Skip to main content
Log in

Expression of a highly differentiated phenotype and hepatic functionality markers in gilthead seabream (Sparus aurata L.) long-cultured hepatocytes: first morphological and functional in vitro characterization

  • Research paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The development of primary cultures and cell lines from aquatic organisms is a valuable tool for a wide range of research activities applied to aquaculture. Despite several efforts, derivation and long-term culturing of primary hepatocytes from marine vertebrates are still rare and unsuccessful. This is the first report to fully characterize long-term cultures of primary hepatocytes from the European seabream, Sparus aurata L. (Osteichthyes, Sparidae) (SaHePs). In this new model, hepatocyte cells were long-term viable, active proliferating, and fully retained liver function up to 3 weeks. SaHePs expressed a differentiated phenotype, owing to the reacquisition of the peculiar cytoarchitecture with the complete assembly of cytoskeletal and junctional network, as shown by the production and immunolocalization of several polarity markers and cytoskeletal proteins (MDR1, ZO-2, C-CAM1, Vimentin, Cadherin, β-Tubulin, β-Catenin, β-Actin). Cytostructural analysis to identify polarized expression and bile canaliculi formation was performed by immunofluorescence and contrast phase microscopy. Long cultured SaHePs also demonstrated evidence of Albumin, α1-Antitrypsin (AAT) and α-Fetoprotein (AFP) synthesis, expression of the detoxifying metabolic enzyme cytochrome P-4501A (CYP 1A), and production of hepatocyte specific cytoskeleton proteins, such as Cytokeratin 8 (CK8) and Cytokeratin 18 (CK 18). The presence of specific markers for hepatic phenotype, detected by immunocytochemistry and Western blot analysis, is suggestive of the full maintenance of a highly differentiated phenotype and hepatic maturation. These data demonstrate that SaHePs can be long cultured without losing the hepatic functionality. This study provides a useful tool for innovative research applications in fish toxicological, pathological, and physiological studies, as one of the few hepatic, functionally active, in vitro model from marine fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alarcón VB, Filosa MF, Youson JH (1994) Keratin polypeptides in the epidermis of the larval (ammocoete) sea lamprey, Petromyzon marinus L., show a cell type-specific immunolocalization. Can J Zool 72:190–194. doi:10.1139/z94-025

    Article  Google Scholar 

  • Alarcón VB, Filosa MF, Youson JH (1997) Cytokeratins in the liver of the sea lamprey (Petromyzon marinus) before and after metamorphosis. Cell Tissue Res 287:365–374. doi:10.1007/s004410050762

    Article  PubMed  Google Scholar 

  • Barrett W, Zolotarjova N, Chen H, Mrozinski P, Szafranski C, Bailey J, Boyes B (2004) Removal of multiple high-abundant proteins from mouse plasma using the agilent multiple affinity removal system for mouse. Proteomics. Agilent Technologies, Publication 5989-1347EN

  • Bejar J, Borrego JJ, Alvarez MC (1997) A continuous cell line from the cultured marine fish gilt-head seabream (Sparus aurata L.). Aquaculture 150:143–153. doi:10.1016/S0044-8486(96)01469-X

    Article  Google Scholar 

  • Bejar J, Hong Y, Alvarez MC (1999) Towards obtaining ES cells in the marine fish species Sparus aurata; multipassage maintenance, characterization and transfection. Genet Anal 15:125–129. doi:10.1016/s1050-3862(99)00015-7

    PubMed  CAS  Google Scholar 

  • Bejar J, Hong Y, Alvarez MC (2002) An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera production. Transgenic Res 11:279–289. doi:10.1023/A:1015678416921

    Article  PubMed  CAS  Google Scholar 

  • Béjar J, Porta J, Borrego JJ, Alvarez MC (2005) The piscine SAF-1 cell line: genetic stability and labelling. Mar Biotechnol 7:389–395. doi:10.1007/s10126-004-4083-0

    Article  PubMed  Google Scholar 

  • Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. J Cell Biol 43:506–520. doi:10.1083/jcb.43.3.506

    Article  PubMed  CAS  Google Scholar 

  • Bevelander GS, Hang X, Abbink W, Spanings T, Canario AVM, Flik G (2006) PTHrP potentiating estradiol-induced vitellogenesis in sea bream (Sparus auratus, L.). Gen Comp Endocrinol 149:159–165. doi:10.1016/j.ygoen.2006.05.016

    PubMed  CAS  Google Scholar 

  • Bhatia SN, Balis UJ, Yarmush ML, Toner M (1999) Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13:1883–1900

    PubMed  CAS  Google Scholar 

  • Bickley LK, Lange A, Winter MJ, Tyler CR (2009) Evaluation of a carp primary hepatocyte culture system for screening chemicals for oestrogenic activity. Aquat Toxicol 94:195–203. doi:10.1016/j.aquatox.2009.07.006

    Article  PubMed  CAS  Google Scholar 

  • Boldogh I, Milligan D, Lee MS, Bassett H, Lloyd RS, McCullough AK (2001) hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine: 8-oxoguanine mispairs. Nucleic Acids Res 29:2802–2809. doi:10.1093/nar/29.13.2802

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Bunton TE (1993) The immunocytochemistry of cytokeratin in fish tissues. Vet Pathol 30:418–425. doi:10.1177/030098589303000503

    Article  PubMed  CAS  Google Scholar 

  • Bunton TE (1995) Expression of actin and desmin in experimentally induced hepatic lesions and neoplasms from medaka (Oryzias latipes). Carcinogenesis 16:1059–1063. doi:10.1093/carcin/16.5.1059

    Article  PubMed  CAS  Google Scholar 

  • Buonocore F, Libertini A, Prugnoli D, Mazzini M, Scapigliati G (2006) Production and characterization of a continuous embryonic cell line from sea bass (Dicentrarchus labrax L.). Mar Biotechnol 8:80–85. doi:10.1007/s10126-005-5032-2

    Article  PubMed  CAS  Google Scholar 

  • Caminada D, Escher C, Fent K (2006) Cytotoxicity of pharmaceuticals found in aquatic systems: comparison of PLHC-1 and RTG-2 fish cell lines. Aquat Toxicol 79:114–123. doi:10.1016/j.aquatox.2006.05.010

    Article  PubMed  CAS  Google Scholar 

  • Carnevali O, Cardinali M, Maradonna F, Parisi M, Olivotto I, Polzonetti-Magni AM, Mosconi G, Funkenstein B (2005) Hormonal regulation of hepatic IGF-I and IGF-II gene expression in the marine teleost Sparus aurata. Mol Reprod Dev 71:12–18. doi:10.1002/mrd.20122

    Article  PubMed  CAS  Google Scholar 

  • Castano A, Bols N, Braunbeck T, Dierickx P, Halder MB, Kawahara K, Lee LEJ, Mothersill C, Part P, Repetto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H (2003) The use of fish cells in ecotoxicology. ATLA 31:317–351

    PubMed  CAS  Google Scholar 

  • Centoducati G, Santacroce MP, Conversano MC, Crescenzo G (2009) Biotechnological process for isolation of hepatocytes from marine organisms. European Patent Office (EPO), Bulletin 2009/39. Espace Publication No: EP2103686 (A1). Date of publication: 23 Sep 2009

  • Chang SF, Ngoh GH, Kuch LFS, Qin QW, Chen CL, Lam TJ, Sin YM (2001) Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture 192:133–145. doi:10.1016/S0044-8486(00)00465-8

    Article  Google Scholar 

  • Chen SL, Sha ZX, Ye HQ (2003) Establishment of a pluripotent embryonic cell line from sea perch blastula embryo. Aquaculture 218:141–151. doi:10.1016/S0044-8486(02)00570-7

    Article  CAS  Google Scholar 

  • Chen SL, Ren GC, Sha ZX, Shi CY (2004) Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Org 60:241–246. doi:10.3354/dao060241

    Article  PubMed  Google Scholar 

  • Chen SL, Ren GC, Sha ZX, Hong Y (2005) Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus). Aquaculture 249:63–68. doi:10.1016/j.aquaculture.2005.01.031

    Article  CAS  Google Scholar 

  • Chi SC, Hu WW, Lo BJ (1999) Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides: a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis 22:173–182. doi:10.1046/j.1365-2761.1999.00152.x

    Article  Google Scholar 

  • Conceicao N, Laize V, Simoes B, Pombinho AR, Cancela ML (2008) Retinoic acid is a negative regulator of matrix Gla protein gene expression in teleost fish Sparus aurata. Biochim Biophys Acta 1779:28–39. doi:10.1016/j.bbagrm.2007.11.003

    PubMed  CAS  Google Scholar 

  • Decaens C, Durand M, Grosse B, Cassio D (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100:387–398. doi:10.1042/BC20070127

    Article  PubMed  CAS  Google Scholar 

  • Dópido R, Rodríguez C, Gómez T, Acosta NG, Díaz M (2004) Isolation and characterization of enterocytes along the intestinal tract of the gilthead seabream (Sparus aurata L.). Comp Biochem Physiol 139A:21–31. doi:10.1016/j.cbpb.2004.06.013

    Google Scholar 

  • Dunn JCY, Tompkins RG, Yarmush ML (1991) Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog 7:237–245. doi:10.1021/bp00009a007

    Article  PubMed  CAS  Google Scholar 

  • EC European Commission (2000) Annex V of the EU directive 86/906/EEC for classification and labelling of hazardous chemicals. EU DG Environment, Brussels

    Google Scholar 

  • EC (2001) European Commission, strategy for a chemicals policy—white paper (COM 88 Final), Brussels, Belgium, Available at http://www.europa.eu.int/comm/environment/chemicals/0188 en.pdf

  • EC (2006) European Commission, Regulation (EC) No 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European chemicals agency, amending directive 1999/45/EC and repealing council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC European commission. Official Journal L 396, 30/12/2006, pp. 1–849. (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006R1907:EN:NOT)

  • Faisal M, Rutan BJ, Sami-Demmerle S (1995) Development of continuous liver cell cultures from the marine teleost, spot (Leiostomus xanthurus, Pisces: Sciaenidae). Aquaculture 132:59–72. doi:10.1016/0044-8486(94)00382-X

    Article  Google Scholar 

  • Fan TJ, Jin LY, Wang XF (2003) Initiation of cartilage cell culture from skate (Raja porasa Gunther). Mar Biotechnol 5:64–69. doi:10.1007/s10126-002-0055-4

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Arvan P (2003) The trafficking of alpha 1-antitrypsin, a post-Golgi secretory pathway marker, in INS-1 pancreatic beta cells. J Biol Chem 278:31486–31494. doi:10.1074/jbc.M305690200

    Article  PubMed  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi:10.1016/j.aquatox.2005.09.009

    Article  PubMed  CAS  Google Scholar 

  • Fernandez RD, Yoshimizu M, Kimura T, Ezura Y, Inouye K, Takami I (1993) Characterization of three continuous cell lines from marine fish. J Aquat Anim Health 5:127–136. doi:10.1577/1548-8667(1993)005<0127:COTCCL>2.3.CO;2

    Article  Google Scholar 

  • Flouriot G, Vaillant C, Salbert G, Pelissero C, Guiraud J-M, Valotaire Y (1993) Monolayer and aggregate cultures of rainbow trout hepatocytes: long-term and stable liver-specific expression in aggregates. J Cell Sci 105:407–416

    PubMed  CAS  Google Scholar 

  • Franke WW (2009) Discovering the molecular components of intercellular junctions-a historical view. Cold Spring Harb Perspect Biol 1:1–34. doi:10.1101/cshperspect.a003061

    Article  Google Scholar 

  • Fryer JL, Lannon CN (1994) Three decades of fish cell culture: a current listing of cell lines derived from fish. J Tiss Cult Methods 16:87–94. doi:10.1007/BF01404816

    Article  Google Scholar 

  • Funkenstein B, Balas V, Skopal T, Radaelli G, Rowlerson A (2006) Long-term culture of muscle explants from Sparus aurata. Tissue Cell 38:399–415. doi:10.1016/j.tice.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  • García DM, Bauer H, Dietz T, Schubert T, Markl J, Schaffeld M (2005) Identification of keratins and analysis of their expression in carp and goldfish: comparison with the zebrafish and trout keratin catalog. Cell Tissue Res 322:245–256. doi:10.1007/s00441-005-0031-1

    Article  PubMed  Google Scholar 

  • Guillouzo A (1998) Liver cells models in vitro toxicology. Environ Health Perspect 106:511–532. doi:10.2307/3433803

    PubMed  CAS  Google Scholar 

  • Hong Y, Winkler C, Liu T, Chai G, Schartl M (2004) Activation of the mouse Oct 4 promoter in medaka embryonic stem cells and its use for ablation of spontaneous differentiation. Mech Dev 121:933–943. doi:10.1016/j.mod.2004.03.028

    Article  PubMed  CAS  Google Scholar 

  • Hubbard AL, Bartles JR, Braiterman LT (1985) Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J Cell Biol 100:1115–1125. doi:10.1083/jcb.100.4.1115

    Article  PubMed  CAS  Google Scholar 

  • ICCVAM (2002) Interagency Coordinating Committee on the Validation of Alternative Methods, expert panel evaluation of the validation status of in vitro test methods for detecting endocrine disruptors. Available online at http://iccvam.niehs.nih.gov

  • Jorgensen SM, Kleveland EJ, Grimholt U, Gjoen T (2006) Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar Biotechnol 8:398–408. doi:10.1007/s10126-005-5164-4

    Article  PubMed  CAS  Google Scholar 

  • Kang MS, Oh MJ, Kim YJ, Kawai K, Jung SJ (2003) Establishment and characterization of two cell lines derived from flounder, Paralichthys olivaceus. J Fish Dis 26:657–665. doi:10.1046/j.1365-2761.2003.00499.x

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H, Cadrin M, Perry G, Autilio-Gambetti L, Swierenga SHH, Metuzals J, Marceau N, French SW (1990) Role of cytokeratin intermediate filaments in transhepatic transport and canalicular secretion. Hepatology 11:435–448. doi:10.1002/hep.1840110315

    Article  PubMed  CAS  Google Scholar 

  • Koenig S, Krause P, Drabent B, Schaeffner I, Christ B, Schwartz P, Unthan-Fechner K, Probst I (2006) The expression of mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in vitro. J Hepatol 44:1115–1124. doi:10.1016/j.jhep.2005.09.016

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lakra WS, Swaminathan TR, Joy KP (2010) Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem, 2010 Jul 6, Epub ahead of print. doi:10.1007/s10695-010-9411-x

  • Lazaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J, Rhim JA, Yeoh GC, Fausto N (2003) Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 38:1095–1106. doi:10.1053/jhep.2003.50448

    Article  PubMed  Google Scholar 

  • López-Castejón G, Sepulcre MP, Mulero I, Pelegrín P, Meseguer J, Mulero V (2008) Molecular and functional characterization of gilthead seabream Sparus aurata caspase-1: the first identification of an inflammatory caspase in fish. Mol Immunol 45:49–57. doi:10.1016/j.molimm.2007.05.015

    Article  PubMed  Google Scholar 

  • Markl J, Franke WW (1988) Localization of cytokeratins in tissues of the rainbow trout: fundamental differences in expression pattern between fish and higher vertebrates. Differentiation 39:97–122. doi:10.1111/j.1432-0436.1988.tb00086.x

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Winter S, Franke WW (1989) The catalog and the expression complexity of cytokeratins in a teleost fish, the rainbow trout. Eur J Cell Biol 50:1–16

    CAS  Google Scholar 

  • Marques CL, Rafael MS, Cancela ML, Laize V (2007) Establishment of primary cell cultures from fish calcified tissues. Cytotechnology 55:9–13. doi:10.1007/s10616-007-9098-8

    Article  PubMed  Google Scholar 

  • Michalopoulos GK, Bowen W, Nussler AN, Becich MJ, Howard TA (1993) Comparative analysis of mitogenic and morphogenic effects of HGF and EGF on rat and human hepatocytes maintained in collagen gels. J Cell Physiol 156:443–452. doi:10.1002/jcp.1041560303

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos GK, Bowen WC, Zajac VF, Beer Stolz D, Watkins S, Kostrubsky V, Strom SC (1999) Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology 29:90–100. doi:10.1002/hep.510290149

    Article  PubMed  CAS  Google Scholar 

  • Minamitsuji-Mochizuki C, Mitaka T, Kojima T, Niitsu Y, Mochizuki Y (1999) Spontaneous appearance of circular actin bands in cultured hepatocytes of adult rats. Med Electron Microsc 32:114–121. doi:10.1007/s007950050017

    Article  PubMed  Google Scholar 

  • Mitaka T, Sattler GL, Pitot HC, Mochizuki Y (1992) Characteristics of small cell colonies developing in primary cultures of adult rat hepatocytes. Virchows Arch B Cell Pathol Incl Mol Pathol 62:329–335. doi:10.1007/BF02899700

    Article  PubMed  CAS  Google Scholar 

  • Mitaka T, Kojima T, Mizuguchi T, Mochizuki Y (1995) Growth and maturation of small hepatocytes isolated from adult rat liver. Biochem Biophys Res Commun 214:310–317. doi:10.1006/bbrc.1995.2289

    Article  PubMed  CAS  Google Scholar 

  • Mitaka T, Sato F, Mizuguchi T, Yokono T, Mochizuki Y (1999) Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. Hepatology 29:111–125. doi:10.1002/hep.510290103

    Article  PubMed  CAS  Google Scholar 

  • Mommsen TP, Moon TW, Walsh PJ (1994) Hepatocytes: isolation, maintenance and utilization. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 356–373

    Google Scholar 

  • Monod G, Devaux A, Valotaire Y, Cravedi JP (1998) Primary cell cultures from fish in ecotoxicology. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology. Birkhauser, Basel, pp 39–60

    Google Scholar 

  • Mosconi G, Carnevali O, Habibi HR, Sanyal R, Polzonetti-Magni AM (2002) Hormonal mechanisms regulating hepatic vitellogenin synthesis in the Gilthead Sea bream, Sparus aurata. Am J Physiol Cell Physiol 283:673–678. doi:10.1152/ajpcell.00411.2001

    Google Scholar 

  • Nakayama A, Riesen I, Köllner B, Eppler E, Segner H (2008) Surface marker-defined head kidney granulocytes and B lymphocytes of rainbow trout express benzo[a]pyrene-inducible cytochrome P4501A protein. Toxicol Sci 103:86–96. doi:10.1093/toxsci/kfn024

    Article  PubMed  CAS  Google Scholar 

  • Ostrander GK, Blair JB, Stark BA, Marley GM, Bales WD, Veltri RW, Hinton DE, Okihiro M, Ortego LS, Hawkins WE (1995) Long-term primary culture of epithelial cells from rainbow trout Oncorhynchus mykiss) liver. In Vitro Cell Dev Biol Anim 31:367–378. doi:10.1007/BF02634286

    Article  PubMed  CAS  Google Scholar 

  • Pagés T, Gomez E, Suner O, Viscor G, Tort L (1995) Effects of daily management stress on haematology and blood rheology of the gilthead seabream. J Fish Biol 46:775–786. doi:10.1111/j.1095-8649.1995.tb01601.x

    Article  Google Scholar 

  • Pombinho AR, Laize V, Molha DM, Marques SM, Cancela ML (2004) Development of two bone-derived cell lines from the marine teleost Sparus aurata; evidence for extracellular matrix mineralization and cell-type-specific expression of matrix Gla protein and osteocalcin. Cell Tissue Res 315:393–406. doi:10.1007/s00441-003-0830-1

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94. doi:10.1093/protein/12.2.85

    Article  PubMed  CAS  Google Scholar 

  • Salinas I, Rodrıguez A, Meseguer J, Esteban MA (2007) Adenosine arrests apoptosis in lymphocytes but not in phagocytes from primary leucocyte cultures of the teleost fish, Sparus aurata L. Dev Comp Immunol 31:1233–1241. doi:10.1016/j.dci.2007.03.014

    Article  PubMed  CAS  Google Scholar 

  • Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G (2008) Linking the genomes of non model teleosts through comparative genomics. Mar Biotechnol 10:227–233. doi:10.1007/s10126-007-9066-5

    Article  PubMed  CAS  Google Scholar 

  • Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183. doi:10.1016/j.tox.2006.04.042

    Article  PubMed  CAS  Google Scholar 

  • Scholz S, Braunbeck T, Segner H (1998) Viability and differential function of rainbow trout liver cells in primary culture: Coculture with two permanent fish cells. In Vitro Cell & Dev Biol Anim 34:762–771. doi:10.1007/s11626-998-0030-0

    Article  CAS  Google Scholar 

  • Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:31–83. doi:10.1016/S0091-679X(08)61797-5

    Google Scholar 

  • Segner H (1998) Isolation and primary culture of teleost hepatocytes. Comp Biochem Physiol A 120:71–81. doi:10.1016/S1095-6433(98)10012-0

    Article  Google Scholar 

  • Sidler Pfandler MA, Höchli M, Inderbitzin D, Meier PJ, Stieger Bruno (2004) Small hepatocytes in culture develop polarized transporter expression and differentiation. J Cell Sci 117:4077–4087. doi:10.1242/jcs.01279

    Article  PubMed  Google Scholar 

  • Utepbergenov DI, Fanning AS, Anderson JM (2006) Dimerization of the scaffolding protein ZO-1 through the second PDZ domain. J Biol Chem 281:24671–24677. doi:10.1074/jbc.M512820200

    Article  PubMed  CAS  Google Scholar 

  • Villena AJ (2003) Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Rev Fish Biol Fisher 13:111–140. doi:10.1023/A:1026304212673

    Article  Google Scholar 

  • Yanhong F, Chenghua H, Guofang L, Haibin Z (2008) Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes. Cytotechnology 58:85–92. doi:10.1007/s10616-008-9169-5

    Article  PubMed  Google Scholar 

  • Zaccone G, Howie AJ, Mauceri A, Fasulo S, Lo Cascio P, Youson JH (1995) Distribution patterns of cytokeratins in epidermis and horny teeth of the adult sea lamprey, Petromyzon marinus. Folia Histochem Cytobiol 33:69–75

    PubMed  CAS  Google Scholar 

  • Zhang Z, Hu J (2007) Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative realtime RT-PCR. Toxicol Sci 95:356–368. doi:10.1093/toxsci/kfl161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thanks the Panittica Pugliese S.p.A. for providing the experimental animals. The excellent critical reading of Dr. Marcella Narracci (Institute for Coastal Marine Environment, National Research Council, Taranto, Italy) is gratefully acknowledged. Authors would like to thanks the helpful technical support of Dr. Giovanna Calzaretti and Francesco D’Onghia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pia Santacroce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santacroce, M.P., Zacchino, V., Casalino, E. et al. Expression of a highly differentiated phenotype and hepatic functionality markers in gilthead seabream (Sparus aurata L.) long-cultured hepatocytes: first morphological and functional in vitro characterization. Rev Fish Biol Fisheries 21, 571–590 (2011). https://doi.org/10.1007/s11160-010-9181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-010-9181-7

Keywords

Navigation