Skip to main content
Log in

Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): comparative chromosome mapping of repetitive sequences

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Erythrinus erythrinus presents extensive karyotypic diversity, with four karyomorphs (A–D) differing in the number of chromosomes, karyotype structure or sex chromosomes systems. Karyomorph A has 2n = 54 chromosomes in males and females without heteromorphic sex chromosomes, while karyomorph C has 2n = 52 chromosomes in females and 2n = 51 chromosomes in males, due a X1X1X2X2/X1X2Y sex chromosome system. Three allopatric populations of the karyomorph A and one population of the karyomorph C were now in deep investigated by molecular cytogenetic analyses, using repetitive DNAs as probes. The results reinforced the relatedness among populations of the karyomorph A, despite their large geographic distribution. Karyomorph C, however, showed a remarkably difference in the genomic constitution, especially concerning the amount and distribution of the 5S rDNA and Rex3 sequences on chromosomes. In addition, although karyomorphs C and D share several features, exclusive chromosomal markers show the derivative evolutionary pathway between them. Thus, besides the classical chromosomal rearrangements, the repetitive DNAs were useful tools to reveal the biodiversity, relatedness and differentiation of this fish group. The chromosomal set strongly corroborates that E. erythrinus corresponds to a species complex instead of a single biological entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bertollo LAC (2007) Chromosome evolution in the Neotropical Erythrinidae fish family: an overview. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers, Enfield, NH, pp 195–211

  • Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Brazil J Genet 1:103–120

    Google Scholar 

  • Bertollo LAC, Oliveira C, Molina WF, Margarido VP, Fontes MS, Pastori MS, Falcão JN, Fenocchio AS (2004) Chromosome evolution in the erythrinid fish, Erythrinus erythrinus (Teleostei: Characiformes). Heredity 93:228–233

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  Google Scholar 

  • Charlesworth B, Snlegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Cioffi MB, Bertollo LAC (2012) Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos MA (ed) Repetitive DNA Genome Dynamics v 7. Karger, Basel, pp 197–221

    Google Scholar 

  • Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC (2009) Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet Genome Res 125:132–141

    Article  PubMed  CAS  Google Scholar 

  • Cioffi MB, Martins C, Bertollo LAC (2010) Chromosomal spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:217

    Article  Google Scholar 

  • Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V, Bertollo LAC (2011) Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol 11:186

    Article  PubMed  Google Scholar 

  • Cioffi MB, Molina WF, Artoni RF, Bertollo LAC (2012a) Chromosomes as tools for discovering biodiversity. The case of Erythrinidae fish family. In: Padma Tirunilai (ed) Recent trends in cytogenetic studies−Methodologies and applications, 1st edn, InTech, pp. 125–146

  • Cioffi MB, Kejnovsky E, Marquioni V, Poltronieri J, Molina WF, Diniz D, Bertollo LAC (2012b) The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. BMC Mol Cytogenet 5:28

    Article  CAS  Google Scholar 

  • Dimitri P, Junakovic N (1999) Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15:123–124

    Article  PubMed  CAS  Google Scholar 

  • Grewal SIS, Jia S (2007) Complexities of heterochromatin in fungi, ciliates, plants and mammals. Nat Rev Genet 8:35–46

    Article  PubMed  CAS  Google Scholar 

  • Horvath JE, Bailey JA, Locke DP, Eichler EE (2001) Lessons from the human genome: transitions between euchromatin and heterochromatin. Hum Mol Genet 10:2215–2223

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  PubMed  CAS  Google Scholar 

  • Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome 51:350–356

    Article  PubMed  CAS  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content in eukaryotic genomes. In: Garrido-Ramos MA (ed) Repetitive DNA Genome Dynamics v 7. Karger, Basel, pp 1–28

    Google Scholar 

  • Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers, Enfield, NH, pp 421–453

  • Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM Jr (2006) A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 127:133–141

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Straume T, Gray J (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    Article  PubMed  CAS  Google Scholar 

  • Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E et al (1999) Zebrafish genetic map with 200 microsatellite markers. Genomics 58:219–232

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  PubMed  CAS  Google Scholar 

  • Vanzela ALL, Swarça AC, Dias AL, Stolf R, Ruas PM et al (2002) Differential distribution of (GA)9 + C microsatellite on chromosomes of some animal and plant species. Cytologia 67:9–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMAT (Fundação de Amparo à Pesquisa do Estado de Mato Grosso).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Bello Cioffi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, N.F., Bertollo, L.A.C., Troy, W.P. et al. Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): comparative chromosome mapping of repetitive sequences. Rev Fish Biol Fisheries 23, 261–269 (2013). https://doi.org/10.1007/s11160-012-9292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-012-9292-4

Keywords

Navigation