Skip to main content

Advertisement

Log in

Biostimulation of anaerobic digestion using nanomaterials for increasing biogas production

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biomass energy, especially biogas production, is a renewable and sustainable form of energy. Biogas is becoming more important due to its environmentally-sound and energy-saving production technologies. The state-of-the-art focuses on the biostimulation of methanogens using nanomaterials which is a hot topic. Therefore, the objectives of this literature review are to introduce and define the uptake mechanism of nanoparticles (NPs) by methanogenic bacteria, review the enhancement of biogas and methane production using chemical additives such as trace elements and nanomaterials, discuss the biostimulating effects nanoparticles, review the anaerobic digestion of biomass, investigate the recommended concentrations of trace elements and nanoparticles in anaerobic digesters, present the role of some essential trace elements in various enzymes involved in anaerobic digestion, study the free metal mass transport and the metal adsorption to the microorganism surface as well as the metal transport into the microorganism and its biological response. It was found that the nanoparticles (NPs) biostimulate the bacterial cells which results in tremendously enhancing the bacterial activity and the kinetics of bacterial growth and cell division.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi T, Tauseef SM, Abbasi SA (2012) Biogas energy. Springer, New York, p 169

    Book  Google Scholar 

  • Abdelsalam E, Samer M, Abdel-Hadi MA, Hassan HE, Badr Y (2015) Effects of CoCl2, NiCl2 and FeCl3 additives on biogas and methane production. Misr J Agric Eng 32(2):843–862

    Google Scholar 

  • Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87(1):592–598

    Article  CAS  Google Scholar 

  • Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017a) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119

    Article  CAS  Google Scholar 

  • Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017b) Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 120:842–853

    Article  CAS  Google Scholar 

  • Abdelsalam E, Samer M, Abdel-Hadi MA, Hassan HE, Badr Y (2018a) Influence of laser irradiation on rumen fluid for biogas production from dairy manure. Energy 163:404–415

    Article  CAS  Google Scholar 

  • Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2018b) Effects of laser irradiation and Ni nanoparticles on biogas production from manure anaerobic digestion. Waste Biomass Valor. https://doi.org/10.1007/s12649-018-0374-y

    Article  Google Scholar 

  • Abdelsalam E, Hijazi O, Samer M, Yacoub IH, Ali AS, Ahmed RH, Bernhardt H (2019) Life cycle assessment of the use of laser radiation in biogas production from anaerobic digestion of manure. Renew Energy 142:130–136

    Article  CAS  Google Scholar 

  • Aksu Z, Kutsal T, Gun S, Haciosmanoglu N, Gholaminejad M (1991) Investigation of biosorption of Cu(II), Ni(II) and Cr(VI) ions to activated sludge bacteria. Environ Technol 12:915–936

    Article  CAS  Google Scholar 

  • Ali A, Mahar RB, Abdelsalam EM, Sherazi STH (2018) Kinetic modeling for bioaugmented anaerobic digestion of the organic fraction of municipal solid waste by using Fe3O4 nanoparticles. Waste Biomass Valor. https://doi.org/10.1007/s12649-018-0375-x

    Article  Google Scholar 

  • Altas L (2009) Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater 162:1551–1556

    Article  CAS  Google Scholar 

  • Amaya OM, Barragán MTC, Tapia FJA (2013) Microbial biomass in batch and continuous system, biomass now—sustainable growth and use. In: Matovic MD (ed) InTech. https://doi.org/10.5772/55303, ISBN: 978-953-51-1105-4

  • Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agr Ecosyst Environ 118:173–182

    Article  CAS  Google Scholar 

  • Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15:4295–4301

    Article  CAS  Google Scholar 

  • Attia Y, Samer M (2017) Metal clusters: new era of hydrogen production. Renew Sustain Energy Rev 79:878–892

    Article  CAS  Google Scholar 

  • Bacenetti J, Negri M, Fiala M, González-García S (2013) Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci Total Environ 463–464:541–551

    Article  CAS  Google Scholar 

  • Balat M, Bozbas K (2006) Wood as an energy source: potential trends, usage of wood, and energy politics. Energy Sources Part A 28:837–844

    Article  Google Scholar 

  • Bartacek J, Fermoso FG, Baldó-Urrutia AM, Van Hullebusch ED, Lens PNL (2008) Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. J Ind Microbiol Biotechnol 35:1465–1474

    Article  CAS  Google Scholar 

  • Benetto JC, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenerg 34:54–66

    Article  CAS  Google Scholar 

  • Beydoun D, Amal R, Low GKC, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys Chem B 104:4387–4396

    Article  CAS  Google Scholar 

  • Bini E (2010) Archaeal transformation ofmetals in the environment. FEMS Microbiol Ecol 73:1–16

    CAS  Google Scholar 

  • Bischofsberger W, Dichtl N, Rosenwinkel K-H, Seyfried CF, Böhnke B (2005) Anaerobtechnik, (Anaerobic technology), 2nd edn. Springer, Berlin (in German)

    Book  Google Scholar 

  • Bonelli PR, Buonomo EL, Cukierman AL (2007) Pyrolysis of sugarcane bagasse and pyrolysis with an Argentinean subbituminous coal. Energy Sources Part A 29:731–740

    Article  CAS  Google Scholar 

  • Börjesson P, Berglund M (2007) Environmental systems analysis of biogas systems—part II: the environmental impact of replacing various reference systems. Biomass Bioenerg 31:326–344

    Article  CAS  Google Scholar 

  • Borole AP, Klasson KT, Ridenour W, Holland J, Karim K, Al-Dahhan MH (2006) Methane production in a 100-L up flow bioreactor by anaerobic digestion of farm waste. Appl Biochem Biotechnol 129(132):887–896. https://doi.org/10.1385/ABAB:131:1:887

    Article  Google Scholar 

  • Bożym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of metal concentrations in food wastes for biogas production. Renew Energy 77:467–472

    Article  CAS  Google Scholar 

  • Braun V, Hantke K, Köster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145

    CAS  Google Scholar 

  • Campbell PGC, Errecalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton—applicability of the biotic ligand model. Comp Biochem Physiol C: Toxicol Pharmacol 133:189–206

    Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99(10):4044–4064

    Article  CAS  Google Scholar 

  • Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534

    Article  CAS  Google Scholar 

  • Daquiado AR, Cho KM, Kim TY, Kim SC, Chang H-H, Lee YB (2014) Methanogenic archaea diversity in Hanwoo (Bos taurus coreanae) rumen fluid, rectal dung, and barn floor manure using a culture independent method based on mcrA gene sequences. Anaerobe 27:77–81

    Article  CAS  Google Scholar 

  • Demirbas A (2007a) Combustion systems for biomass fuels. Energy Sources Part A 29:303–312

    Article  CAS  Google Scholar 

  • Demirbas A (2007b) Modernization of biomass energy conversion facilities. Energy Sources Part B 2:227–235

    Article  CAS  Google Scholar 

  • Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energy Convers Manag 50:1746–1760

    Article  CAS  Google Scholar 

  • Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenerg 35:992–998

    Article  CAS  Google Scholar 

  • Deppenmeier U (2002) Redox-driven proton translocation in methanogenic archaea. Cell Mol Life Sci 59(9):1513–1533

    Article  CAS  Google Scholar 

  • Diaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Biores Technol 101(20):7724–7730

    Article  CAS  Google Scholar 

  • Dinh HT, Kuever J, Mußmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427(6977):829–832

    Article  CAS  Google Scholar 

  • Dressler D, Loewen A, Nelles M (2012) Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int J Life Cycle Assess 17(9):1104–1115

    Article  CAS  Google Scholar 

  • Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9

    Article  CAS  Google Scholar 

  • Elizabeth JN (2013) Tools to study distinct metal pools in biology. Dalton Trans 42:3210

    Article  Google Scholar 

  • El-Mashad HM, Loon Van, Wilko KP, Zeeman G, Bot GPA, Lettinga G (2003) Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study. Rev Environ Sci Biotechnol 2(1):53–66

    Article  Google Scholar 

  • Ermler U (2005) On the mechanism of methyl-coenzyme M reductase. Dalton Trans 21:3451–3458

    Article  CAS  Google Scholar 

  • Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77

    Article  CAS  Google Scholar 

  • Farrell J, Kason M, Melitas N, Li T (2000) Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ Sci Technol 34:514–521

    Article  CAS  Google Scholar 

  • Feng X-M, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste-linking process to microflora. FEMS Microbiol Ecol 74:226–240

    Article  CAS  Google Scholar 

  • Feng Y, Zhang Y, Quan X, Chen S (2014) Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res 52:242–250

    Article  CAS  Google Scholar 

  • Ferguson AD, Deisenhofer J (2004) Metal import through microbial membranes. Cell 116:15–24

    Article  CAS  Google Scholar 

  • Fermoso FG, Collins G, Bartacek J, O’Flaherty V, Lens P (2008) Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: induction and microbial community dynamics. Biotechnol Bioeng 99(1):49–58

    Article  CAS  Google Scholar 

  • Fermoso FG, Bartacek J, Jansen S, Lens P (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407(12):3652–3667

    Article  CAS  Google Scholar 

  • Ferrer I, Garfi M, Uggetti E, Ferrer-Marti L, Calderon A, Velo E (2011) Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenerg 35(5):1668–1674

    Article  CAS  Google Scholar 

  • Fränzle S, Markert B (2002) The biological system of the elements (BSE)—a brief introduction into historical and applied aspects with special reference on “ecotoxicological identity cards” for different element species (e.g. As and Sn). Environ Pollut 120:27–45

    Article  Google Scholar 

  • Gao B, Zhu X, Xu C, Yue Q, Li W, Wei J (2008) Influence of extracellular polymeric substances on microbial activity and cell hydrophobicity in biofilms. J Chem Technol Biotechnol 83:227–232

    Article  CAS  Google Scholar 

  • Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:61

    Google Scholar 

  • Gonzalez-Gil G, Jansen S, Zandvoort MH, van Leeuwen HP (2003) Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors. Biotechnol Bioeng 82:134–142

    Article  CAS  Google Scholar 

  • Guerrero-Barajas C, Field JA (2005) Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation 16:215–228

    Article  CAS  Google Scholar 

  • Guibaud G, Bordas F, Saaid A, D’Abzac P, Van Hullebusch E (2008) Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids Surf B 63:48–54

    Article  CAS  Google Scholar 

  • Gustavsson J, Svensson BH, Karlsson A (2011) The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors. Water Sci Technol 64:320–325

    Article  CAS  Google Scholar 

  • Gustavsson J, Yekta SS, Sundberg C, Karlsson A, Ejlertsson J, Skyllberg U, Svensson BH (2013) Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl Energy 112:473–477

    Article  CAS  Google Scholar 

  • Hassler CS, Slaveykova VI, Wilkinson KJ (2004) Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligandmodels. Environ Toxicol Chem 23:283–291

    Article  CAS  Google Scholar 

  • Hattori S, Galushko AS, Kamagata Y, Schink B (2005) Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187:3471–3476

    Article  CAS  Google Scholar 

  • Hendroko SR, Wahonob SK, Praptiningsih GA, Yudhantoe AS, Wahyudif I, Dohongg S (2014) The study of optimization hydrolysis substrate retention time and augmentation as an effort to increasing biogas productivity from Jatropha curcas Linn. Capsule husk at two stage digestion. Energy Procedia 47:255–262

    Article  Google Scholar 

  • Hu C, Yan B, Wang K-J, Xiao X-M (2018) Modeling the performance of anaerobic digestion reactor by the anaerobic digestion system model (ADSM). J Environ Chem Eng 6(2):2095–2104

    Article  CAS  Google Scholar 

  • Hudson RJM (1998) Which aqueous species control the rates of trace metal uptake by aquatic biota: observations and predictions of non-equilibrium effects. Sci Total Environ 219:95–115

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Biores Technol 101:8868–8872

    Article  CAS  Google Scholar 

  • Ishaq F, Roussel J, Marquet CC, Bridgeman J (2005) Trace metal supplementation in sludge digesters. In: AD 12 IWA world congress, Guadalajara, Mexico, November 1–5

  • Jarvis A, Nordberg A, Jarlsvik T, Mathisen B, Svensson BH (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenerg 12:453–460

    Article  CAS  Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  Google Scholar 

  • Kameswari KS, Chitra K, Porselvam S, Thanasekaran K (2010) Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol Environ Policy 12:517–524

    Article  CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    Article  CAS  Google Scholar 

  • Karekezi S, Lata K, Coelho ST (2004) Traditional biomass energy-improving its use and moving to modern energy use. In: Secretariat of the international conference for renewable energies, Bonn, June 1–4

  • Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114(4):446–452

    Article  CAS  Google Scholar 

  • Keum YS, Li X (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere 54:255–263

    Article  CAS  Google Scholar 

  • Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinage Y, Abe N, Morimura S (2001) Influence of Ni2 + and Co2 + on methanogenic activity and the amounts of co-enzymes involved in methanogenesis. J Biosci Bioeng 91:590–595

    Article  CAS  Google Scholar 

  • Kim YS, Kim YH (2003) Application of ferro-cobalt magnetic fluid for oil sealing. J Magn Magn Mater 267:105–110

    Article  CAS  Google Scholar 

  • Kimming M, Sundberg C, Nordberg A, Baky A, Bernesson S, Norén O et al (2011) Biomass from agriculture in small-scale combined heat and power plants—a comparative life cycle assessment. Biomass Bioenerg 35:1572–1581

    Article  CAS  Google Scholar 

  • Kloss R (1986) Planung von Biogasanlagen nach technischwirtschaftlichen Kriterien, (Biogas plants planning subject to techno-economic criteria). R. Oldenbourg Verlag, München (in German)

    Google Scholar 

  • Krom BPB (2002) Impact of the Mg2+-citrate transporter CitM on heavy metal toxicity in Bacillus subtilis. Arch Microbiol 178:370–375

    Article  CAS  Google Scholar 

  • Krongthamchat K, Riffat R, Dararat S (2006) Effect of trace metals on halophilic and mixed cultures in anaerobic treatment. Int J Environ Sci Technol 3(2):103–112

    Article  CAS  Google Scholar 

  • Kung JW, Löffler C, Dörner K, Heintz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M (2009) Identification and characterization of the tungsten containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 106:17687–17692

    Article  CAS  Google Scholar 

  • Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, Merlin D (2011) Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol 300:371–383

    Article  CAS  Google Scholar 

  • Łebkowska M, Rutkowska-Narożniak A, Pajor E, Pochanke Z (2011) Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Biores Technol 102:8777–8782

    Article  CAS  Google Scholar 

  • Lebuhn M, Liu F, Heuwinkel H, Gronauer A (2008) Biogas production from mono-digestion of maize silageelong-term process stability and requirements. Water Sci Technol 58(8):1645–1651

    Article  CAS  Google Scholar 

  • Lee H, Shoda M (2008) Stimulation of anaerobic digestion of thickened sewage sludge by iron-rich sludge produced by the fenton method. J Biosci Bioeng 106:107–110

    Article  CAS  Google Scholar 

  • Li Y, Chen Y, Wu J (2019) Enhancement of methane production in anaerobic digestion process: a review. Appl Energy 240:120–137

    Article  CAS  Google Scholar 

  • Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD (2017) Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Biores Technol 239:345–352

    Article  CAS  Google Scholar 

  • Lin R, Deng C, Cheng J, Xia A, Lens PNL, Jackson SA, Dobson ADW, Murphy JD (2018) Graphene facilitates biomethane production from protein-derived glycine in anaerobic digestion. Iscience 10:158–170

    Article  CAS  Google Scholar 

  • Liu Y, Zhang Y, Quan X, Chen S, Zhao H (2011) Applying an electric field in a built-in zero valent iron-anaerobic reactor for enhancement of sludge granulation. Water Res 45:1258–1266

    Article  CAS  Google Scholar 

  • Liu Y, Zhang Y, Zhao Z, Li Y, Quan X, Chen S (2012) Enhanced azo dye wastewater treatment in a two-stage anaerobic system with Fe0 dosing. Biores Technol 121:148–153

    Article  CAS  Google Scholar 

  • Lo HM, Chiu HY, Lo SW, Lo FC (2012) Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion. Biores Technol 114:90–94

    Article  CAS  Google Scholar 

  • Lü F, Zhou Q, Wua D, Wang T, Shao L, He P (2015) Dewaterability of anaerobic digestate from food waste: relationship with extracellular polymeric substances. Chem Eng J 262:932–938

    Article  CAS  Google Scholar 

  • Luna-delRisco M, Orupold K, Dubourguier H-C (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189:603–608

    Article  CAS  Google Scholar 

  • Maranon E, Salter AM, Castrillon L, Heavenb S, Fernández-Nava Y (2011) Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Manag 31(8):1745–1751

    Article  CAS  Google Scholar 

  • Meissner Y, Lamprecht A (2008) Alternative drug delivery approaches for the therapy of inflammatory bowel disease. J Pharm Sci 97:2878–2891

    Article  CAS  Google Scholar 

  • Meyer JS, Santore RC, Bobbitt JP, Debrey LD, Boese CJ, Paquin PR et al (1999) Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion activity does not. Environ Sci Technol 33(6):913–916

    Article  CAS  Google Scholar 

  • Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, Berga W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37(1):277–284

    Article  CAS  Google Scholar 

  • Morel FMM (1983) Principles of aquatic chemistry. Wiley, New York

    Google Scholar 

  • Mu H, Chen Y (2011) Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res 45:5612–5620

    Article  CAS  Google Scholar 

  • Mu H, Chen Y, Xiao N (2011) Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Biores Technol 102:10305–10311

    Article  CAS  Google Scholar 

  • Mudrack K, Kunst S (2003) Biologie der Abwasserreinigung, (Biology of wastewater treatment), 5th edn. Spektrum Akademischer Verlag, Berlin (in German)

    Google Scholar 

  • Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    Article  CAS  Google Scholar 

  • Nag R, Auer A, Markey BK, Whyte P, Nolan S, O’Flaherty V, Russell L, Bolton D, Fenton O, Richards K, Cummins E (2019) Anaerobic digestion of agricultural manure and biomass—critical indicators of risk and knowledge gaps. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.06.512

    Article  Google Scholar 

  • Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546

    Article  CAS  Google Scholar 

  • Nassar NN (2012) Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. In: Bhatnagar A (ed) Application of adsorbents for water pollution control. Bentham Science Publishers, Sharjah

    Google Scholar 

  • Ndegwa PM, Thompson SA (2001) Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Biores Technol 76(2):107–112

    Article  CAS  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C et al (2010) Polyphasic analyses of methanogenic archaea communities in agricultural biogas plants. Appl Environ Microbiol 76(8):2540–2548

    Article  CAS  Google Scholar 

  • Ni S-Q, Ni J, Yang N, Wang J (2013) Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Biores Technol 143:555–561

    Article  CAS  Google Scholar 

  • Niyogi SS (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    Article  CAS  Google Scholar 

  • Osuna MB, Iza J, Zandvoort M, Lens PNL (2003) Essential metal depletion in an anaerobic reactor. Water Sci Technol 48:1–8

    Article  CAS  Google Scholar 

  • Pagenkopf GK (1983) Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pM, and water hardness. Environ Sci Technol 17:342–347

    Article  CAS  Google Scholar 

  • Pantaleo A, De Gennaro B, Shah N (2013) Assessment of optimal size of anaerobic co-digestion plants: an application to cattle farms in the province of Bari (Italy). Renew Sustain Energy Rev 20:57–70

    Article  CAS  Google Scholar 

  • Paquin PR, Zoltay V, Winfield RP, Wu KB, Mathew R, Santore RC et al (2002) Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver. Comp Biochem Physiol C: Toxicol Pharmacol 133:305–343

    Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural Nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Pertl A, Mostbauer P, Obersteiner G (2010) Climate balance of biogas upgrading systems. Waste Manag 30(1):92–99

    Article  CAS  Google Scholar 

  • Phinney JT, Bruland KW (1994) Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira-Weissflogii. Environ Sci Technol 28:1781–1790

    Article  CAS  Google Scholar 

  • Pobeheim H, Munk B, Lindofer H, Guebitz GM (2011) Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res 45:781–787

    Article  CAS  Google Scholar 

  • Pöschl M, Ward S, Owende P (2012) Environmental impacts of biogas deployment—part I: life cycle inventory for evaluation of production process emissions to air. J Clean Prod 24:168–183

    Article  CAS  Google Scholar 

  • Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233

    Article  CAS  Google Scholar 

  • Qiang H, Lang D-L, Li Y-Y (2012) High-solid mesophilic methane fermentation of food waste with an emphasis on iron, cobalt, and nickel requirements. Biores Technol 103:21–27

    Article  CAS  Google Scholar 

  • Qiang H, Niu Q, Chi Y, Li Y (2013) Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste. Chem Eng J 222:330–336

    Article  CAS  Google Scholar 

  • Raiswell R, Benning LG, Tranter M, Tulaczyk S (2008) Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Trans 9:7

    Article  CAS  Google Scholar 

  • Raj K, Moskowitz R (2002) A review of damping applications of ferrofluids. Trans Magn 16:358–363

    Article  Google Scholar 

  • Rao PP, Seenayya G (1994) Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World J Microbiol Biotechnol 10(2):211–214

    Article  Google Scholar 

  • Ravuri HK (2013) Role of factors influencing on anaerobic process for production of bio hydrogen. Future fuel. Int J Adv Chem 1(2):31–38

    Article  Google Scholar 

  • Rehl T, Muller J (2013) CO2 abatement cost of greenhouse gas (GHG) mitigation by different conversion pathways. J Environ Manage 114:13–25

    Article  CAS  Google Scholar 

  • Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327

    Article  CAS  Google Scholar 

  • Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181

    Article  CAS  Google Scholar 

  • Sahm H (1981) Biologie der methan-bildung, (biology of methane formation). Chem Ing Tec 53(11):854–863 (in German)

    Article  CAS  Google Scholar 

  • Saito MA, Goepfert TJ, Ritt JT (2008) Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol Oceanogr 53:276–290

    Article  CAS  Google Scholar 

  • Samer M (2010) A software program for planning and designing biogas plants. Trans ASABE 53(4):1277–1285

    Article  Google Scholar 

  • Samer M (2012) Biogas plant constructions. In: Kumar S (ed) Biogas. InTech, Rijeka. https://doi.org/10.5772/31887. ISBN 978-953-51-0204-5

    Chapter  Google Scholar 

  • Samer M, Helmy K, Morsy S, Assal T, Amin Y, Mohamed S et al (2019) Cellphone application for computing biogas, methane and electrical energy production from different agricultural wastes. Comput Electron Agric 163:104873

    Article  Google Scholar 

  • Schäfer W, Letho M, Teye F (2006) Dry anaerobic digestion of organic residues on-farm—a feasibility study. MTT Agrifood Research Finland, Vihti

    Google Scholar 

  • Schattauer A, Abdoun E, Weiland P, Plöchl M, Heiermann M (2011) Abundance of trace elements in demonstration biogas plants. Biosys Eng 108:57–65

    Article  Google Scholar 

  • Seyfried CF, Bode H, Austermann-Haun U, Brunner G, von Hagel G, Kroiss H et al (1990) Anaerobe Verfahren zur Behandlung von Industrieabwässern, (Anaerobic process for industrial wastewater treatment). Korrespondenz Abwasser 37(10):1247–1251 (in German )

    Google Scholar 

  • Shi JC, Liao XD, Wu YB, Liang JB (2011) Effect of antibiotics on methane arising from anaerobic digestion of pig manure. Anim Feed Sci Technol 166:457–463

    Article  CAS  Google Scholar 

  • Singh R, Mandal SK (2011) Microbial removal of hydrogen sulfide from biogas. Energy Sources Part A Recovery Util Environ Effects 34(4):306–315

    Article  CAS  Google Scholar 

  • Slaveykova VI, Parthasarathy N, Buffle J, Wilkinson KJ (2004) Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Sci Total Environ 328:55–68

    Article  CAS  Google Scholar 

  • Slimane K, Fathya S, Assia K, Hamza M (2014) Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: process stability and biogas production. Energy Procedia 50:57–63

    Article  CAS  Google Scholar 

  • Song M, Shin SG, Hwang S (2010) Methanogenic population dynamics assessed by real-time quantitative pcr in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Biores Technol 101:S23–S28

    Article  CAS  Google Scholar 

  • Stock T, Rother M (2009) Selenoproteins in archaea and gram-positive bacteria. Biochem Biophys Acta 1790:1520–1532

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998) Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga chlamydomonas. Limnol Oceanogr 43:1055–1064

    Article  CAS  Google Scholar 

  • Takashima M, Speece RE (1990) Mineral requirements for methane fermentation. Crit Rev Environ Control 19(5):465–479

    Article  CAS  Google Scholar 

  • Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–583

    Article  CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Tricase C, Lombardi M (2012) Environmental analysis of biogas production systems. Biofuels 3(6):749–760

    Article  CAS  Google Scholar 

  • Uemura SH (2010) Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste. Int J Environ Res 4:33–40

    CAS  Google Scholar 

  • Van Leeuwen HP (1999) Metal speciation dynamics and bioavailability: inert and labile complexes. Environ Sci Technol 33:3743–3748

    Article  CAS  Google Scholar 

  • Van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Sci Technol 57:1137–1148

    Article  CAS  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. https://doi.org/10.1002/smll.200901158

    Article  CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  Google Scholar 

  • Von Moos N, Bowen P, Slaveykova V (2014) Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ Sci Nano 1:214–232

    Article  CAS  Google Scholar 

  • Wang XJ, Yang GH, Feng YZ, Ren GX, Han XH (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Biores Technol 120:78–83

    Article  CAS  Google Scholar 

  • Wang L, Aziz TN, de losReyes III FL (2013) Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste. Water Res 47(11):3835–3844

    Article  CAS  Google Scholar 

  • Weiland P (2006) Anforderungen an Pflanzen seitens des Biogasanlagenbetreibers, (Exigencies for biogas plant operators). Thüringer Bioenergietag Schriftenreihe der Thüringer Landesanstalt für Landwirtschaft (TLL) 12:26–32 (in German)

    Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  CAS  Google Scholar 

  • Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two stage thermophilic anaerobic membrane bioreactor. Biores Technol 102(9):5353–5360

    Article  CAS  Google Scholar 

  • Wilson M, Kannangara K, Smith G, Simmons M, Raguse B (2002) Nanotechnology: basic science and emerging technologies. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88(11):1721–1731

    Article  CAS  Google Scholar 

  • Wu D, Yang Z, Tian G (2011) Inhibitory effects of Cu (II) on fermentative methane production using bamboo wastewater as substrate. J Hazard Mater 195:170–174

    Article  CAS  Google Scholar 

  • Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Biores Technol 95:1–10

    Article  CAS  Google Scholar 

  • Yang G, Fang H, Wang J, Jia H, Zhang H (2019) Enhanced anaerobic digestion of up-flow anaerobic sludge blanket (UASB) by blast furnace dust (BFD): feasibility and mechanism. Int J Hydrogen Energy 44(33):17709–17719

    Article  Google Scholar 

  • Yin D, Liu W, Zhai N, Yang G, Wang X, Feng Y, Ren G (2014) Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition. Biores Technol 166:373–380

    Article  CAS  Google Scholar 

  • Yue Z-B, Yu H-Q (2009) Anaerobic batch degradation of cattail by rumen cultures. Int J Environ Pollut 38:299–308

    Article  CAS  Google Scholar 

  • Yue Z-B, Li W-W, Yu H-Q (2013) Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Biores Technol 128:738–744

    Article  CAS  Google Scholar 

  • Zahan Z, Othman MZ (2019) Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. Biores Technol 281:286–295

    Article  CAS  Google Scholar 

  • Zandvoort MH, Geerts R, Lettinga G, Lens P (2002) Effect of long-term cobalt deprivation on methanol degradation in a methanogenic granular sludge reactor. Biotechnol Prog 18:1233–1239

    Article  CAS  Google Scholar 

  • Zandvoort M, Gieteling J, Lettinga G, Lens P (2004) Stimulation of methanol degradation in UASB reactors: in situ versus pre-loading cobalt on anaerobic granular sludge. Biotechnol Bioeng 87:897–904

    Article  CAS  Google Scholar 

  • Zandvoort MH, van Hullebusch ED, Gieteling J, Lens PNL (2006a) Granular sludge in full-scale anaerobic bioreactors: trace element content and deficiencies. Enzyme Microb Technol 39:337–346

    Article  CAS  Google Scholar 

  • Zandvoort MH, van Hullebusch ED, Fermoso FG, Lens PNL (2006b) Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Eng Life Sci 6:293–301

    Article  CAS  Google Scholar 

  • Zandvoort MH, Hullebusch ED, Golubnic S, Gieteling J, Lens PNL (2006c) Induction of cobalt limitation in methanol feed UASB-reactors. J Chem Technol Biotechnol 81(9):1486–1495

    Article  CAS  Google Scholar 

  • Zerkle AL, House CH, Brantley SL (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305:467–502

    Article  CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang YS, Zhang ZY, Suzuki K, Maekawa T (2003) Uptake and mass balance of trace metals for methane producing bacteria. Biomass Bioenerg 25:427–433

    Article  CAS  Google Scholar 

  • Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genom 10:1–26. https://doi.org/10.1186/1471-2164-10-78

    Article  CAS  Google Scholar 

  • Zhang Y, Jing Y, Zhang J, Sun L, Quan X (2010) Performance of a ZVI-UASB reactor for azo dye wastewater treatment. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.2485

    Article  Google Scholar 

  • Zhen G, Lu X, Li Y-Y, Liu Y, Zhao Y (2015) Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chem Eng J 263:461–470

    Article  CAS  Google Scholar 

  • Zitomer DH, Johnson CC, Speece RE (2008) Metal stimulation and municipal digester thermophilic/mesophilic activity. J Environ Eng 134:42–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Science and Technology Development Fund (STDF) of Egypt for funding this paper, where this research is conducted in the framework of the BIOGASMENA research Project (# 30278) under the umbrella of the ERANETMED program of Horizon 2020 launched by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Essam M. Abdelsalam or Mohamed Samer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, E.M., Samer, M. Biostimulation of anaerobic digestion using nanomaterials for increasing biogas production. Rev Environ Sci Biotechnol 18, 525–541 (2019). https://doi.org/10.1007/s11157-019-09505-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-019-09505-0

Keywords

Navigation