Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems

Abstract

Photoinhibition of ammonia oxidation occurs widely in aquatic environments and could suppress the nitrification rate, lead to the composition variation of inorganic nitrogen and influence the stability of aquatic ecosystems. Both ammonia-oxidizing bacteria (AOB) and archaea are sensitive to light. The extent of photoinhibition and the time required for recovery depend on light wavelength, intensity, photon quantity and strains. Strong evidence indicates that photoinhibition in AOB by visible light is mainly caused by irreversible damage to ammonia monooxygenase (AMO) and the degradation of AMO is beneficial to AOB recovery. This review discusses photoinhibition in metabolic pathways used by ammonia oxidizers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adair K, Schwartz E (2011) Stable isotope probing with 18O-water to investigate growth and mortality of ammonia oxidizing Bacteria and Archaea in soil. In: Klotz MG (ed) Methods in enzymology: research on nitrification and related processes, vol 486, Part A. https://doi.org/10.1016/j.copbio.2016.03.003

  2. Akizuki S, Kishi M, Cuevas-Rodriguez G, Toda T (2020) Effects of different light conditions on ammonium removal in a consortium of microalgae and partial nitrifying granules. Water Res 171:115445. https://doi.org/10.1016/j.watres.2019.115445

    CAS  Article  Google Scholar 

  3. Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441. https://doi.org/10.1038/ismej.2007.118

    CAS  Article  Google Scholar 

  4. Beman JM, Popp BN, Alford SE (2012) Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnol Oceanogr 57:711–726. https://doi.org/10.4319/lo.2012.57.3.0711

    CAS  Article  Google Scholar 

  5. Berney M, Weilenmann H-U, Egli T (2006) Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environ Microbiol 8:1635–1647. https://doi.org/10.1111/j.1462-2920.2006.01057.x

    CAS  Article  Google Scholar 

  6. Che Y, Liang P, Gong T, Cao X, Zhao Y, Yang C, Song C (2017) Elucidation of major contributors involved in nitrogen removal and transcription level of nitrogen-cycling genes in activated sludge from WWTPs. Sci Rep 7:44728. https://doi.org/10.1038/srep44728

    CAS  Article  Google Scholar 

  7. Church MJ, Wai B, Karl DM, DeLong EF (2010) Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean. Environ Microbiol 12:679–688. https://doi.org/10.1111/j.1462-2920.2009.02108.x

    CAS  Article  Google Scholar 

  8. Diab S, Shilo M (1988) Effect of light on the activity and survival of Nitrosomonas sp. and Nitrobacter sp. isolates from fish ponds. Bamidgeh 40:50–56

    Google Scholar 

  9. Fisher OS, Kenney GE, Ross MO, Ro SY, Lemma BE, Batelu S, Thomas PM, Sosnowski VC, DeHart CJ, Kelleher NL, Stemmler TL, Hoffman BM, Rosenzweig AC (2018) Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun 9:4276. https://doi.org/10.1038/s41467-018-06681-5

    CAS  Article  Google Scholar 

  10. French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmann A (2012) Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol 78:5773–5780. https://doi.org/10.1128/AEM.00432-12

    CAS  Article  Google Scholar 

  11. Fukushima T, Wu YJ, Whang LM (2012) The influence of salinity and ammonium levels on amoA mRNA expression of ammonia-oxidizing prokaryotes. Water Sci Technol 65:2228–2235. https://doi.org/10.2166/wst.2012.142

    CAS  Article  Google Scholar 

  12. Grundle DS, Juniper SK, Giesbrecht KE (2013) Euphotic zone nitrification in the NE subarctic Pacific: implications for measurements of new production. Mar Chem 155:113–123. https://doi.org/10.1016/j.marchem.2013.06.004

    CAS  Article  Google Scholar 

  13. Guerrero MA, Jones RD (1996a) Photoinhibition of marine nitrifying bacteria. I. Wavelength-dependent response. Mar Ecol Prog Ser 141:183–192

    Article  Google Scholar 

  14. Guerrero MA, Jones RD (1996b) Photoinhibition of marine nitrifying bacteria. II. Dark recovery after monochromatic or polychromatic irradiation. Mar Ecol Prog Ser 141:193–198

    Article  Google Scholar 

  15. Gvakharia BO, Permina EA, Gelfand MS, Bottomley PJ, Sayavedra-Soto LA, Arp DJ (2007) Global transcriptional response of Nitrosomonas europaea to chloroform and chloromethane. Appl Environ Microbiol 73:3440–3445. https://doi.org/10.1128/AEM.02831-06

    CAS  Article  Google Scholar 

  16. Hooper AB, Terry KR (1973) Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol 115(2):480–485

    CAS  Article  Google Scholar 

  17. Hooper AB, Terry KR (1974) Photoinactivation of ammonia oxidation in Nitrosomonas. J Bacteriol 119:899–906

    CAS  Article  Google Scholar 

  18. Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71:59–67. https://doi.org/10.1023/A:1000133919203

    CAS  Article  Google Scholar 

  19. Horak REA, Qin W, Schauer AJ, Armbrust EV, Ingalls AE, Moffett JW, Stahl DA, Devol AH (2013) Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by archaea. Isme J 7:2023–2033. https://doi.org/10.1038/ismej.2013.75

    CAS  Article  Google Scholar 

  20. Horak REA, Qin W, Bertagnolli AD, Nelson A, Heal KR, Han H, Heller M, Schauer AJ, Jeffrey WH, Armbrust EV, Moffett JW, Ingalls AE, Stahl DA, Devol AH (2018) Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnol Oceanogr 63:741–757. https://doi.org/10.1002/lno.10665

    CAS  Article  Google Scholar 

  21. Horrigan SG, Springer AL (1990) Oceanic and estuarine ammonium oxidation: effects of light. Limnol Oceanogr 35:479–482. https://doi.org/10.4319/lo.1990.35.2.0479

    CAS  Article  Google Scholar 

  22. Hyman HR, Arp DJ (1992) 14C2H2- and l4CO2-1abeling studies of the de Novo synthesis of polypeptides by Nitrosomonus europaea during recovery from acetylene and light Inactivation of ammonia monooxygenase. J Biolo Chem 267:1534–1545

    CAS  Google Scholar 

  23. Juliette LY, Hyman MR, Arp DJ (1993) Mechanism-based inactivation of ammonia monooxygenase in Nitrosomonas europaea by allylsulfide. Appl Environ Microbiol 59:3728–3735

    CAS  Article  Google Scholar 

  24. Kaplan D, Wilhelm R, Abeliovich A (2000) Interdependent environmental factors controlling nitrification in waters. Water Sci Technol 42:167–172. https://doi.org/10.2166/wst.2000.0309

    CAS  Article  Google Scholar 

  25. Lehtovirta-Morley LE (2018) Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. Fems Microbiol Lett 365:1–9. https://doi.org/10.1093/femsle/fny058

    CAS  Article  Google Scholar 

  26. Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12:419–431. https://doi.org/10.1105/2Ftpc.12.3.419

    CAS  Article  Google Scholar 

  27. Lipschultz F, Wofsy SC, Fox LE (1985) The effects of light and nutrients on rates of ammonium transformation in a eutrophic river. Mar Chem 16:329–341

    CAS  Article  Google Scholar 

  28. Liu Q, Tolar BB, Ross MJ, Cheek JB, Sweeney CM, Wallsgrove NJ, Popp BN, Hollibaugh JT (2018) Light and temperature control the seasonal distribution of thaumarchaeota in the South Atlantic bight. Isme J 12:1473–1485. https://doi.org/10.1016/0304-4203(85)90054-4

    CAS  Article  Google Scholar 

  29. Luo HW, Tolar BB, Swan BK, Zhang CLL, Stepanauskas R, Moran MA, Hollibaugh JT (2014) Single-cell genomics shedding light on marine Thaumarchaeota diversification. Isme J 8:732–736. https://doi.org/10.1038/ismej.2013.202

    CAS  Article  Google Scholar 

  30. Merbt SN, Auguet J-C, Casamayor EO, Marti E (2011) Biofilm recovery in a wastewater treatment plant-influenced stream and spatial segregation of ammonia-oxidizing microbial populations. Limnol Oceanogr 56:1054–1064. https://doi.org/10.4319/lo.2011.56.3.1054

    CAS  Article  Google Scholar 

  31. Merbt SN, Stahl DA, Casamayor EO, Marti E, Nicol GW, Prosser JI (2012) Differential photoinhibition of bacterial and archaeal ammonia oxidation. Fems Microbiol Lett 327:41–46. https://doi.org/10.1111/j.1574-6968.2011.02457.x

    CAS  Article  Google Scholar 

  32. Merbt SN, Bernal S, Proia L, Marti E, Casamayor EO (2017) Photoinhibition on natural ammonia oxidizers biofilm populations and implications for nitrogen uptake in stream biofilms. Linmol Oceanorgr 62:364–375. https://doi.org/10.1002/lno.10436

    CAS  Article  Google Scholar 

  33. Moomen S, Ahmed E (2018) Ammonia-oxidizing bacteria (AOB): opportunities and applications-a review. Rev Environ Sci Bio 17:285–321. https://doi.org/10.1007/s11157-018-9463-4

    CAS  Article  Google Scholar 

  34. Newell SE, Fawcett SE, Ward BB (2013) Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the Sargasso Sea. Limnol Oceanogr 58:1941–1500. https://doi.org/10.4319/lo.2013.58.4.1491

    Article  Google Scholar 

  35. Olson RJ (1981) Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum. J Mar Res 39:227–238

    CAS  Google Scholar 

  36. Peng X, Fuchsman CA, Jayakumar A, Oleynik S, Martens-Habbena W, Devol AH, Ward BB (2015) Ammonia and nitrite oxidation in the Eastern Tropical North Pacific. Global Biogeochem Cycle 29:2034–2049. https://doi.org/10.1002/2015GB005278

    CAS  Article  Google Scholar 

  37. Peng X, Fawcett SE, van Oostende N, Wolf MJ, Marconi D, Sigman DM, Ward BB (2018) Nitrogen uptake and nitrification in the subarctic North Atlantic Ocean. Limnol Oceanogr 63:1462–1487. https://doi.org/10.1002/lno.10784

    CAS  Article  Google Scholar 

  38. Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Moffett JW, Armbrust E, Stahl DA (2014) Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA 111:12504–12509. https://doi.org/10.1073/pnas.1324115111

    CAS  Article  Google Scholar 

  39. Schoen GH, Engel H (1962) The effect of light on Nitrosomonas europaea Win. Arch Mikrobiol 42:415

    CAS  Article  Google Scholar 

  40. Shafiee RT, Snow JT, Zhang Q, Rickaby REM (2019) Iron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1. Isme J 13:2295–2305. https://doi.org/10.1038/s41396-019-0434-8

    CAS  Article  Google Scholar 

  41. Shears JH, Wood PM (1985) Spectroscopic evidence for a photosensitive oxygenated state of ammonia mono-oxygenase. Biochem J 226:499–507

    CAS  Article  Google Scholar 

  42. Shiozaki T, Ijichi M, Fujiwara A, Makabe A, Nishino S, Yoshikawa C, Harada N (2019) Factors Regulating Nitrification in the Arctic Ocean: Potential Impact of Sea Ice Reduction and Ocean Acidification. Global Biogeochem Cy 33:1085–1099. https://doi.org/10.1029/2018GB006068

    CAS  Article  Google Scholar 

  43. Stein LY, Sayavedra-Soto LA, Hommes NG, Arp DJ (2000) Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea. Fems Microbiol Lett 192:163–168. https://doi.org/10.1016/S0378-1097(00)00426-2

    CAS  Article  Google Scholar 

  44. Takahito Y, Yatsuka S (1984) Photoinhibition and recovery of NH4+-oxidizing bacteria and NO2-oxidizing bacteria. J Gen Appl Microbiol 30:151–166

    Article  Google Scholar 

  45. Vanzella A, Guerrero MA (1989) Effect of CO and light on ammonium and nitrite oxidation by chemolithotrophic bacteria. Mar Ecol Prog 57:69–76

    CAS  Article  Google Scholar 

  46. Ward BB (1985) Light and substrate concentration relationships with marine ammonium assimilation and oxidation rates. Mar Chem 16:301–316

    CAS  Article  Google Scholar 

  47. Wei XM, Sayavedra-Soto LA, Arp DJ (2004) The transcription of the cbb operon in Nitrosomonas europaea. Microbiol-Sgm 150:1869–1879. https://doi.org/10.1099/mic.0.26785-0

    CAS  Article  Google Scholar 

  48. Wei X, Yan T, Hommes NG, Liu X, Wu L, Crystal M, Klotz MG, Sayavedra-Soto LA, Zhou J, Arp DJ (2006) Transcript profiles of Nitrosomonas europaea during growth and upon deprivation of ammonia and carbonate. Fems Microbiol Lette 257:76–83. https://doi.org/10.1111/j.1574-6968.2006.00152.x

    CAS  Article  Google Scholar 

  49. Wu D, Cheng M, Zhao S, Peng N, Hu R, Hu J, Liang Y (2020) Algal growth enhances light-mediated limitation of bacterial nitrification in an aquaculture system. Water Air Soil Pollu 231:1–9. https://doi.org/10.1007/s11270-020-4436-y

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We appreciate helpful suggestions from Dr. Liao Ming-jun (College of Resource and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China). This study was supported by the Natural Science Foundation of China (31702390), the National Key Research and Development Program of China (2018YFD0900701), and the Chinese Modern Agricultural Industry Technology System (CARS-46). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shimin Lu or Xingguo Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Liu, X., Liu, C. et al. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems. Rev Environ Sci Biotechnol (2020). https://doi.org/10.1007/s11157-020-09540-2

Download citation

Keywords

  • Photoinhibition
  • Nitrification
  • Ammonia-oxidizing bacteria
  • Ammonia-oxidizing archaea
  • Ammonia monooxygenase