Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: a review

Abstract

Phosphorus as a fundamental element for growth and metabolism of living organisms, yet problematic to water quality, is an irreplaceable component. Application of enhanced biological phosphorus removal (EBPR) technology in wastewater treatment plants offers phosphorus removal and recovery in addition to potential eutrophication prevention. This process is dependable on enrichment of phosphorus accumulating organisms in activated sludge to accumulate great amount of poly-phosphate inside their cell interior for enhancement of phosphorus removal. Yet, inadequate removal performance in pilot and full-scale systems, rises the need for optimization in operation and design of applicable configuration. In addition to applying advancement strategies to minimize the growth of undesirable microorganisms through cost effective phosphorus removal along with potential P-recovery and sustainability. Preceding research has certainly advanced the insight on this area of investigation. Notwithstanding, there are still numerous unresolved issues to be undertaken. This comprehensive review paper aims to revisit the current knowledge and fundamental understanding on microbiology and biochemical transformations in EBPR process. In view of application and structure, EBPR design and operation considerations along with process configurations is critically reviewed. This comprehensive review hopes to touch on the critical points of operation to help in understanding the overall EBPR process and to farther provide insights on future work onto EBPR process developments.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. Acevedo B, Oehmen A, Carvalho G et al (2012) Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res 46:1889–1900. https://doi.org/10.1016/j.watres.2012.01.003

    CAS  Article  Google Scholar 

  2. Acevedo B, Borrás L, Oehmen A, Barat R (2014) Modelling the metabolic shift of polyphosphate-accumulating organisms. Water Res 65:235–244. https://doi.org/10.1016/j.watres.2014.07.028

    CAS  Article  Google Scholar 

  3. Ahn J, McIlroy S, Schroeder S, Seviour R (2009) Biomass granulation in an aerobic: anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH. J Ind Microbiol Biotechnol 36:885–893. https://doi.org/10.1007/s10295-009-0566-3

    CAS  Article  Google Scholar 

  4. Alasino N, Mussati MC, Scenna N, Aguirre P (2008) Combined nitrogen and phosphorus removal. Model-based process optimization. Comput Aided Chem Eng 25:163–168. https://doi.org/10.1016/S1570-7946(08)80032-6

    CAS  Article  Google Scholar 

  5. Andalib M, Taher E, Money B, Carlson M (2017) Full scale demonstration of non-VFA pathway enhanced biological phosphorus removal. In: Water environment federation’s technical exhibition and conference 2017, WEFTEC 2017. 4:2370–2383. https://doi.org/10.2175/193864717822152798

  6. Arun V, Mino T, Matsuo T (1988) Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems. Water Res 22:565–570. https://doi.org/10.1016/0043-1354(88)90056-5

    CAS  Article  Google Scholar 

  7. Arvin E (1985) Biological removal of phosphorus from wastewater CRC critical reviews in environmetnal control publication date. CRC Crit Rev Environ Control 15:25–64

    CAS  Article  Google Scholar 

  8. Arvin E, Kristensen GH (1985) Exchange of organics, phosphate and cations between sludge and water in biological phosphorus and nitrogen removal processes. Water Sci Technol 17:147–162

    CAS  Article  Google Scholar 

  9. Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003

    Article  Google Scholar 

  10. Asmala E, Gustafsson C, Krause-Jensen D et al (2019) Role of eelgrass in the coastal filter of contrasting baltic sea environments. Estuar Coasts 42:1882–1895. https://doi.org/10.1007/s12237-019-00615-0

    CAS  Article  Google Scholar 

  11. BAETENS D (2000) Enhanced biological phosphorus removal: modelling and experimental design. Ghent University, Belgium

    Google Scholar 

  12. Bai Y, Zhang Y, Quan X, Chen S (2016) Nutrient removal performance and microbial characteristics of a full-scale IFAS-EBPR process treating municipal wastewater. Water Sci Technol. https://doi.org/10.2166/wst.2015.604

    Article  Google Scholar 

  13. Barat R, van Loosdrecht MCM (2006) Potential phosphorus recovery in a WWTP with the BCFS®process: interactions with the biological process. Water Res 40:3507–3516. https://doi.org/10.1016/j.watres.2006.08.006

    CAS  Article  Google Scholar 

  14. Barjesteh PJ (2016) Alternatives to lower the carbon demand of biological nutrient removal processes. University of Manitoba, Canada, Winnipeg

    Google Scholar 

  15. Barnard JL (1983) Design consideration regarding phosphate removal in activated sludge plants. Water Sci Technol 15(3–4):319–328

    CAS  Article  Google Scholar 

  16. Barnard JL (2014) Biological nutrient removal: Where we have been, where we are going? Proc Water Environ Fed 2006:1–25. https://doi.org/10.2175/193864706783710578

    Article  Google Scholar 

  17. Barnard JL, Stevens GM, Leslie PJ (1985) Design strategies for nutrient removal plant. Wat Sci Technol 17(17):233–242

    CAS  Article  Google Scholar 

  18. Barnard JL, Dunlap P, Steichen M (2017) Rethinking the mechanisms of biological phosphorus removal. Water Environ Res 89:2043–2054. https://doi.org/10.2175/106143017X15051465919010

    CAS  Article  Google Scholar 

  19. Bashar R, Gungor K, Karthikeyan KG, Barak P (2018) Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere 197:280–290. https://doi.org/10.1016/j.chemosphere.2017.12.169

    CAS  Article  Google Scholar 

  20. Blackall LL, Crocetti GR, Saunders AM, Bond PL (2002) A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie Van Leeuwenhoek 81:681–691. https://doi.org/10.1023/A:1020538429009

    CAS  Article  Google Scholar 

  21. Brown JA, Koch CM (2005) Biological nutrient removal (BNR) operation in wastewater treatment plants. WEF Man Pract No. 29 597. https://doi.org/10.1036/0071464158

  22. Brown P, Kee S, Lee Y (2011) In fl uence of anoxic and anaerobic hydraulic retention time on biological nitrogen and phosphorus removal in a membrane bioreactor. DES 270:227–232. https://doi.org/10.1016/j.desal.2010.12.001

    CAS  Article  Google Scholar 

  23. Bunce JT, Ndam E, Ofiteru ID et al (2018) A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front Environ Sci 6:1–15. https://doi.org/10.3389/fenvs.2018.00008

    Article  Google Scholar 

  24. Burke RA (1986) Biological excess phosphorus removal in short sludge age activated sludge systems. University of Cape Town, Cape Town

    Google Scholar 

  25. Carson K (2012) Evaluation of performance for a novel side-stream enhanced biological phosphorus removal configuration at a full-scale wastewater treatment plant. University of Colorado, Boulder

    Google Scholar 

  26. Carucci A, Lindrea K, Majone M, Ramadori R (1995) Dynamics of the anaerobic utilization of organic substrates in an anaerobic/aerobic sequencing batch reactor. Water Sci Technol 31:35–43

    CAS  Article  Google Scholar 

  27. Carucci A, Lindrea K, Majone M, Ramadori R (1999) Different mechanisms for the anaerobic storage of organic substrates and their effect on enhanced biological phosphate removal (EBPR). Water Sci Technol 39:21–28

    CAS  Article  Google Scholar 

  28. Carvalheira M, Oehmen A, Carvalho G et al (2014a) The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. Water Res 66:296–307. https://doi.org/10.1016/j.watres.2014.08.033

    CAS  Article  Google Scholar 

  29. Carvalheira M, Oehmen A, Carvalho G, Reis MAM (2014b) The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Water Res 64:149–159. https://doi.org/10.1016/j.watres.2014.07.004

    CAS  Article  Google Scholar 

  30. Cech JS, Hartman P (1993) Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27:1219–1225. https://doi.org/10.1016/0043-1354(93)90014-9

    CAS  Article  Google Scholar 

  31. Chang CH, Hao OJ (1996) Sequencing batch reactor system for nutrient removal: ORP and pH profiles. J Chem Technol Biotechnol. https://doi.org/10.1002/(SICI)1097-4660(199609)67:1%3c27:AID-JCTB430%3e3.0.CO;2-2

    Article  Google Scholar 

  32. Chen Y, Randall AA, McCue T (2004) The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Res 38:27–36. https://doi.org/10.1016/j.watres.2003.08.025

    CAS  Article  Google Scholar 

  33. Chen H, Wang D, Li X et al (2014) Effect of dissolved oxygen on biological phosphorus removal induced by aerobic/extended-idle regime. Biochem Eng J 90:27–35. https://doi.org/10.1016/j.bej.2014.03.004

    CAS  Article  Google Scholar 

  34. Coats ER, Watkins DL, Brinkman CK, Loge FJ (2007) Effect of anaerobic HRT on biological phosphorus removal and the enrichment of phosphorus accumulating organisms. Water Environ Res. https://doi.org/10.2175/106143010X12851009156402

    Article  Google Scholar 

  35. Comeau Y, Oldham WK, Hall KJ (1987) Dynamics of carbon reserves in biological dephosphatation of wastewater. In: Biological phosphate removal from wastewaters. Elsevier, pp 39–55

  36. Conley DJ, Paerl HW, Howarth RW et al (2009) Controlling eutrophication: nitrogen and phosphorus nitrogen and phosphorus. Source Sci New Ser 323:1014–1015. https://doi.org/10.1126/science.1167755

    CAS  Article  Google Scholar 

  37. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  38. Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758. https://doi.org/10.1016/j.chemosphere.2011.02.032

    CAS  Article  Google Scholar 

  39. Crocetti GR, Hugenholtz P, Bond PL et al (2000) Identification of polyphosphate-accumulating organisms and design of 16SrRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182. https://doi.org/10.1128/AEM.66.3.1175-1182.2000.Updated

    CAS  Article  Google Scholar 

  40. Datta T, Goel R (2010) Evidence and long-term feasibility of enhanced biological phosphorus removal in oxidation-ditch type of aerated-anoxic activated sludge systems. J Environ Eng 136:1237–1247. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000259

    CAS  Article  Google Scholar 

  41. De Haas DW, Wentzel MC, Ekama GA (2001) The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal. Part 7: application of the IAWQ model. Water SA 27:151–165. https://doi.org/10.4314/wsa.v27i2.4989

    Article  Google Scholar 

  42. Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV (2020) Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl Biochem Microbiol 56:1–14. https://doi.org/10.1134/s0003683820010056

    CAS  Article  Google Scholar 

  43. Erdal UG, Erdal ZK, Daigger GT, Randall CW (2008) Is it PAO–GAO competition or metabolic shift in EBPR system? Evidence from an experimental study. Water Sci Technol 58:1329–1334. https://doi.org/10.2166/wst.2008.734

    CAS  Article  Google Scholar 

  44. Eun LS, Soo KK, Jae HA, Chang WK (1997) Comparison of phosphorus removal characteristics between various biological nutrient removal processes. Water Sci Technol 36:61–68

    Google Scholar 

  45. Fernando EY, McIlroy SJ, Nierychlo M et al (2019) Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J 13:1933–1946. https://doi.org/10.1038/s41396-019-0399-7

    CAS  Article  Google Scholar 

  46. Filipe CDM, Daigger GT, Grady CPL (2001a) pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms. Water Environ Res 73:223–232. https://doi.org/10.2175/106143001X139209

    CAS  Article  Google Scholar 

  47. Filipe CDM, Daigger GT, Grady CPL (2001b) Effects of pH on the rates of aerobic metabolism of phosphate-accumulating and glycogen-accumulating organisms. Water Environ Res 73:213–222. https://doi.org/10.2175/106143001x139191

    CAS  Article  Google Scholar 

  48. Flowers JJ, He S, Yilmaz S et al (2009) Denitrification capabilities of two biological phosphorus removal sludges dominated by different “Candidatus Accumulibacter” clades. Environ Microbiol Rep 1:583–588. https://doi.org/10.1111/j.1758-2229.2009.00090.x

    CAS  Article  Google Scholar 

  49. Fuhs GW, Chen M (1975) Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb Ecol 2:119–138. https://doi.org/10.1007/BF02010434

    CAS  Article  Google Scholar 

  50. Gao H, Liu M, Griffin JS et al (2017) Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms. Environ Sci Technol 51:4531–4540. https://doi.org/10.1021/acs.est.6b04896

    CAS  Article  Google Scholar 

  51. Ge S, Peng Y, Wang S et al (2010) Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresour Technol 101:9012–9019. https://doi.org/10.1016/j.biortech.2010.06.151

    CAS  Article  Google Scholar 

  52. Guerrero J, Tayà C, Guisasola A, Baeza JA (2012) Understanding the detrimental effect of nitrate presence on EBPR systems: effect of the plant configuration. J Chem Technol Biotechnol 87:1508–1511. https://doi.org/10.1002/jctb.3812

    CAS  Article  Google Scholar 

  53. Guerrero J, Flores-alsina X, Guisasola A et al (2013a) Bioresource technology effect of nitrite, limited reactive settler and plant design configuration on the predicted performance of simultaneous C/N/P removal WWTPs. Bioresour Technol 136:680–688. https://doi.org/10.1016/j.biortech.2013.03.021

    CAS  Article  Google Scholar 

  54. Guerrero J, Flores-Alsina X, Guisasola A et al (2013b) Effect of nitrite, limited reactive settler and plant design configuration on the predicted performance of simultaneous C/N/P removal WWTPs. Bioresour Technol 136:680–688. https://doi.org/10.1016/j.biortech.2013.03.021

    CAS  Article  Google Scholar 

  55. Guerrero Camacho FJ (2014) Improving ebpr stability in WWTPs aiming at simultaneous carbon and nutrient removal: from modelling studies to experimental validation. Universitat Autonoma de Barcelona, Bellaterra, Cerdanyola de Vallès, Barcelona

    Google Scholar 

  56. Guisasola A, Qurie M, Vargas M et al (2009) Failure of an enriched nitrite-DPAO population to use nitrate as an electron acceptor. Process Biochem 44:689–695. https://doi.org/10.1016/j.procbio.2009.02.017

    CAS  Article  Google Scholar 

  57. Guo Y, Zeng W, Li N, Peng Y (2018) Effect of electron acceptor on community structures of denitrifying polyphosphate accumulating organisms in anaerobic-anoxic-oxic (A2O) process using DNA based stable-isotope probing (DNA-SIP). Chem Eng J 334:2039–2049. https://doi.org/10.1016/j.cej.2017.11.170

    CAS  Article  Google Scholar 

  58. Hanife B (2007) Influence of ammonium, nitrate and nitrite on the performance of the pure culture of Acinetobacter junii Jasna Hrenovi c. Sect Cell Mol Biol. https://doi.org/10.2478/s11756-007-0102-8

    Article  Google Scholar 

  59. Hao XD, van Loosdrecht MCM (2006) Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS®). Water Sci Technol 53:191–198. https://doi.org/10.2166/wst.2006.092

    CAS  Article  Google Scholar 

  60. Hao X, Heijnen JJ, Qian Y, Van Loosdrecht MCM (2001) Contribution of P-bacteria in biological nutrient removal processes to overall effects on the environment. Water Sci Technol 44:67–76

    CAS  Article  Google Scholar 

  61. He S, Gall DL, McMahon KD (2007) “Candidatus accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Appl Environ Microbiol 73:5865–5874. https://doi.org/10.1128/AEM.01207-07

    CAS  Article  Google Scholar 

  62. He S, Gu AZ, McMahon KD (2008) Progress toward understanding the distribution of Accumulibacter among full-scale enhanced biological phosphorus removal systems. Microb Ecol 55:229–236. https://doi.org/10.1007/s00248-007-9270-x

    Article  Google Scholar 

  63. He S, Bishop FI, McMahon KD (2010) Bacterial community and “Candidatus Accumulibacter” population dynamics in laboratory-scale enhanced biological phosphorus removal reactors. Appl Environ Microbiol 76:5479–5487. https://doi.org/10.1128/AEM.00370-10

    CAS  Article  Google Scholar 

  64. Henze Mogens, van Mark CM, Loosdrecht GA, Ekama DB (2008) Biological wastewater treatment: principles, modelling and design. IWA Pub, London

    Google Scholar 

  65. Hesselmann RPX, Werlen C, Hahn D et al (1999) Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22:454–465. https://doi.org/10.1016/S0723-2020(99)80055-1

    CAS  Article  Google Scholar 

  66. Hu JY, Ong SL, Ng WJ et al (2003) A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Res 37:3463–3471. https://doi.org/10.1016/S0043-1354(03)00205-7

    CAS  Article  Google Scholar 

  67. Insel G, Artan N, Orhon D (2005) Effect of aeration on nutrient removal performance of oxidation ditch systems. Environ Eng Sci 22:802–815. https://doi.org/10.1089/ees.2005.22.802

    CAS  Article  Google Scholar 

  68. Jabari P, Munz G, Oleszkiewicz JA (2014) Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor. Chemosphere 109:20–27. https://doi.org/10.1016/j.chemosphere.2014.03.002

    CAS  Article  Google Scholar 

  69. James EK (1997) Information on phosphorus amounts and water quality environmental impact. Wisconsin, USA

    Google Scholar 

  70. Jeon CO, Woo SH, Park JM (2003) Microbial communities of activated sludge performing enhanced biological phosphorus removal in sequencing batch reactor supplied with glucose. J Microbiol Biotechnol 13:385–393. https://doi.org/10.1016/S0043-1354(02)00587-0

    CAS  Article  Google Scholar 

  71. Johnson BR, Goodwin S, Daigger GT, Crawford GV (2005) A comparison between the theory and reality of full-scale step-feed nutrient removal systems. Water Sci Technol 52:587–596

    CAS  Article  Google Scholar 

  72. Joint Ad hoc Technical Working Group ICPDR - ICPBS (1999) Danube pollution reduction program: causes and effects of eutrophication summary report. United Nations Development Program

  73. Kang S, Olmstead K, Takacs K, Collins J (2008) Municipal nutrient removal technologies reference document. Ann Arbor, Michigan, and Fairfax, Virginia, USA

  74. Kerrn-Jespersen JP, Henze M, Strube R (1994) Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor. Water Res 28:1253–1255. https://doi.org/10.1016/0043-1354(94)90215-1

    CAS  Article  Google Scholar 

  75. Kim K, Cho K, Choi H, Kim IS (2000) A pilot study on nitrogen and phosphorus removal by a modified photostrip process. Water Sci Technol 42:199–204. https://doi.org/10.2166/wst.2000.0380

    CAS  Article  Google Scholar 

  76. Kim JM, Lee HJ, Lee DS, Jeon CO (2013) Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal. Appl Environ Microbiol 79:1969–1979. https://doi.org/10.1128/AEM.03464-12

    CAS  Article  Google Scholar 

  77. Kinyuaa NM, Miller MW, Wett B et al (2017) Polyhydroxyalkanoates, triacylglycerides and glycogen in a high rate activated sludge A-stage system. Chem Eng J 316:350–360

    Article  Google Scholar 

  78. Kong Y, Xia Y, Nielsen JL, Nielsen PH (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology 153:4061–4073. https://doi.org/10.1099/mic.0.2007/007245-0

    CAS  Article  Google Scholar 

  79. Kristiansen R, Nguyen HTT, Saunders AM et al (2013) A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME J 7:543–554. https://doi.org/10.1038/ismej.2012.136

    CAS  Article  Google Scholar 

  80. Kuba T, Murnleitner E, van Loosdrecht MCM, Heijnen JJ (2000) A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol Bioeng 52:685–695. https://doi.org/10.1002/(SICI)1097-0290(19961220)52:6%3c685:AID-BIT6%3e3.0.CO;2-K

    Article  Google Scholar 

  81. Lashkajani SS (2018) Novel biological strategies for phosphorus recovery from wastewater. Curtin University, Perth

    Google Scholar 

  82. Lee DS, Jeon CO, Park JM (2001) Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Res 35:3968–3976. https://doi.org/10.1016/S0043-1354(01)00132-4

    CAS  Article  Google Scholar 

  83. Lee N, Jansen JLC, Aspegren H et al (2002) Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal. Water Sci Technol 46:163–170. https://doi.org/10.2166/wst.2002.0472

    CAS  Article  Google Scholar 

  84. Lee D, Kim M, Chung J (2007) Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process. J Biosci Bioeng 103:338–344. https://doi.org/10.1263/jbb.103.338

    CAS  Article  Google Scholar 

  85. Levantesi C, Serafim LS, Crocetti GR et al (2002) Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor. Environ Microbiol 4:559–569. https://doi.org/10.1046/j.1462-2920.2002.00339.x

    CAS  Article  Google Scholar 

  86. Levin GV, Della SU (1987) Phostrip process—a viable answer to eutrophication of lakes and coastal sea waters in Italy. Biol Phosphate Remov from Wastewaters 249–259

  87. Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. Water Pollut Control Fed 37:800–821. https://doi.org/10.2307/25035307

    CAS  Article  Google Scholar 

  88. Levin GV, Topol GJ, Tarnay AG (2018) Operation of full-scale biological phosphorus removal plant. Water Pollut Control 47:577–590. https://doi.org/10.1080/10255842.2017.1383984

    Article  Google Scholar 

  89. Li H, Chen Y (2011) Research on polyhydroxyalkanoates and glycogen transformations: key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems. Front Environ Sci Eng 5:283–290. https://doi.org/10.1007/s11783-010-0243-9

    CAS  Article  Google Scholar 

  90. Li H, Chen Y, Gu G (2008a) The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. Bioresour Technol 99:4400–4407. https://doi.org/10.1016/j.biortech.2007.08.032

    CAS  Article  Google Scholar 

  91. Li N, Wang X, Ren N et al (2008b) Effects of solid retention time (SRT) on sludge characteristics in enhanced biological phosphorus removal (EBPR) reactor. Chem Biochem Eng Q 22:453–458

    CAS  Google Scholar 

  92. Linden KG, Hawkin JM, Bonislawsk MP (2001) Evaluation of performance and operational costs for three biological nutrient removal schemes at a full-scale wastewater treatment plant. NC

  93. Liu W, Nguyen J (2014) Gulf of Mexico—dead zones. https://deadzonesjw.weebly.com/gulf-of-mexico.html. Accessed 21 Mar 2018

  94. Liu W, Nakamura K, Matsuo T et al (1997) Internal energy-based competition between polyphosphate-and glycogen-accumulating bacteria in biological phosphorus removal reactors—effect of PC feeding ratio. Water Res 31:1430–1438

    CAS  Article  Google Scholar 

  95. Liu YN, Yu SL, Jing GL et al (2005) Enhanced biological phosphorus removal in anaerobic/aerobic sequencing batch reactor supplied with glucose as carbon source. J Dong Hua Univ (English Ed) 22:95–99. https://doi.org/10.1016/S0043-1354(99)00383-8

    CAS  Article  Google Scholar 

  96. Liu Y, Chen Y, Zhou Q (2007) Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids. Chemosphere 66:123–129. https://doi.org/10.1016/j.chemosphere.2006.05.004

    CAS  Article  Google Scholar 

  97. Liu Y, Shi H, Li W et al (2011) Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal. Bioresour Technol 102:4008–4012. https://doi.org/10.1016/j.biortech.2010.11.107

    CAS  Article  Google Scholar 

  98. Liu Z, Pruden A, Ogejo JA, Knowlton KF (2014) Polyphosphate- and glycogen-accumulating organisms in one EBPR system for liquid dairy manure. Water Environ Res 86:663–671. https://doi.org/10.2175/106143014x13975035525302

    CAS  Article  Google Scholar 

  99. Liu H, Yao Y, Xu S (2018) Removal and transformation of pollutants in a two-line denitrifying phosphorus removal process treating low C/N municipal wastewater: influence of hydraulic retention time. Water Air Soil Pollut. https://doi.org/10.1007/s11270-018-3746-9

    Article  Google Scholar 

  100. Lopez-Vazquez CM, Song Y-I, Hooijmans CM et al (2006) Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms. Biotechnol Bioeng. https://doi.org/10.1002/bit.21302

    Article  Google Scholar 

  101. López-Vázquez CM, Hooijmans CM, Brdjanovic D et al (2008) Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. Water Res 42:2349–2360. https://doi.org/10.1016/j.watres.2008.01.001

    CAS  Article  Google Scholar 

  102. Lopez-Vazquez CM, Oehmen A, Hooijmans CM et al (2009) Modeling the PAO–GAO competition: Effects of carbon source, pH and temperature. Water Res 43:450–462. https://doi.org/10.1016/j.watres.2008.10.032

    CAS  Article  Google Scholar 

  103. López-Vázquez CM, Hooijmans CM, Brdjanovic D et al (2012) Occurrence of glycogen accumulating organisms (GAO) at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants. Proc Water Environ Fed 2007:968–989. https://doi.org/10.2175/193864707787977424

    Article  Google Scholar 

  104. Louzeiro NR, Mavinic DS, Oldham WK et al (2002) Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor. Water Res 36:2721–2732. https://doi.org/10.1016/S0043-1354(01)00494-8

    CAS  Article  Google Scholar 

  105. Machado VC, Lafuente J, Baeza JA (2015) Model-based control structure design of a full-scale WWTP under the retrofitting process. Water Sci Technol 71:1661–1671. https://doi.org/10.2166/wst.2015.140

    CAS  Article  Google Scholar 

  106. Mahendraker V, Mavinic DS, Rabinowitz B, Hall KJ (2005) The impact of influent nutrient ratios and biochemical reactions on oxygen transfer in an EBPR process—a theoretical explanation. InterScience. https://doi.org/10.1002/bit.20471

    Article  Google Scholar 

  107. Marques R, Ribera-Guardia A, Santos J et al (2018) Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes. Water Res 137:262–272. https://doi.org/10.1016/j.watres.2018.03.010

    CAS  Article  Google Scholar 

  108. Martín HG, Ivanova N, Kunin V et al (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269. https://doi.org/10.1038/nbt1247

    CAS  Article  Google Scholar 

  109. Maszenan AM, Seviour RJ, Patel BKC et al (2000) Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. no. Int J Syst Evol Microbiol 50:593–603. https://doi.org/10.1099/00207713-50-2-593

    CAS  Article  Google Scholar 

  110. McIlroy SJ, Onetto CA, McIlroy B et al (2018) Genomic and in situ analyses reveal the Micropruina spp. as Abundant fermentative glycogen accumulating organisms in enhanced biological phosphorus removal systems. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.01004

    Article  Google Scholar 

  111. Meijer SCF, Van Loosdrecht MCM, Heijnen JJ (2002) Modelling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP. Water Res 36:4667–4682. https://doi.org/10.1016/S0043-1354(02)00192-6

    CAS  Article  Google Scholar 

  112. Meinhold J, Pedersen H, Arnold E et al (1998) Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal. Water Sci Technol 38:97–105

    CAS  Article  Google Scholar 

  113. Metcalf & Eddy, Tchobanoglous G, Stensel HD et al (2003) Wastewater engineering: treatment and resource recovery. McGraw Hill Education, New York

    Google Scholar 

  114. Mino T, Liu W-T, Futoshi Kurisu TM (1995) Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci Technol 31:25–34

    CAS  Article  Google Scholar 

  115. Mino T, Van Loosdrecht MCM, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207. https://doi.org/10.1016/S0043-1354(98)00129-8

    CAS  Article  Google Scholar 

  116. Morse GK, Brett SW, Guy JA, Lester JN (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212:69–81. https://doi.org/10.1016/S0048-9697(97)00332-X

    CAS  Article  Google Scholar 

  117. Mulkerrins D, Dobson ADW, Colleran E (2004) Parameters affecting biological phosphate removal from wastewaters. Environ Int 30:249–259. https://doi.org/10.1016/S0160-4120(03)00177-6

    CAS  Article  Google Scholar 

  118. Murnleitner E, Kuba T, Van Loosdrecht MCM, Heijnen JJ (1997) An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnol Bioeng 54:434–450. https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5%3c434:AID-BIT4%3e3.0.CO;2-F

    CAS  Article  Google Scholar 

  119. Muszyński A, Łebkowska M, Tabernacka A, Miłobędzka A (2013) From macro to lab-scale: changes in bacterial community led to deterioration of EBPR in lab reactor. Cent Eur J Biol 8:130–142. https://doi.org/10.2478/s11535-013-0116-2

    Article  Google Scholar 

  120. Nakamura K, Masuda K, Mikami E (1991) Isolation of a new type of polyphosphate accumulating bacterium and its phosphate removal characteristics. J Ferment Bioeng 71:258–263. https://doi.org/10.1016/0922-338X(91)90278-O

    CAS  Article  Google Scholar 

  121. Nakamura K, Hiraishi A, Yoshimi Y et al (1995) Microlunatus phosphovoms gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22

    CAS  Article  Google Scholar 

  122. Nguyen HTT, Le VQ, Hansen AA et al (2011) High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiol Ecol 76:256–267. https://doi.org/10.1111/j.1574-6941.2011.01049.x

    CAS  Article  Google Scholar 

  123. Nolasco DA, Daigger GT, Stafford DR et al (1998) The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process. Water Environ Res 70:1205–1215. https://doi.org/10.2175/106143098X123543

    CAS  Article  Google Scholar 

  124. Obaja D, Mace S, Costa J, Sans C, Mata-Alvarez J (2002) Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresour Technol 87:1–168. https://doi.org/10.1016/S0960-8524(02)00229-8

    Article  Google Scholar 

  125. Oehmen A, Yuan Z, Blackall LL, Keller J (2004) Short-term effects of carbon source on the competition of polyphosphate accumulating organsisms and glycogen accumulating organisms. Water Sci Technol 50:139–144. https://doi.org/10.2166/wst.2004.0629

    CAS  Article  Google Scholar 

  126. Oehmen A, Keller-Lehmann B, Zeng RJ et al (2005a) Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J Chromatogr A 1070:131–136. https://doi.org/10.1016/j.chroma.2005.02.020

    CAS  Article  Google Scholar 

  127. Oehmen A, Vives MT, Lu H et al (2005b) The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Water Res 39:3727–3737. https://doi.org/10.1016/j.watres.2005.06.031

    CAS  Article  Google Scholar 

  128. Oehmen A, Yuan Z, Blackall LL, Keller J (2005c) Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol Bioeng 91:162–168. https://doi.org/10.1002/bit.20500

    CAS  Article  Google Scholar 

  129. Oehmen A, Saunders AM, Vives MT et al (2006) Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 123:22–32. https://doi.org/10.1016/j.jbiotec.2005.10.009

    CAS  Article  Google Scholar 

  130. Oehmen A, Lemos PC, Carvalho G et al (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300. https://doi.org/10.1016/j.watres.2007.02.030

    CAS  Article  Google Scholar 

  131. Okunuki S, Kawaharasaki M, Tanaka H, Kanagawa T (2004) Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor. Water Res 38:2432–2438. https://doi.org/10.1016/j.watres.2004.02.008

    CAS  Article  Google Scholar 

  132. Oleszkiewicz JA, Barnard JL (2006) Nutrient removal technology in North America and the European union: a review. Water Qual Res J 41:449–462

    CAS  Article  Google Scholar 

  133. Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257. https://doi.org/10.1023/A:1023856702544

    Article  Google Scholar 

  134. Onnis-Hayden A, Majed N, Li Y et al (2020a) Impact of solid residence time (SRT) on functionally relevant microbial populations and performance in full-scale enhanced biological phosphorus removal (EBPR) systems. Water Environ Res 92:389–402. https://doi.org/10.1002/wer.1185

    CAS  Article  Google Scholar 

  135. Onnis-Hayden A, Srinivasan V, Tooker NB et al (2020b) Survey of full-scale sidestream enhanced biological phosphorus removal (S2EBPR) systems and comparison with conventional EBPRs in North America: process stability, kinetics, and microbial populations. Water Environ Res 92:403–417. https://doi.org/10.1002/wer.1198

    CAS  Article  Google Scholar 

  136. Østgaard K, Christensson M, Lie E et al (1997) Anoxic biological phosphorus removal in a full-scale UCT process. Water Res 31:2719–2726

    Article  Google Scholar 

  137. Park H-D, Whang L-M, Reusser SR, Noguera DR (2006) Taking advantage of aerated-anoxic operation in a full-scale University of Cape Town Process. Water Environ Res 78:637–642. https://doi.org/10.2175/106143006x99786

    CAS  Article  Google Scholar 

  138. Parsons SA, Smith JA (2008) Phosphorus removal and recovery from municipal wastewaters. Elements 4:109–112. https://doi.org/10.2113/GSELEMENTS.4.2.109

    CAS  Article  Google Scholar 

  139. Peirano LE, Engineers K, Francisco S (1977) Low cost phosphorus removal at Reno-Sparks, Nevada. Water Environ Fed 49:568–574

    CAS  Google Scholar 

  140. Peng YZ, Wang XL, Li BK (2006) Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination 189:155–164. https://doi.org/10.1016/j.desal.2005.06.023

    CAS  Article  Google Scholar 

  141. Peng Y, Hou H, Wang S et al (2008) Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system. J Environ Sci 20:398–403. https://doi.org/10.1016/S1001-0742(08)62070-7

    CAS  Article  Google Scholar 

  142. Perera MK, Englehardt JD, Dvorak AC (2019) Technologies for recovering nutrients from wastewater: a critical review. Environ Eng Sci 36:511–529. https://doi.org/10.1089/ees.2018.0436

    CAS  Article  Google Scholar 

  143. Pijuan M, Saunders AM, Guisasola A et al (2004) Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source. Biotechnol Bioeng 85:56–67. https://doi.org/10.1002/bit.10813

    CAS  Article  Google Scholar 

  144. Pijuan M, Guisasola A, Baeza JA et al (2006) Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions. J Biotechnol 123:117–126. https://doi.org/10.1016/j.jbiotec.2005.10.018

    CAS  Article  Google Scholar 

  145. Pijuan M, Oehmen A, Baeza JA et al (2008) Characterizing the biochemical activity of full-scale enhanced biological phosphorus removal systems: a comparison with metabolic models. Biotechnol Bioeng 99:170–179. https://doi.org/10.1002/bit.21502

    CAS  Article  Google Scholar 

  146. Pitman AR (1991) Design considerations for nutrient removal activated sludge plants. Water Sci Technol 23:781–790. https://doi.org/10.1002/anie.201201436

    CAS  Article  Google Scholar 

  147. Pronk M, de Kreuk MK, de Bruin B et al (2015) Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res 84:207–217. https://doi.org/10.1016/j.watres.2015.07.011

    CAS  Article  Google Scholar 

  148. Puig S, Coma M, Monclús H et al (2008) Selection between alcohols and volatile fatty acids as external carbon sources for EBPR. Water Res 42:557–566. https://doi.org/10.1016/j.watres.2007.07.050

    CAS  Article  Google Scholar 

  149. Rabalais NN, Turner RE, Diaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537. https://doi.org/10.1093/icesjms/fsp047

    Article  Google Scholar 

  150. Rahimi Y, Torabian A, Mehrdadi N, Shahmoradi B (2011) Simultaneous nitrification–denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J Hazard Mater 185:852–857. https://doi.org/10.1016/j.jhazmat.2010.09.098

    CAS  Article  Google Scholar 

  151. Randall CW, Barnard JL, Stensel HD (1992) Design and retrofit of wastewater treatment plants for biological nutrient removal. Water Qual Manag Libr 5:420

    Google Scholar 

  152. Randall AA, Benefield LD, Hill WE (1994) The effect of fermentation products on enhanced biological phosphorus removal, polyphosphate storage, and microbial population dynamics. Water Sci Technol 30:213–219

    CAS  Article  Google Scholar 

  153. Robertson E, Conley D, Hermans M et al (2019) Efficient removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm Archipelago, Baltic Sea. Biogeosci Discuss. https://doi.org/10.5194/bg-2019-376

    Article  Google Scholar 

  154. Saad SA, Welles L, Abbas B et al (2016) Denitri fi cation of nitrate and nitrite by ‘Candidatus Accumulibacter phosphatis’ clade IC. Water Res 105:97–109. https://doi.org/10.1016/j.watres.2016.08.061

    CAS  Article  Google Scholar 

  155. Saito T, Brdjanovic D, Van Loosdrecht MCM (2004) Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res 38:3760–3768. https://doi.org/10.1016/j.watres.2004.05.023

    CAS  Article  Google Scholar 

  156. Salehi S, Cheng KY, Heitz A, Ginige MP (2018) Re-visiting the phostrip process to recover phosphorus from municipal wastewater. Chem Eng J 343:390–398. https://doi.org/10.1016/j.cej.2018.02.074

    CAS  Article  Google Scholar 

  157. Satoh H, Mino T, Matsuo T (1992) Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Water Sci Technol 26:933–942. https://doi.org/10.2166/wst.1992.0535

    CAS  Article  Google Scholar 

  158. Schuler AJ, Jenkins D (2002) Effects of pH on enhanced biological phosphorus removal metabolisms. Water Sci Technol 46:171–178. https://doi.org/10.2166/wst.2002.0579

    CAS  Article  Google Scholar 

  159. Seco A (2006) Effect of pH on biological phosphorus uptake. InterScience 95:7. https://doi.org/10.1002/bit.21040

    CAS  Article  Google Scholar 

  160. Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127. https://doi.org/10.1016/S0168-6445(03)00021-4

    CAS  Article  Google Scholar 

  161. Shen N, Zhou Y (2016) Enhanced biological phosphorus removal with different carbon sources. Appl Microbiol Biotechnol 100:4735–4745. https://doi.org/10.1007/s00253-016-7518-4

    CAS  Article  Google Scholar 

  162. Šikić T, Welles L, Rubio-Rincón FJ et al (2019) Assessment of enhanced biological phosphorus removal implementation potential in a full-scale wastewater treatment plant in croatia. Int J Environ Res 13:1005–1013. https://doi.org/10.1007/s41742-019-00234-4

    CAS  Article  Google Scholar 

  163. Skennerton CT, Barr JJ, Slater FR et al (2015) Expanding our view of genomic diversity in Candidatus Accumulibacter clades. Environ Microbiol 17:1574–1585. https://doi.org/10.1111/1462-2920.12582

    CAS  Article  Google Scholar 

  164. Smolders GJF, Van Der Meij J, Van Loosdrecht MCM, Heijnen JJ (1994a) Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnol Bioeng 43:461–470

    CAS  Article  Google Scholar 

  165. Smolders GJF, van der Meij J, van Loosdrecht MCM, Heijnen JJ (1994b) Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnol Bioeng 44:837–848. https://doi.org/10.1002/bit.260440709

    CAS  Article  Google Scholar 

  166. Smolders GJF, van der Meij J, van Loosdrecht MCM, Heijnen JJ (1995) A structured metabolic model for the anaerobic and aerobic stoichiometry of the biological phosphorus removal process. Biotechnol Bioeng 47:277–287. https://doi.org/10.1002/bit.260470302

    CAS  Article  Google Scholar 

  167. Stante L, Cellamare CM, Malaspina F et al (1997) Biological phosphorus removal by pure culture of Lampropedia spp. Water Res 31:1317–1324. https://doi.org/10.1016/S0043-1354(96)00351-X

    CAS  Article  Google Scholar 

  168. Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M et al (2017) A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front Microbiol 8:1–18. https://doi.org/10.3389/fmicb.2017.00718

    Article  Google Scholar 

  169. Strickland J (1999) Perspectives for phosphorus recovery offered by enhanced biological p removal. Environ Technol (UK) 20:721–725. https://doi.org/10.1080/09593332008616866

    CAS  Article  Google Scholar 

  170. Surampalli R, Tyagi R, Scheible OK, Heidman JA (1997) Nitrification, denitrification and phosphorus removal in sequential batch reactors. Bioresour Technol 61:151–157

    CAS  Article  Google Scholar 

  171. Szabó A, Takács I, Murthy S et al (2008) Significance of design and operational variables in chemical phosphorus removal. Water Environ Res 80:407–416. https://doi.org/10.2175/106143008x268498

    Article  Google Scholar 

  172. Szpyrkowicz L, Zilio-Grandi F (1995) Seasonal phosphorus removal in a phostrip process-II. Phosphorus fractionation and sludge microbiology during start-up. Water Res 29:2327–2338. https://doi.org/10.1016/0043-1354(95)00052-M

    CAS  Article  Google Scholar 

  173. Tayà C, Garlapati VK, Guisasola A, Baeza JA (2013) The selective role of nitrite in the PAO/GAO competition. Chemosphere 93:612–618. https://doi.org/10.1016/j.chemosphere.2013.06.006

    CAS  Article  Google Scholar 

  174. Tracy K, Flammino A (1987) Biochemistry and energetics of biological phosphorus removal. Biol Phosphate Remov from Wastewaters 15–26

  175. Tsuneda S, Ohno T, Soejima K, Hirata A (2006) Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem Eng J 27:191–196. https://doi.org/10.1016/j.bej.2005.07.004

    CAS  Article  Google Scholar 

  176. Ujang Z, Salim MR, Khor SL (2002) The effect of aeration and non-aeration time on simultaneous organic, nitrogen and phosphorus removal using an intermittent aeration membrane bioreactor. Water Sci Technol 46:193–200

    CAS  Article  Google Scholar 

  177. Vaiopoulou E, Aivasidis A (2008) A modified UCT method for biological nutrient removal: Configuration and performance. Chemosphere 72:1062–1068. https://doi.org/10.1016/j.chemosphere.2008.04.044

    CAS  Article  Google Scholar 

  178. Van Loosdrecht MCM, Hooijmans CM, Brdjanovic D, Heijnen JJ (1997) Biological phosphate removal processes. Appl Microbiol Biotechnol 48:289–296. https://doi.org/10.1007/s002530051052

    Article  Google Scholar 

  179. van Loosdrecht MCM, Brandse FA, de Vries AC (1998) Upgrading of wastewater treatment processes for integrated nutrient removal-The BCFS® process. Water Sci Technol 37:209–217

    Article  Google Scholar 

  180. Van Nieuwenhuijzen AF, Havekes M, Reitsma BA, De Jong P (2006) Wastewater treatment plant Amsterdam west. Water Sci Technol. https://doi.org/10.2166/WPT.2009.006

    Article  Google Scholar 

  181. Vargas M, Guisasola A, Artigues A et al (2011) Comparison of a nitrite-based anaerobic—anoxic EBPR system with propionate or acetate as electron donors. Process Biochem 46:714–720. https://doi.org/10.1016/j.procbio.2010.11.018

    CAS  Article  Google Scholar 

  182. Wang B (2018) Bioflocculation in EBPR process operated at short sludge retention times. The University of Guelph, Ontario

    Google Scholar 

  183. Wang JC, Park JK (1997) Effect of anaerobic–aerobic contact time on the change of internal storage energy in two different phosphorus-accumulating organisms. Water Environ Res 73:436–443. https://doi.org/10.2175/106143001X139489

    Article  Google Scholar 

  184. Wang JC, Park JK, Whang LM (2001) Comparison of fatty acid composition and kinetics of phosphorus-accumulating organisms and glycogen-accumulating organisms. Water Environ Res 73:704–710. https://doi.org/10.2175/106143001x143448

    CAS  Article  Google Scholar 

  185. Wang D, Li X, Yang Q et al (2008) Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresour Technol 99:5466–5473. https://doi.org/10.1016/j.biortech.2007.11.007

    CAS  Article  Google Scholar 

  186. Wang Y, Peng Y, Stephenson T (2009) Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process. Bioresour Technol 100:3506–3512. https://doi.org/10.1016/j.biortech.2009.02.026

    CAS  Article  Google Scholar 

  187. Wang D, Zheng W, Liao D et al (2013) Effect of initial pH control on biological phosphorus removal induced by the aerobic/extended-idle regime. Chemosphere 90:2279–2287. https://doi.org/10.1016/j.chemosphere.2012.10.086

    CAS  Article  Google Scholar 

  188. Wang Y, Zhou S, Ye L et al (2014) Science direct nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long- term nitrite/nitrate-fed sequencing batch reactors. Water Res 67:33–45. https://doi.org/10.1016/j.watres.2014.08.052

    CAS  Article  Google Scholar 

  189. Wang D, Tooker NB, Srinivasan V et al (2019a) Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance—a full-scale comparative study. Water Res 167:115109. https://doi.org/10.1016/j.watres.2019.115109

    CAS  Article  Google Scholar 

  190. Wang SP, Yu JJ, Gao F et al (2019b) Particular internal recirculation frequency scope for enhancing denitrifying phosphorus removal in an oxidation ditch. Water Sci Technol 80:191–202. https://doi.org/10.2166/wst.2019.265

    CAS  Article  Google Scholar 

  191. Watson SB, Miller C, Arhonditsis G et al (2016) The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae 56:44–66. https://doi.org/10.1016/j.hal.2016.04.010

    CAS  Article  Google Scholar 

  192. Wentzel MC, Dold PL, Ekama GA, Marais GE (1985) Kinetics of biological phosphorus release. Water Sci Technol 17:57–71. https://doi.org/10.2166/wst.1985.0221

    CAS  Article  Google Scholar 

  193. Whang L-M, Park JK (2006) Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: effect of temperature and sludge age. Water Environ Res 78:4–11. https://doi.org/10.2175/106143005X84459

    CAS  Article  Google Scholar 

  194. Wisniewski K, Kowalski M, Makinia J (2018) Modeling nitrous oxide production by a denitrifying-enhanced biologically phosphorus removing (EBPR) activated sludge in the presence of different carbon sources and electron acceptors. Water Res 142:55–64. https://doi.org/10.1016/j.watres.2018.05.041

    CAS  Article  Google Scholar 

  195. Wu C-Y, Peng Y-Z, Li X-L, Wang S-Y (2010) Effect of carbon source on biological nitrogen and phosphorus removal in an anaerobic-anoxic-oxic (A2O) process. J Environ Eng 136:1248–1254. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000262

    CAS  Article  Google Scholar 

  196. Xiaolian W, Yongzhen P, Shuying W et al (2006) Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process. Bioprocess Biosyst Eng 28:397–404. https://doi.org/10.1007/s00449-006-0044-5

    CAS  Article  Google Scholar 

  197. Xu Y, Hu H, Liu J et al (2015) PH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation. Chem Eng J 267:260–265. https://doi.org/10.1016/j.cej.2015.01.037

    CAS  Article  Google Scholar 

  198. Yang S, Yang F, Fu Z et al (2010) Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J Hazard Mater 175:551–557. https://doi.org/10.1016/j.jhazmat.2009.10.040

    CAS  Article  Google Scholar 

  199. Yeoman S, Stephenson T, Lester JN, Perry R (1988) The removal of phosphorus during wastewater treatment: a review. Environ Pollut 49:183–233. https://doi.org/10.1016/0269-7491(88)90209-6

    CAS  Article  Google Scholar 

  200. Yuan Q, Oleszkiewicz J (2010) Interaction between denitrification and phosphorus removal in a sequencing batch reactor phosphorus removal system. Water Environ Res 82:536–540. https://doi.org/10.2175/106143009x12529484815476

    CAS  Article  Google Scholar 

  201. Yuan Q, Sparling R, Lagasse P et al (2010) Enhancing biological phosphorus removal with glycerol. Water Sci Technol 61:1837–1843. https://doi.org/10.2166/wst.2010.974

    CAS  Article  Google Scholar 

  202. Zeng RJ, Lemaire R, Yuan Z, Keller J (2003) Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnol Bioeng 84:170–178. https://doi.org/10.1002/bit.10744

    CAS  Article  Google Scholar 

  203. Zeng W, Li L, Yang YY et al (2011) Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater. Enzyme Microb Technol 48:134–142. https://doi.org/10.1016/j.enzmictec.2010.10.010

    CAS  Article  Google Scholar 

  204. Zhang C, Chen Y, Liu Y (2007) The long-term effect of initial pH control on the enrichment culture of phosphorus- and glycogen-accumulating organisms with a mixture of propionic and acetic acids as carbon sources. Chemosphere 69:1713–1721. https://doi.org/10.1016/j.chemosphere.2007.06.009

    CAS  Article  Google Scholar 

  205. Zhang M, Peng Y, Wang C et al (2016) Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process. Biochem Eng J 106:26–36

    Article  Google Scholar 

  206. Zhao D, Sengupta AK (1998) Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Res 32:1613–1625. https://doi.org/10.1016/S0043-1354(97)00371-0

    CAS  Article  Google Scholar 

  207. Zhao W, Huang Y, Wang M et al (2018) Post-endogenous denitrification and phosphorus removal in an alternating anaerobic/oxic/anoxic (AOA) system treating low carbon/nitrogen (C/N) domestic wastewater. Chem Eng J 339:450–458. https://doi.org/10.1016/j.cej.2018.01.096

    CAS  Article  Google Scholar 

  208. Zheng X, Sun P, Han J et al (2014) Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR)—a mini-review. Process Biochem 49:2207–2213. https://doi.org/10.1016/j.procbio.2014.10.008

    CAS  Article  Google Scholar 

  209. Zheng X, Zhou W, Wan R et al (2018) Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification. Chem Eng J 344:556–564. https://doi.org/10.1016/j.cej.2018.03.124

    CAS  Article  Google Scholar 

  210. Zhou Y, Pijuan M, Yuan Z (2007) Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms. Biotechnol Bioeng 98:903–912. https://doi.org/10.1002/bit.21458

    CAS  Article  Google Scholar 

  211. Zhou Y, Pijuan M, Zeng RJ et al (2008) Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Water Res 42:2361–2368. https://doi.org/10.1016/j.watres.2008.01.003

    CAS  Article  Google Scholar 

  212. Zhou Y, Ganda L, Lim M et al (2012) Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions. Bioresour Technol 116:340–347. https://doi.org/10.1016/j.biortech.2012.03.111

    CAS  Article  Google Scholar 

  213. Zhu R, Wu M, Yang J (2013) Effect of sludge retention time and phosphorus to carbon ratio on biological phosphorus removal in HS-SBR process. Environ Technol (UK) 34:429–435. https://doi.org/10.1080/09593330.2012.698650

    CAS  Article  Google Scholar 

  214. Zilles JL, Peccia J, Kim M et al (2002) Involvement of rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants involvement of rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl Environ Microbiol 68:2763–2769. https://doi.org/10.1128/AEM.68.6.2763

    CAS  Article  Google Scholar 

  215. Zuthi MFR, Guo WS, Ngo HH et al (2013) Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes. Bioresour Technol 139:363–374. https://doi.org/10.1016/j.biortech.2013.04.038

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank York University for providing funding and technical support. We would like to acknowledge the reviewers of this article.

Funding

Thanks are due to York University grants for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmed Eldyasti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Izadi, P., Izadi, P. & Eldyasti, A. Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: a review. Rev Environ Sci Biotechnol (2020). https://doi.org/10.1007/s11157-020-09538-w

Download citation

Keywords

  • Phosphorus
  • PAO
  • EBPR
  • WWTP
  • Process configuration
  • Operational factors