Reviews in Fish Biology and Fisheries

, Volume 21, Issue 3, pp 571–590 | Cite as

Expression of a highly differentiated phenotype and hepatic functionality markers in gilthead seabream (Sparus aurata L.) long-cultured hepatocytes: first morphological and functional in vitro characterization

  • Maria Pia Santacroce
  • Valentina Zacchino
  • Elisabetta Casalino
  • Elisabetta Merra
  • Alessandra Tateo
  • Pasquale De Palo
  • Giuseppe Crescenzo
  • Gerardo Centoducati
Research paper


The development of primary cultures and cell lines from aquatic organisms is a valuable tool for a wide range of research activities applied to aquaculture. Despite several efforts, derivation and long-term culturing of primary hepatocytes from marine vertebrates are still rare and unsuccessful. This is the first report to fully characterize long-term cultures of primary hepatocytes from the European seabream, Sparus aurata L. (Osteichthyes, Sparidae) (SaHePs). In this new model, hepatocyte cells were long-term viable, active proliferating, and fully retained liver function up to 3 weeks. SaHePs expressed a differentiated phenotype, owing to the reacquisition of the peculiar cytoarchitecture with the complete assembly of cytoskeletal and junctional network, as shown by the production and immunolocalization of several polarity markers and cytoskeletal proteins (MDR1, ZO-2, C-CAM1, Vimentin, Cadherin, β-Tubulin, β-Catenin, β-Actin). Cytostructural analysis to identify polarized expression and bile canaliculi formation was performed by immunofluorescence and contrast phase microscopy. Long cultured SaHePs also demonstrated evidence of Albumin, α1-Antitrypsin (AAT) and α-Fetoprotein (AFP) synthesis, expression of the detoxifying metabolic enzyme cytochrome P-4501A (CYP 1A), and production of hepatocyte specific cytoskeleton proteins, such as Cytokeratin 8 (CK8) and Cytokeratin 18 (CK 18). The presence of specific markers for hepatic phenotype, detected by immunocytochemistry and Western blot analysis, is suggestive of the full maintenance of a highly differentiated phenotype and hepatic maturation. These data demonstrate that SaHePs can be long cultured without losing the hepatic functionality. This study provides a useful tool for innovative research applications in fish toxicological, pathological, and physiological studies, as one of the few hepatic, functionally active, in vitro model from marine fish.


Teleost primary culture Fish hepatocyte Hepatocyte repolarization Fish cytoskeleton In vitro models in aquaculture Sparus aurata 



Authors would like to thanks the Panittica Pugliese S.p.A. for providing the experimental animals. The excellent critical reading of Dr. Marcella Narracci (Institute for Coastal Marine Environment, National Research Council, Taranto, Italy) is gratefully acknowledged. Authors would like to thanks the helpful technical support of Dr. Giovanna Calzaretti and Francesco D’Onghia.


  1. Alarcón VB, Filosa MF, Youson JH (1994) Keratin polypeptides in the epidermis of the larval (ammocoete) sea lamprey, Petromyzon marinus L., show a cell type-specific immunolocalization. Can J Zool 72:190–194. doi: 10.1139/z94-025 CrossRefGoogle Scholar
  2. Alarcón VB, Filosa MF, Youson JH (1997) Cytokeratins in the liver of the sea lamprey (Petromyzon marinus) before and after metamorphosis. Cell Tissue Res 287:365–374. doi: 10.1007/s004410050762 PubMedCrossRefGoogle Scholar
  3. Barrett W, Zolotarjova N, Chen H, Mrozinski P, Szafranski C, Bailey J, Boyes B (2004) Removal of multiple high-abundant proteins from mouse plasma using the agilent multiple affinity removal system for mouse. Proteomics. Agilent Technologies, Publication 5989-1347ENGoogle Scholar
  4. Bejar J, Borrego JJ, Alvarez MC (1997) A continuous cell line from the cultured marine fish gilt-head seabream (Sparus aurata L.). Aquaculture 150:143–153. doi: 10.1016/S0044-8486(96)01469-X CrossRefGoogle Scholar
  5. Bejar J, Hong Y, Alvarez MC (1999) Towards obtaining ES cells in the marine fish species Sparus aurata; multipassage maintenance, characterization and transfection. Genet Anal 15:125–129. doi: 10.1016/s1050-3862(99)00015-7 PubMedGoogle Scholar
  6. Bejar J, Hong Y, Alvarez MC (2002) An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera production. Transgenic Res 11:279–289. doi: 10.1023/A:1015678416921 PubMedCrossRefGoogle Scholar
  7. Béjar J, Porta J, Borrego JJ, Alvarez MC (2005) The piscine SAF-1 cell line: genetic stability and labelling. Mar Biotechnol 7:389–395. doi: 10.1007/s10126-004-4083-0 PubMedCrossRefGoogle Scholar
  8. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. J Cell Biol 43:506–520. doi: 10.1083/jcb.43.3.506 PubMedCrossRefGoogle Scholar
  9. Bevelander GS, Hang X, Abbink W, Spanings T, Canario AVM, Flik G (2006) PTHrP potentiating estradiol-induced vitellogenesis in sea bream (Sparus auratus, L.). Gen Comp Endocrinol 149:159–165. doi: 10.1016/j.ygoen.2006.05.016 PubMedGoogle Scholar
  10. Bhatia SN, Balis UJ, Yarmush ML, Toner M (1999) Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13:1883–1900PubMedGoogle Scholar
  11. Bickley LK, Lange A, Winter MJ, Tyler CR (2009) Evaluation of a carp primary hepatocyte culture system for screening chemicals for oestrogenic activity. Aquat Toxicol 94:195–203. doi: 10.1016/j.aquatox.2009.07.006 PubMedCrossRefGoogle Scholar
  12. Boldogh I, Milligan D, Lee MS, Bassett H, Lloyd RS, McCullough AK (2001) hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine: 8-oxoguanine mispairs. Nucleic Acids Res 29:2802–2809. doi: 10.1093/nar/29.13.2802 PubMedCrossRefGoogle Scholar
  13. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  14. Bunton TE (1993) The immunocytochemistry of cytokeratin in fish tissues. Vet Pathol 30:418–425. doi: 10.1177/030098589303000503 PubMedCrossRefGoogle Scholar
  15. Bunton TE (1995) Expression of actin and desmin in experimentally induced hepatic lesions and neoplasms from medaka (Oryzias latipes). Carcinogenesis 16:1059–1063. doi: 10.1093/carcin/16.5.1059 PubMedCrossRefGoogle Scholar
  16. Buonocore F, Libertini A, Prugnoli D, Mazzini M, Scapigliati G (2006) Production and characterization of a continuous embryonic cell line from sea bass (Dicentrarchus labrax L.). Mar Biotechnol 8:80–85. doi: 10.1007/s10126-005-5032-2 PubMedCrossRefGoogle Scholar
  17. Caminada D, Escher C, Fent K (2006) Cytotoxicity of pharmaceuticals found in aquatic systems: comparison of PLHC-1 and RTG-2 fish cell lines. Aquat Toxicol 79:114–123. doi: 10.1016/j.aquatox.2006.05.010 PubMedCrossRefGoogle Scholar
  18. Carnevali O, Cardinali M, Maradonna F, Parisi M, Olivotto I, Polzonetti-Magni AM, Mosconi G, Funkenstein B (2005) Hormonal regulation of hepatic IGF-I and IGF-II gene expression in the marine teleost Sparus aurata. Mol Reprod Dev 71:12–18. doi: 10.1002/mrd.20122 PubMedCrossRefGoogle Scholar
  19. Castano A, Bols N, Braunbeck T, Dierickx P, Halder MB, Kawahara K, Lee LEJ, Mothersill C, Part P, Repetto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H (2003) The use of fish cells in ecotoxicology. ATLA 31:317–351PubMedGoogle Scholar
  20. Centoducati G, Santacroce MP, Conversano MC, Crescenzo G (2009) Biotechnological process for isolation of hepatocytes from marine organisms. European Patent Office (EPO), Bulletin 2009/39. Espace Publication No: EP2103686 (A1). Date of publication: 23 Sep 2009Google Scholar
  21. Chang SF, Ngoh GH, Kuch LFS, Qin QW, Chen CL, Lam TJ, Sin YM (2001) Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture 192:133–145. doi: 10.1016/S0044-8486(00)00465-8 CrossRefGoogle Scholar
  22. Chen SL, Sha ZX, Ye HQ (2003) Establishment of a pluripotent embryonic cell line from sea perch blastula embryo. Aquaculture 218:141–151. doi: 10.1016/S0044-8486(02)00570-7 CrossRefGoogle Scholar
  23. Chen SL, Ren GC, Sha ZX, Shi CY (2004) Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Org 60:241–246. doi: 10.3354/dao060241 PubMedCrossRefGoogle Scholar
  24. Chen SL, Ren GC, Sha ZX, Hong Y (2005) Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus). Aquaculture 249:63–68. doi: 10.1016/j.aquaculture.2005.01.031 CrossRefGoogle Scholar
  25. Chi SC, Hu WW, Lo BJ (1999) Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides: a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis 22:173–182. doi: 10.1046/j.1365-2761.1999.00152.x CrossRefGoogle Scholar
  26. Conceicao N, Laize V, Simoes B, Pombinho AR, Cancela ML (2008) Retinoic acid is a negative regulator of matrix Gla protein gene expression in teleost fish Sparus aurata. Biochim Biophys Acta 1779:28–39. doi: 10.1016/j.bbagrm.2007.11.003 PubMedGoogle Scholar
  27. Decaens C, Durand M, Grosse B, Cassio D (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100:387–398. doi: 10.1042/BC20070127 PubMedCrossRefGoogle Scholar
  28. Dópido R, Rodríguez C, Gómez T, Acosta NG, Díaz M (2004) Isolation and characterization of enterocytes along the intestinal tract of the gilthead seabream (Sparus aurata L.). Comp Biochem Physiol 139A:21–31. doi: 10.1016/j.cbpb.2004.06.013 Google Scholar
  29. Dunn JCY, Tompkins RG, Yarmush ML (1991) Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog 7:237–245. doi: 10.1021/bp00009a007 PubMedCrossRefGoogle Scholar
  30. EC European Commission (2000) Annex V of the EU directive 86/906/EEC for classification and labelling of hazardous chemicals. EU DG Environment, BrusselsGoogle Scholar
  31. EC (2001) European Commission, strategy for a chemicals policy—white paper (COM 88 Final), Brussels, Belgium, Available at en.pdf
  32. EC (2006) European Commission, Regulation (EC) No 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European chemicals agency, amending directive 1999/45/EC and repealing council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC European commission. Official Journal L 396, 30/12/2006, pp. 1–849. (
  33. Faisal M, Rutan BJ, Sami-Demmerle S (1995) Development of continuous liver cell cultures from the marine teleost, spot (Leiostomus xanthurus, Pisces: Sciaenidae). Aquaculture 132:59–72. doi: 10.1016/0044-8486(94)00382-X CrossRefGoogle Scholar
  34. Fan TJ, Jin LY, Wang XF (2003) Initiation of cartilage cell culture from skate (Raja porasa Gunther). Mar Biotechnol 5:64–69. doi: 10.1007/s10126-002-0055-4 PubMedCrossRefGoogle Scholar
  35. Feng L, Arvan P (2003) The trafficking of alpha 1-antitrypsin, a post-Golgi secretory pathway marker, in INS-1 pancreatic beta cells. J Biol Chem 278:31486–31494. doi: 10.1074/jbc.M305690200 PubMedCrossRefGoogle Scholar
  36. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi: 10.1016/j.aquatox.2005.09.009 PubMedCrossRefGoogle Scholar
  37. Fernandez RD, Yoshimizu M, Kimura T, Ezura Y, Inouye K, Takami I (1993) Characterization of three continuous cell lines from marine fish. J Aquat Anim Health 5:127–136. doi: 10.1577/1548-8667(1993)005<0127:COTCCL>2.3.CO;2 CrossRefGoogle Scholar
  38. Flouriot G, Vaillant C, Salbert G, Pelissero C, Guiraud J-M, Valotaire Y (1993) Monolayer and aggregate cultures of rainbow trout hepatocytes: long-term and stable liver-specific expression in aggregates. J Cell Sci 105:407–416PubMedGoogle Scholar
  39. Franke WW (2009) Discovering the molecular components of intercellular junctions-a historical view. Cold Spring Harb Perspect Biol 1:1–34. doi: 10.1101/cshperspect.a003061 CrossRefGoogle Scholar
  40. Fryer JL, Lannon CN (1994) Three decades of fish cell culture: a current listing of cell lines derived from fish. J Tiss Cult Methods 16:87–94. doi: 10.1007/BF01404816 CrossRefGoogle Scholar
  41. Funkenstein B, Balas V, Skopal T, Radaelli G, Rowlerson A (2006) Long-term culture of muscle explants from Sparus aurata. Tissue Cell 38:399–415. doi: 10.1016/j.tice.2006.09.003 PubMedCrossRefGoogle Scholar
  42. García DM, Bauer H, Dietz T, Schubert T, Markl J, Schaffeld M (2005) Identification of keratins and analysis of their expression in carp and goldfish: comparison with the zebrafish and trout keratin catalog. Cell Tissue Res 322:245–256. doi: 10.1007/s00441-005-0031-1 PubMedCrossRefGoogle Scholar
  43. Guillouzo A (1998) Liver cells models in vitro toxicology. Environ Health Perspect 106:511–532. doi: 10.2307/3433803 PubMedGoogle Scholar
  44. Hong Y, Winkler C, Liu T, Chai G, Schartl M (2004) Activation of the mouse Oct 4 promoter in medaka embryonic stem cells and its use for ablation of spontaneous differentiation. Mech Dev 121:933–943. doi: 10.1016/j.mod.2004.03.028 PubMedCrossRefGoogle Scholar
  45. Hubbard AL, Bartles JR, Braiterman LT (1985) Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J Cell Biol 100:1115–1125. doi: 10.1083/jcb.100.4.1115 PubMedCrossRefGoogle Scholar
  46. ICCVAM (2002) Interagency Coordinating Committee on the Validation of Alternative Methods, expert panel evaluation of the validation status of in vitro test methods for detecting endocrine disruptors. Available online at
  47. Jorgensen SM, Kleveland EJ, Grimholt U, Gjoen T (2006) Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar Biotechnol 8:398–408. doi: 10.1007/s10126-005-5164-4 PubMedCrossRefGoogle Scholar
  48. Kang MS, Oh MJ, Kim YJ, Kawai K, Jung SJ (2003) Establishment and characterization of two cell lines derived from flounder, Paralichthys olivaceus. J Fish Dis 26:657–665. doi: 10.1046/j.1365-2761.2003.00499.x PubMedCrossRefGoogle Scholar
  49. Kawahara H, Cadrin M, Perry G, Autilio-Gambetti L, Swierenga SHH, Metuzals J, Marceau N, French SW (1990) Role of cytokeratin intermediate filaments in transhepatic transport and canalicular secretion. Hepatology 11:435–448. doi: 10.1002/hep.1840110315 PubMedCrossRefGoogle Scholar
  50. Koenig S, Krause P, Drabent B, Schaeffner I, Christ B, Schwartz P, Unthan-Fechner K, Probst I (2006) The expression of mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in vitro. J Hepatol 44:1115–1124. doi: 10.1016/j.jhep.2005.09.016 PubMedCrossRefGoogle Scholar
  51. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  52. Lakra WS, Swaminathan TR, Joy KP (2010) Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem, 2010 Jul 6, Epub ahead of print. doi: 10.1007/s10695-010-9411-x
  53. Lazaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J, Rhim JA, Yeoh GC, Fausto N (2003) Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 38:1095–1106. doi: 10.1053/jhep.2003.50448 PubMedCrossRefGoogle Scholar
  54. López-Castejón G, Sepulcre MP, Mulero I, Pelegrín P, Meseguer J, Mulero V (2008) Molecular and functional characterization of gilthead seabream Sparus aurata caspase-1: the first identification of an inflammatory caspase in fish. Mol Immunol 45:49–57. doi: 10.1016/j.molimm.2007.05.015 PubMedCrossRefGoogle Scholar
  55. Markl J, Franke WW (1988) Localization of cytokeratins in tissues of the rainbow trout: fundamental differences in expression pattern between fish and higher vertebrates. Differentiation 39:97–122. doi: 10.1111/j.1432-0436.1988.tb00086.x PubMedCrossRefGoogle Scholar
  56. Markl J, Winter S, Franke WW (1989) The catalog and the expression complexity of cytokeratins in a teleost fish, the rainbow trout. Eur J Cell Biol 50:1–16Google Scholar
  57. Marques CL, Rafael MS, Cancela ML, Laize V (2007) Establishment of primary cell cultures from fish calcified tissues. Cytotechnology 55:9–13. doi: 10.1007/s10616-007-9098-8 PubMedCrossRefGoogle Scholar
  58. Michalopoulos GK, Bowen W, Nussler AN, Becich MJ, Howard TA (1993) Comparative analysis of mitogenic and morphogenic effects of HGF and EGF on rat and human hepatocytes maintained in collagen gels. J Cell Physiol 156:443–452. doi: 10.1002/jcp.1041560303 PubMedCrossRefGoogle Scholar
  59. Michalopoulos GK, Bowen WC, Zajac VF, Beer Stolz D, Watkins S, Kostrubsky V, Strom SC (1999) Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology 29:90–100. doi: 10.1002/hep.510290149 PubMedCrossRefGoogle Scholar
  60. Minamitsuji-Mochizuki C, Mitaka T, Kojima T, Niitsu Y, Mochizuki Y (1999) Spontaneous appearance of circular actin bands in cultured hepatocytes of adult rats. Med Electron Microsc 32:114–121. doi: 10.1007/s007950050017 PubMedCrossRefGoogle Scholar
  61. Mitaka T, Sattler GL, Pitot HC, Mochizuki Y (1992) Characteristics of small cell colonies developing in primary cultures of adult rat hepatocytes. Virchows Arch B Cell Pathol Incl Mol Pathol 62:329–335. doi: 10.1007/BF02899700 PubMedCrossRefGoogle Scholar
  62. Mitaka T, Kojima T, Mizuguchi T, Mochizuki Y (1995) Growth and maturation of small hepatocytes isolated from adult rat liver. Biochem Biophys Res Commun 214:310–317. doi: 10.1006/bbrc.1995.2289 PubMedCrossRefGoogle Scholar
  63. Mitaka T, Sato F, Mizuguchi T, Yokono T, Mochizuki Y (1999) Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. Hepatology 29:111–125. doi: 10.1002/hep.510290103 PubMedCrossRefGoogle Scholar
  64. Mommsen TP, Moon TW, Walsh PJ (1994) Hepatocytes: isolation, maintenance and utilization. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 356–373Google Scholar
  65. Monod G, Devaux A, Valotaire Y, Cravedi JP (1998) Primary cell cultures from fish in ecotoxicology. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology. Birkhauser, Basel, pp 39–60Google Scholar
  66. Mosconi G, Carnevali O, Habibi HR, Sanyal R, Polzonetti-Magni AM (2002) Hormonal mechanisms regulating hepatic vitellogenin synthesis in the Gilthead Sea bream, Sparus aurata. Am J Physiol Cell Physiol 283:673–678. doi: 10.1152/ajpcell.00411.2001 Google Scholar
  67. Nakayama A, Riesen I, Köllner B, Eppler E, Segner H (2008) Surface marker-defined head kidney granulocytes and B lymphocytes of rainbow trout express benzo[a]pyrene-inducible cytochrome P4501A protein. Toxicol Sci 103:86–96. doi: 10.1093/toxsci/kfn024 PubMedCrossRefGoogle Scholar
  68. Ostrander GK, Blair JB, Stark BA, Marley GM, Bales WD, Veltri RW, Hinton DE, Okihiro M, Ortego LS, Hawkins WE (1995) Long-term primary culture of epithelial cells from rainbow trout Oncorhynchus mykiss) liver. In Vitro Cell Dev Biol Anim 31:367–378. doi: 10.1007/BF02634286 PubMedCrossRefGoogle Scholar
  69. Pagés T, Gomez E, Suner O, Viscor G, Tort L (1995) Effects of daily management stress on haematology and blood rheology of the gilthead seabream. J Fish Biol 46:775–786. doi: 10.1111/j.1095-8649.1995.tb01601.x CrossRefGoogle Scholar
  70. Pombinho AR, Laize V, Molha DM, Marques SM, Cancela ML (2004) Development of two bone-derived cell lines from the marine teleost Sparus aurata; evidence for extracellular matrix mineralization and cell-type-specific expression of matrix Gla protein and osteocalcin. Cell Tissue Res 315:393–406. doi: 10.1007/s00441-003-0830-1 PubMedCrossRefGoogle Scholar
  71. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94. doi: 10.1093/protein/12.2.85 PubMedCrossRefGoogle Scholar
  72. Salinas I, Rodrıguez A, Meseguer J, Esteban MA (2007) Adenosine arrests apoptosis in lymphocytes but not in phagocytes from primary leucocyte cultures of the teleost fish, Sparus aurata L. Dev Comp Immunol 31:1233–1241. doi: 10.1016/j.dci.2007.03.014 PubMedCrossRefGoogle Scholar
  73. Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G (2008) Linking the genomes of non model teleosts through comparative genomics. Mar Biotechnol 10:227–233. doi: 10.1007/s10126-007-9066-5 PubMedCrossRefGoogle Scholar
  74. Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183. doi: 10.1016/j.tox.2006.04.042 PubMedCrossRefGoogle Scholar
  75. Scholz S, Braunbeck T, Segner H (1998) Viability and differential function of rainbow trout liver cells in primary culture: Coculture with two permanent fish cells. In Vitro Cell & Dev Biol Anim 34:762–771. doi: 10.1007/s11626-998-0030-0 CrossRefGoogle Scholar
  76. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:31–83. doi: 10.1016/S0091-679X(08)61797-5 Google Scholar
  77. Segner H (1998) Isolation and primary culture of teleost hepatocytes. Comp Biochem Physiol A 120:71–81. doi: 10.1016/S1095-6433(98)10012-0 CrossRefGoogle Scholar
  78. Sidler Pfandler MA, Höchli M, Inderbitzin D, Meier PJ, Stieger Bruno (2004) Small hepatocytes in culture develop polarized transporter expression and differentiation. J Cell Sci 117:4077–4087. doi: 10.1242/jcs.01279 PubMedCrossRefGoogle Scholar
  79. Utepbergenov DI, Fanning AS, Anderson JM (2006) Dimerization of the scaffolding protein ZO-1 through the second PDZ domain. J Biol Chem 281:24671–24677. doi: 10.1074/jbc.M512820200 PubMedCrossRefGoogle Scholar
  80. Villena AJ (2003) Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Rev Fish Biol Fisher 13:111–140. doi: 10.1023/A:1026304212673 CrossRefGoogle Scholar
  81. Yanhong F, Chenghua H, Guofang L, Haibin Z (2008) Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes. Cytotechnology 58:85–92. doi: 10.1007/s10616-008-9169-5 PubMedCrossRefGoogle Scholar
  82. Zaccone G, Howie AJ, Mauceri A, Fasulo S, Lo Cascio P, Youson JH (1995) Distribution patterns of cytokeratins in epidermis and horny teeth of the adult sea lamprey, Petromyzon marinus. Folia Histochem Cytobiol 33:69–75PubMedGoogle Scholar
  83. Zhang Z, Hu J (2007) Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative realtime RT-PCR. Toxicol Sci 95:356–368. doi: 10.1093/toxsci/kfl161 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria Pia Santacroce
    • 1
  • Valentina Zacchino
    • 1
  • Elisabetta Casalino
    • 2
  • Elisabetta Merra
    • 2
  • Alessandra Tateo
    • 4
  • Pasquale De Palo
    • 4
  • Giuseppe Crescenzo
    • 3
  • Gerardo Centoducati
    • 1
  1. 1.Division of Aquaculture, Department of Public Health and Animal Science, Faculty of Veterinary MedicineUniversity of BariBariItaly
  2. 2.Division of Veterinary Biochemistry, Department of Pharmaco-Biology, Faculty of Veterinary MedicineUniversity of BariBariItaly
  3. 3.Division of Pharmacology and Toxicology, Department of Public Health and Animal Science, Faculty of Veterinary MedicineUniversity of BariBariItaly
  4. 4.Division of Animal Science, Department of Public Health and Animal Science, Faculty of Veterinary MedicineUniversity of BariBariItaly

Personalised recommendations