Reviews in Fish Biology and Fisheries

, Volume 23, Issue 2, pp 261–269 | Cite as

Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): comparative chromosome mapping of repetitive sequences

  • Nícolas Fernandes Martins
  • Luiz Antonio Carlos Bertollo
  • Waldo Pinheiro Troy
  • Eliana Feldberg
  • Francisco Carlos de Souza Valentin
  • Marcelo de Bello Cioffi
Research Paper


Erythrinus erythrinus presents extensive karyotypic diversity, with four karyomorphs (A–D) differing in the number of chromosomes, karyotype structure or sex chromosomes systems. Karyomorph A has 2n = 54 chromosomes in males and females without heteromorphic sex chromosomes, while karyomorph C has 2n = 52 chromosomes in females and 2n = 51 chromosomes in males, due a X1X1X2X2/X1X2Y sex chromosome system. Three allopatric populations of the karyomorph A and one population of the karyomorph C were now in deep investigated by molecular cytogenetic analyses, using repetitive DNAs as probes. The results reinforced the relatedness among populations of the karyomorph A, despite their large geographic distribution. Karyomorph C, however, showed a remarkably difference in the genomic constitution, especially concerning the amount and distribution of the 5S rDNA and Rex3 sequences on chromosomes. In addition, although karyomorphs C and D share several features, exclusive chromosomal markers show the derivative evolutionary pathway between them. Thus, besides the classical chromosomal rearrangements, the repetitive DNAs were useful tools to reveal the biodiversity, relatedness and differentiation of this fish group. The chromosomal set strongly corroborates that E. erythrinus corresponds to a species complex instead of a single biological entity.


Fish Karyomorphs Karyotype evolution Repetitive DNAs Chromosomal markers 



This work was supported by the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMAT (Fundação de Amparo à Pesquisa do Estado de Mato Grosso).


  1. Bertollo LAC (2007) Chromosome evolution in the Neotropical Erythrinidae fish family: an overview. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers, Enfield, NH, pp 195–211Google Scholar
  2. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Brazil J Genet 1:103–120Google Scholar
  3. Bertollo LAC, Oliveira C, Molina WF, Margarido VP, Fontes MS, Pastori MS, Falcão JN, Fenocchio AS (2004) Chromosome evolution in the erythrinid fish, Erythrinus erythrinus (Teleostei: Characiformes). Heredity 93:228–233PubMedCrossRefGoogle Scholar
  4. Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524PubMedCrossRefGoogle Scholar
  5. Charlesworth B, Snlegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220PubMedCrossRefGoogle Scholar
  6. Cioffi MB, Bertollo LAC (2012) Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos MA (ed) Repetitive DNA Genome Dynamics v 7. Karger, Basel, pp 197–221Google Scholar
  7. Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC (2009) Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet Genome Res 125:132–141PubMedCrossRefGoogle Scholar
  8. Cioffi MB, Martins C, Bertollo LAC (2010) Chromosomal spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:217CrossRefGoogle Scholar
  9. Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V, Bertollo LAC (2011) Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol 11:186PubMedCrossRefGoogle Scholar
  10. Cioffi MB, Molina WF, Artoni RF, Bertollo LAC (2012a) Chromosomes as tools for discovering biodiversity. The case of Erythrinidae fish family. In: Padma Tirunilai (ed) Recent trends in cytogenetic studies−Methodologies and applications, 1st edn, InTech, pp. 125–146Google Scholar
  11. Cioffi MB, Kejnovsky E, Marquioni V, Poltronieri J, Molina WF, Diniz D, Bertollo LAC (2012b) The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. BMC Mol Cytogenet 5:28CrossRefGoogle Scholar
  12. Dimitri P, Junakovic N (1999) Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15:123–124PubMedCrossRefGoogle Scholar
  13. Grewal SIS, Jia S (2007) Complexities of heterochromatin in fungi, ciliates, plants and mammals. Nat Rev Genet 8:35–46PubMedCrossRefGoogle Scholar
  14. Horvath JE, Bailey JA, Locke DP, Eichler EE (2001) Lessons from the human genome: transitions between euchromatin and heterochromatin. Hum Mol Genet 10:2215–2223PubMedCrossRefGoogle Scholar
  15. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467PubMedCrossRefGoogle Scholar
  16. Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63PubMedCrossRefGoogle Scholar
  17. Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome 51:350–356PubMedCrossRefGoogle Scholar
  18. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  19. López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content in eukaryotic genomes. In: Garrido-Ramos MA (ed) Repetitive DNA Genome Dynamics v 7. Karger, Basel, pp 1–28Google Scholar
  20. Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers, Enfield, NH, pp 421–453Google Scholar
  21. Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM Jr (2006) A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 127:133–141PubMedCrossRefGoogle Scholar
  22. Pinkel D, Straume T, Gray J (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938PubMedCrossRefGoogle Scholar
  23. Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E et al (1999) Zebrafish genetic map with 200 microsatellite markers. Genomics 58:219–232PubMedCrossRefGoogle Scholar
  24. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138PubMedCrossRefGoogle Scholar
  25. Vanzela ALL, Swarça AC, Dias AL, Stolf R, Ruas PM et al (2002) Differential distribution of (GA)9 + C microsatellite on chromosomes of some animal and plant species. Cytologia 67:9–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Nícolas Fernandes Martins
    • 1
  • Luiz Antonio Carlos Bertollo
    • 1
  • Waldo Pinheiro Troy
    • 2
  • Eliana Feldberg
    • 3
  • Francisco Carlos de Souza Valentin
    • 3
  • Marcelo de Bello Cioffi
    • 1
  1. 1.Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos (UFSCar)São CarlosBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade do Estado de Mato GrossoTangará da SerraBrazil
  3. 3.Laboratório de Genética AnimalInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations