:47–55Google Scholar
  72. Golusda P (1907) La introducción del salmón en Chile. Anales Agronómicos, SantiagoGoogle Scholar
  73. González A, Victoriano P (2005) Aves de los humedales costeros de la zona de Concepción y alrededores. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 485–497Google Scholar
  74. Gozlan RE (2008) Introduction of non-native freshwater fish: is it all bad? Fish Fish 9:106–115Google Scholar
  75. Grant JWA, Steingrímsson SÓ, Keeley ER, Cunjak RA (1998) Implications of territory size for the measurement and prediction of salmonid abundance in streams. Can J Fish Aquat Sci 55:181–190Google Scholar
  76. Griffen BD, Guy T, Buck JC (2008) Inhibition between invasives: a newly introduced predator moderates the impacts of a previously established invasive predator. J Anim Ecol 77:32–40PubMedGoogle Scholar
  77. Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433Google Scholar
  78. Grosholz ED (2005) Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proc Natl Acad Sci USA 102:1088–1091PubMedCentralPubMedGoogle Scholar
  79. Gruner DS (2005) Biotic resistance to an invasive spider conferred by generalist insectivorous birds on Hawaii Island. Biol Invasions 7:541–546Google Scholar
  80. Habit E, Dyer B, Vila I (2006) Estado de conocimiento de los peces dulceacuícolas de Chile. Gayana 70:100–112Google Scholar
  81. Habit E, Gonzalez J, Ruzzante DE, Walde SJ (2012) Native and introduced fish species richness in Chilean Patagonian lakes: inferences on invasion mechanisms using salmonid-free lakes. Divers Distrib. doi: 10.1111/j.1472-4642.2012.00906.x Google Scholar
  82. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506Google Scholar
  83. Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321Google Scholar
  84. Hill MS, Zydlewski GB, William L (2006) Comparisons between hatchery and wild steelhead trout (Oncorhynchus mykiss) smolts: physiology and habitat use. Can J Fish Aquat Sci 63:1627–1638Google Scholar
  85. Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA 106:19659–19665PubMedCentralPubMedGoogle Scholar
  86. Huntingford FA, Garcia de Leaniz C (1997) Social dominance, prior residence and the acquisition of profitable feeding sites in juvenile Atlantic Salmon. J Fish Biol 51:1009–1014Google Scholar
  87. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427Google Scholar
  88. Jensen Ø, Dempster T, Thorstad EB, Uglem I, Fredheim A (2010) Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquac Environ Interact 1:71–83Google Scholar
  89. Johnson PTJ, Olden JD, Solomon CT, Vander Zanden MJ (2009) Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia 159:161–170PubMedGoogle Scholar
  90. Jonsson B, Jonsson N (2011) Ecology of Atlantic Salmon and Brown Trout: habitat as a template for life histories. Springer, New YorkGoogle Scholar
  91. Kaufman L (1992) Catastrophic change in species-rich freshwater ecosystems. Bioscience 42:846–858Google Scholar
  92. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170Google Scholar
  93. Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866PubMedGoogle Scholar
  94. Keller RP, Geist J, Jeschke JM, Kühn I (2011) Invasive species in Europe: ecology, status and policy. Environ Sci Eur 23:23. doi: 10.1186/2190-4715-23-23 Google Scholar
  95. Kinnison MT, Unwin MJ, Quinn TP (2008) Eco-evolutionary versus habitat contributions to invasion: experimental evaluation in the wild. Mol Ecol 17:405–414PubMedGoogle Scholar
  96. Kinnison MT, Quinn TP, Unwin MJ (2011) Correlated contemporary evolution of life history traits in New Zealand Chinook Salmon, Oncorhynchus tshawytscha. Heredity 106:448–459PubMedCentralPubMedGoogle Scholar
  97. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedGoogle Scholar
  98. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236PubMedGoogle Scholar
  99. Kolbe JJ, Glor RE, Rodrı´guez L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181PubMedGoogle Scholar
  100. Krkosek M, Lewis MA, Volpe JP (2005) Transmission dynamics of parasitic sea lice from farms to wild salmon. Proc R Soc B Biol Sci 272:689–696Google Scholar
  101. Lee CE (2002) Evolutionary genetics of invasive. Trends Ecol Evol 17(8):386–391Google Scholar
  102. Lee RM, Rinne JN (1980) Critical thermal maxima of five trout species in the Southwestern USA. Trans Am Fish Soc 109:632–635Google Scholar
  103. Leprieur F, Brosse S, García-Berthou E, Oberdorff T, Olden JD, Townsend CR (2009) Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish Fish 10:88–97Google Scholar
  104. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228PubMedGoogle Scholar
  105. Lockwood JL, Hoopes MF, Marchetti MP (2006) Invasion ecology. Blackwell Scientific Press, OxfordGoogle Scholar
  106. Lucek KR, Bezault D, Sivasundar E, Seehausen A (2010) Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Mol Ecol 19:3995–4011PubMedGoogle Scholar
  107. Macchi PJ, Vigliano PH, Pascual MA, Alonso M, Denegri MA, Milano D, Garcia Asorey M, Lippolt G (2008) Historical policy goals for fish management in northern continental Patagonia Argentina: a structuring force of actual fish assemblages? Am Fish Soc Symp 49:331–348Google Scholar
  108. MacCrimmon HR, Gots BL (1979) World distribution of Atlantic Salmon, Salmo salar. J Fish Res Board Can 36:422–457Google Scholar
  109. MacCrimmon HR, Marshall TL (1968) World distribution of Brown Trout, Salmo trutta. J Fish Res Board Can 25:2527–2548Google Scholar
  110. MacIsaac HJ, Grigorovich IA, Ricciardi A (2001) Reassessment of species invasions concepts: the Great Lakes basin as a model. Biol Invasions 3:405–416Google Scholar
  111. Marr SM, Marchetti MP, Olden JD, García-Berthou E, Morgan DL, Arismendi I, Day JA, Griffiths CL, Skelton PH (2010) Freshwater fish introductions in Mediterranean-climate regions: are there commonalities in the conservation problem? Divers Distrib 16:606–619Google Scholar
  112. Marr SM, Olden JD, Leprieur F, Arismendi I, Ćaleta M, Morgan DL, Nocita A, Šanda R, Tarkan AS, García-Berthou E (2013) A global assessment of freshwater fish introductions in Mediterranean-climate regions. Hydrobiologia. doi: 10.1007/s10750-013-1486-9 Google Scholar
  113. Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7:142–149Google Scholar
  114. Maynard Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24:159–175Google Scholar
  115. McCullough DA (1999) A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to Chinook Salmon. Columbia Intertribal Fisheries Commission. US Environmental Protection Agency Region 10, EPA 910-R-99-010, Portland, OR, USAGoogle Scholar
  116. McDowall RM (1997) The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev Fish Biol Fish 7:443–462Google Scholar
  117. McDowall RM (2006) Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Rev Fish Biol Fish 16:233–422Google Scholar
  118. McGinnity P, Prodohl P, Ferguson A, Hynes R, Ó Maoileidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic Salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc B Sci 270:2443–2450Google Scholar
  119. Medina-Vogel G (2005) Estrategia regional para la conservación del huillín (Lontra provocax) en Chile. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 390–398Google Scholar
  120. Metcalfe NB, Valdimarsson SK, Morgan IJ (2003) The relative roles of domestication, rearing environment, prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon. J Appl Ecol 40:535–544Google Scholar
  121. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740PubMedGoogle Scholar
  122. Monzón-Argüello C, Garcia de Leaniz C, Gajardo G, Consuegra S (2013) Less can be more: loss of MHC functional diversity can reflect adaptation to novel conditions during fish invasions. Ecol Evol. doi: 10.1002/ece3.701 PubMedCentralPubMedGoogle Scholar
  123. Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–161Google Scholar
  124. Moyle PB, Marchetti MP (2006) Predicting invasion success: freshwater fishes in California as a model. Bioscience 56:515–524Google Scholar
  125. Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320PubMedGoogle Scholar
  126. Nash CE (1976) The Southern Ocean salmon project phases I & II. ICLARM Technical Report. Hawaii, October 1976Google Scholar
  127. Naylor R, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M (2005) Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55:427–437Google Scholar
  128. Niemeyer H, Cereceda P (1984) Hidrografía. Colección Geográfica de Chile. Tomo VIII. Instituto Geográfico Militar (IGM), SantiagoGoogle Scholar
  129. Niklitschek E, Aedo E (2002) Estudio del ciclo reproductivo de las principales especies objetivo de la pesca deportiva en la XI región. Informe Proyecto FIP 2000–25, Fondo de Investigación Pesquera, Subsecretaría de Pesca, Valparaíso, ChileGoogle Scholar
  130. Núñez D, Niklitschek M (2010) Caracterización de la pesca recreativa en la Patagonia chilena. Una encuesta a turistas de larga distancia en la región de Aysén. Estudios y Perspectivas en Turismo 19:83–104Google Scholar
  131. O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817Google Scholar
  132. O’Neal SL, Stanford JA (2011) Partial migration in a robust Brown Trout population of a Patagonian River. Trans Am Fish Soc 140:623–635Google Scholar
  133. Odum E (1989) Ecology and our endangered life support systems. Sinauer Associates, SunderlandGoogle Scholar
  134. Olsson M, Shine R (2000) Ownership influences the outcome of male–male contests in the scincid lizard, Niveoscincus microlepidotus. Behav Ecol 11:587–590Google Scholar
  135. Pascual MA, Ciancio JE (2007) Introduced anadromous salmonids in Patagonia: risks, uses, and a conservation paradox. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, NetherlandsGoogle Scholar
  136. Pascual M, Bentzen P, Rossi CR, Mackay G, Kinnison MT, Walker R (2001) First documented case of anadromy in a population of introduced Rainbow Trout in Patagonia, Argentina. Trans Am Fish Soc 130:53–67Google Scholar
  137. Pascual M, Macchi P, Urbanski J, Marcos F, Riva Rossi C, Novara M, Dell’Arciprete P (2002) Evaluating potential effects of exotic freshwater fish from incomplete species presence–absence data. Biol Invasions 4:101–113Google Scholar
  138. Pascual MA, Cussac V, Dyer B, Soto D, Vigliano P, Ortubay S, Macchi P (2007) Freshwater fishes of Patagonia in the 21st century after a hundred years of human settlement, species introductions, and environmental change. Aquat Ecosyst Health 10:212–227Google Scholar
  139. Penaluna B, Arismendi I, Soto D (2009) Evidence of interactive segregation between introduced trout and native fishes in Northern Patagonian Rivers, Chile. Trans Am Fish Soc 138:839–845Google Scholar
  140. Perez LA, Winkler FM, Diaz NF, Carcamo C, Silva N (2001) Genetic variability in four hatchery strains of Coho Salmon, Oncorhynchus kisutch (Walbaum), in Chile. Aquac Res 32:41–46Google Scholar
  141. Peterson DP, Fausch KD (2003) Testing population-level mechanisms of invasion by a mobile vertebrate: a simple conceptual framework for salmonids in streams. Biol Invasions 5:239–259Google Scholar
  142. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20Google Scholar
  143. Quinn TP, Unwin MJ (1993) Variation in life history patterns among New Zealand Chinook Salmon (Oncorhynchus tshawytscha) populations. Can J Fish Aquat Sci 50:1414–1424Google Scholar
  144. Quinn T, Kinnison M, Unwin M (2001) Evolution of Chinook Salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process. Genetica 112–113:493–513PubMedGoogle Scholar
  145. Rau J, Muñoz-Pedreros A, Martínez DR (2005) Diversidad trófica de aves rapaces y mamíferos carnívoros en la Cordillera de la Costa. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 537–538Google Scholar
  146. Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781–784Google Scholar
  147. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93PubMedGoogle Scholar
  148. Riva Rossi CM, Pascual MA, Aedo Marchant E, Basso N, Ciancio JE, Mezga B, Fernández DA, Ernst-Elizalde B (2012) The invasion of Patagonia by Chinook Salmon (Oncorhynchus tshawytscha): inferences from mitochondrial DNA patterns. Genetica 140:439–453PubMedGoogle Scholar
  149. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464PubMedGoogle Scholar
  150. Ross DJ, Johnson CR, Hewitt CL, Ruiz GM (2004) Interaction and impacts of two introduced species on a soft-sediment marine assemblage in SE Tasmania. Mar Biol 144:747–756Google Scholar
  151. Sakai M, Espinos A (1994) Repeat homing and migration of Rainbow Trout to the inlet and outlet spawning streams in a Patagonian lake, Argentina. Fish Sci 60:137–142Google Scholar
  152. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32:305–332Google Scholar
  153. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471PubMedGoogle Scholar
  154. Sepúlveda M, Arismendi I, Soto D, Jara F, Farias F (2013) Escaped farmed salmon and trout in Chile: incidence, impacts, and the need for an ecosystem view. Aquac Environ Interact 4:273–283Google Scholar
  155. Shurin JB (2001) Interactive effects of predation and dispersal on zooplankton communities. Ecology 82:3404–3416Google Scholar
  156. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919PubMedGoogle Scholar
  157. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32Google Scholar
  158. Simon KS, Townsend CR (2003) Impacts of freshwater invaders at different levels of ecological organization, with emphasis on salmonids and ecosystem consequences. Freshw Biol 48:982–994Google Scholar
  159. Sloat MR, Fraser DJ, Dunham JB, Falke JA, Jordan CE, McMillan JR, Ohms HA (2014) Ecological and evolutionary patterns of freshwater maturation in Pacific and Atlantic salmonines. Rev Fish Biol Fish. doi: 10.1007/s11160-014-9344-z Google Scholar
  160. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123PubMedGoogle Scholar
  161. Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods and assumptions. Proc Natl Acad Sci USA 106:19644–19650PubMedCentralPubMedGoogle Scholar
  162. Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583PubMedGoogle Scholar
  163. Soto D (2002) Oligotrophic patterns in southern Chilean lakes: the relevance of nutrients and mixing depth. Rev Chil Hist Nat 75:77–93Google Scholar
  164. Soto D, Arismendi I (2005) Fauna íctica de la cuenca del Río Bueno: relevancia de los afluentes en la conservación de especies nativas. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 390–398Google Scholar
  165. Soto D, Stockner R (1996) Oligotrophic lakes in southern Chile and British Columbia: basis for their resilience present and future disturbances. In: Lawford RG, Alaback P, Fuentes E (eds) High latitude rain forest of the west coast of the Americas. Climate, hydrology, ecology and conservation. Springer, New York, pp 266–280Google Scholar
  166. Soto D, Jara F, Moreno C (2001a) Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol Appl 11:1750–1762Google Scholar
  167. Soto D, Arismendi I, Sanzana J (2001b) Evaluación del potencial biológico de la pesca deportiva en la decima región. Informe Intendencia Región de los Lagos FNDR, Puerto MonttGoogle Scholar
  168. Soto D, Arismendi I, Solar I (2002) Estudio del ciclo reproductivo de las principales especies objetivo de la pesca deportiva en la X región. Informe Proyecto FIP 2000–24, Fondo de Investigación Pesquera, Subsecretaría de Pesca, Valparaíso, ChileGoogle Scholar
  169. Soto D, Arismendi I, González J, Sanzana J, Jara F, Jara C, Guzmán E, Lara A (2006) Southern Chile, trout and salmon country: invasion patterns and threats for native species. Rev Chil Hist Nat 79:97–117Google Scholar
  170. Soto D, Arismendi I, Di Prinzio C, Jara F (2007) Establishment of Chinook Salmon (Oncorhynchus tshawytscha) in Pacific basins of Southern South America and its potential ecosystem implications. Rev Chil Hist Nat 80:81–98Google Scholar
  171. Steinmetz J, Kohler SL, Soluk DA (2003) Birds are overlooked top predators in aquatic food webs. Ecology 84:1324–1328Google Scholar
  172. Stewart L (1980) A history of migratory salmon acclimatization experiments in parts of the Southern Hemisphere and the possible effects of oceanic currents and gyres upon their outcome. Adv Mar Biol 17:397–466Google Scholar
  173. Thomasson K (1963) Araucanian Lakes. Plankton studies in north Patagonia with notes on terrestrial vegetation. Acta Phytogeogr Suecica 47:1–141Google Scholar
  174. Thorstad EB, Fleming IA, McGinnity P, Soto D, Wennevik V, Whoriskey F (2008) Incidence and impacts of escaped farmed Atlantic Salmon Salmo salar in nature. Nor Inst Nat Res Spec Rep 36:1–110Google Scholar
  175. Tobias J (1997) Asymmetric territorial contests in the European Robin: the role of settlement costs. Anim Behav 54:9–21PubMedGoogle Scholar
  176. Torres A, Winkler FM, Guiñez R, Díaz N, Espejo P (1996) Variabilidad genética en una población de piscicultura de Salmón Coho (Oncorhynchus kisutch) (Walbaum, 1792) en Chile. Rev Biol Mar Oceanogr 31:11–22Google Scholar
  177. Torres P, Lopez JC, Cubillos V, Lobos C, Silva R (2002) Visceral diphyllobothriosis in a cultured Rainbow Trout, Oncorhynchus mykiss (Walbaum), in Chile. J Fish Dis 25:375–379Google Scholar
  178. Utter F (2001) Patterns of subspecific anthropogenic introgression in two salmonid genera. Rev Fish Biol Fish 10:265–279Google Scholar
  179. Valiente AG, Juanes F, Núñez P, García-Vazquez E (2007) Is genetic variability so important? Non-native salmonids in South America. J Fish Biol 71:136–147Google Scholar
  180. Valiente AG, Juanes F, Núñez P, García-Vazquez E (2010) Brown Trout (Salmo trutta) invasiveness: plasticity in life-history is more important than genetic variability. Biol Invasions 12:451–462Google Scholar
  181. Van Wilgen BW (2012) Evidence, perceptions, and trade-offs associated with invasive alien plant control in the Table Mountain National Park, South Africa. Ecol Soc 17:23Google Scholar
  182. Vander-Zanden J, Casselman M, Rasmussen JB (1999) Stable isotope evidence for food web shifts following species invasions of lakes. Nature 401:464–467Google Scholar
  183. Vargas PV, Arismendi I, Lara G, Millar J, Peredo S (2010) Evidencia de solapamiento de micro-hábitat entre juveniles del salmón introducido Oncorhynchus tshawytscha y el pez nativo Trichomycterus areolatus en el río Allipén, Chile. Rev Biol Marina Oceanogr 45:285–292Google Scholar
  184. Vila I, Zeiss E, Gibson H (1978) Prospecciones de sistemas hidrográficos para la introducción del salmón en Chile. Biología Pesquera 10:61–73Google Scholar
  185. Vila I, Fuentes L, Saavedra M (1999) Ictiofauna en los sistemas límnicos de la Isla Grande, Tierra del Fuego, Chile. Rev Chil Hist Nat 72:273–284Google Scholar
  186. Vila I, Pardo R, Dyer B, Habit E (2006) Peces límnicos: diversidad origen y estado de conservación. In: Vila I, Veloso A, Schlatter R, Ramírez C (eds) Macrófitas y vertebrados de los ecosistemas límnicos de Chile. Editorial Universitaria, Santiago, pp 73–102Google Scholar
  187. Vilata J, Oliva D, Sepúlveda M (2010) The predation of farmed salmon by South American sea lions (Otaria flavescens) in southern Chile. ICES J Mar Sci 67:475–482Google Scholar
  188. Villalobos L, Woelfl S, Parra O, Campos H (2003) Lake Chapo: a baseline study of a deep, oligotrophic North Patagonian lake prior to its use for hydroelectricity generation: II. Biological properties. Hydrobiologia 510:225–237Google Scholar
  189. Vitule JRS, Freire CA, Simberloff D (2009) Introduction of non-native freshwater fish can certainly be bad. Fish Fish 10:98–108Google Scholar
  190. Westley PAH (2011) What invasive species reveal about the rate and form of contemporary phenotypic change in nature. Am Nat 177:496–509PubMedGoogle Scholar
  191. Westley PAH, Fleming IA (2011) Landscape factors that shape a slow and persistent aquatic invasion: brown trout in Newfoundland 1883-2010. Divers Distrib 17:566–579Google Scholar
  192. Westley PAH, Ward E, Fleming IA (2013a) Fine-scale local adaptation in an invasive freshwater fish has evolved in contemporary time. Proc R Soc B Sci 280:2012–2327Google Scholar
  193. Westley PAH, Stanley R, Fleming IA (2013b) Experimental tests for heritable morphological color plasticity in nonnative Brown Trout (Salmo trutta) populations. PLoS ONE 8(11):e80401. doi: 10.1371/journal.pone.0080401 PubMedCentralPubMedGoogle Scholar
  194. Winkler FM, Bartley D, Diaz NF (1999) Genetic differences among year classes in a hatchery population of Coho Salmon (Oncorhynchus kisutch (Walbaum, 1792)) in Chile. Aquaculture 173:425–433Google Scholar
  195. Wonham MJ, Lewis MA, MacIsaac HJ (2005) Minimizing invasion risk by reducing propagule pressure: a model for ballastwater exchange. Front Ecol Evol 3:473–478Google Scholar
  196. Yonekura R, Kawamura K, Uchii K (2007) A peculiar relationship between genetic diversity and adaptability in invasive exotic species: bluegill sunfish as a model species. Ecol Res 22:911–919Google Scholar
  197. Young KA (2004) Asymmetric competition, habitat selection, and niche overlap in juvenile salmonids. Ecology 85:134–149Google Scholar
  198. Young KA, Stephenson J, Terreau A, Thailly A, Gajardo G, García de Leaniz C (2009) The diversity of juvenile salmonids does not affect their competitive impact on a native galaxiid. Biol Invasions 11:1955–1961Google Scholar
  199. Young KA, Dunham JB, Stephenson JF, Terreau A, Thailly AF, Gajardo G, García de Leaniz C (2010) A trial of two trouts: comparing the impacts of Rainbow and Brown Trout on a native galaxiid. Anim Conserv 13:399–410Google Scholar
  200. Zama A (1987) Biological observations on sea-run Brown Trout in Fiordo Aysen, Southern Chile (Pisces: Salmonidae). Rev Biol Mar Oceanogr 23:193–213Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ivan Arismendi
    • 1
  • Brooke E. Penaluna
    • 2
  • Jason B. Dunham
    • 3
  • Carlos García de Leaniz
    • 4
  • Doris Soto
    • 5
  • Ian A. Fleming
    • 6
  • Daniel Gomez-Uchida
    • 7
  • Gonzalo Gajardo
    • 8
  • Pamela V. Vargas
    • 7
  • Jorge León-Muñoz
    • 9
    • 10
  1. 1.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA
  2. 2.US Forest ServicePacific Northwest Research StationCorvallisUSA
  3. 3.US Geological SurveyForest and Rangeland Ecosystem Science CenterCorvallisUSA
  4. 4.Department of BiosciencesSwansea UniversitySwanseaUK
  5. 5.Aquaculture Branch, Fisheries and Aquaculture DepartmentFood and Agriculture Organization of the United Nations (FAO)RomeItaly
  6. 6.Fish Evolutionary Ecology Research Group and Department of Ocean SciencesMemorial University of NewfoundlandSt. John’sCanada
  7. 7.Departamento de Zoología, Interdisciplinary Center for Aquaculture Research (FONDAP-INCAR)Universidad de ConcepciónConcepciónChile
  8. 8.Laboratorio de Genética, Acuicultura and BiodiversidadUniversidad de Los LagosOsornoChile
  9. 9.Secretaría Regional Ministerial del Medio Ambiente Región de los RíosMinisterio del Medio AmbienteValdiviaChile
  10. 10.Instituto de Ciencias Marinas y Limnológicas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile

Personalised recommendations