Enzymes of aldoxime–nitrile pathway for organic synthesis

Mini Review
  • 9 Downloads

Abstract

Aldoxime–nitrile pathway is one of the important routes of carbon and nitrogen metabolism in many life forms and a key interface for plant–microbe interactions. This pathway starts with transformation of amino acids to aldoximes, which are converted to nitriles and the later are ultimately hydrolyzed to acids and ammonia. Understanding and engineering of the enzymes involved in this pathway viz. cytochrome P450/CYP79, aldoxime dehydratase, nitrilase, nitrile hydratase, amidase and hydroxynitrile lyase, presents unprecedented opportunities in biocatalysis and green chemistry. Co-expressing these enzymes in prokaryotic and eukaryotic microbial hosts and tailoring their properties i.e. activity, specificity, stability and enantioselectivity may lead to develop sustainable bioprocesses for the synthesis of industrially important nitriles, amides and acids.

Keywords

Aldoxime dehydratase Hydroxynitrile lyase Nitrilase Biotransformation 

Notes

Acknowledgements

Authors are highly grateful to University Grants Commission (UGC) New Delhi, India for providing financial assistance in the form of Senior Research Fellowship to Dr. Vijay Kumar. The computational facility availed at Sub-Distributed Information Centre (SDIC), Himachal Pradesh University, Shimla, is also duly acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. Asif M, Bhalla TC (2016) Hydroxynitrile lyase of wild Apricot (Prunus armeniaca L.): purification, characterization and application in synthesis of enantiopure mandelonitrile. Catal Lett 46:1118–1127CrossRefGoogle Scholar
  2. Bak S, Kahn RA, Nielsen HL, Moller BL, Halkier BA (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36(3):393–405CrossRefGoogle Scholar
  3. Bak S, Olsen CE, Halkier BA, Møller BL (2000) Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Plant Physiol 123(4):1437–1448CrossRefGoogle Scholar
  4. Bar-Even A, Tawfik DS (2014) Engineering specialized metabolic pathways—is there a room for enzyme improvements? Curr Opin Biotechnol 24:310–319CrossRefGoogle Scholar
  5. Baum S, van Rantwijk F, Stolz A (2012) Application of a recombinant Escherichia coli whole-cell catalyst expressing hydroxynitrile lyase and nitrilase activities in ionic liquids for the production of (S)-mandelic acid and (S)-mandeloamide. Adv Synth Catal 354:113–122CrossRefGoogle Scholar
  6. Betke T, Rommelmann P, Oike K, Asano Y, Grçger H (2017) Cyanide-free and broadly applicable enantioselective synthetic platform for chiral nitriles through a biocatalytic approach. Angew Chem Int Ed 56:12361–12366CrossRefGoogle Scholar
  7. Bhalla TC, Kumar V, Bhatia SK (2014) Hydroxy acids: production and applications. In: Singh RS, Pandey A, Larroche C (eds) Advances in industrial biotechnology. IK International Publishing House Pvt. Ltd. India, pp 56–76Google Scholar
  8. Bhalla TC, Kumar V, Kumar V (2017) Microbial remediation of cyanides. In: Rathoure AK (ed) Bioremediation current research and applications. IK International Publishing House Pvt. Ltd. India, pp 88–110Google Scholar
  9. Bhalla TC, Kumar V, Kumar V, Thakur N, Savitri (2018) Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol.  https://doi.org/10.1007/s12010-018-2705-7 Google Scholar
  10. Bornscheuer UT, Huisman G, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRefGoogle Scholar
  11. Celenza JL (2001) Metabolism of tyrosine and tryptophan-new genes for old pathways. Curr Opin Plant Biol 3:234–240CrossRefGoogle Scholar
  12. Chen J, Zheng RC, Zheng YG, Shen YC (2009) Microbial transformation of nitriles to high value acids or amides. Adv Biochem Eng Biotechnol 113:33–77Google Scholar
  13. Chmura A, Rustler S, Paravidino M, Rantwijk F, Stolz A, Sheldon RA (2013) The combi-CLEA approach: enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron Asymmetry 24:1225–1232CrossRefGoogle Scholar
  14. Gallego FL, Dannert CS (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14(2):174–183CrossRefGoogle Scholar
  15. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142CrossRefGoogle Scholar
  16. Gong JS, Shi JS, Lu ZM, Zhou ZM, Xu ZH (2017) Nitrile converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insight and promises. Crit Rev Biotechnol 23:1–13Google Scholar
  17. Hashimoto Y, Hosaka H, Oinuma K, Goda M, Higashibata H, Kobayashi M (2005) Nitrile pathway involving acyl-CoA synthetase. J Biol Chem 280:8660–8667CrossRefGoogle Scholar
  18. Howden AJM, Preston GM (2009) Nitrilase enzymes and their role in plant-microbe interactions. Microb Biotechnol 2:441–451CrossRefGoogle Scholar
  19. Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner TG (2015) The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol 15:128CrossRefGoogle Scholar
  20. Janowitz T, Trompetter I, Piotrowski M (2009) Evolution of nitrilases in glucosinolate-containing plants. Phytochemistry 70:1680–1686CrossRefGoogle Scholar
  21. Jiang S, Zhang L, Yao Z, Gao B, Wang H, Maob X, Wei D (2017) Switching a nitrilase from Syechocystis sp. PCC6803 to a nitrile hydratase by rationally regulating reaction pathways. Catal Sci Technol.  https://doi.org/10.1039/c7cy00060j Google Scholar
  22. Kato Y, Asano Y (2006) Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 70:92–101CrossRefGoogle Scholar
  23. Kato Y, Ooi R, Asano Y (1999) A new enzymatic method of nitrile synthesis by Rhodococcus sp. strain YH3-31. J Mol Catal B Enzymatic 6:249–256CrossRefGoogle Scholar
  24. Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y (2000a) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 39:800–809CrossRefGoogle Scholar
  25. Kato Y, Ooi R, Asano Y (2000b) Distribution of aldoxime dehydratase in microorganisms. Appl Environ Microbiol 66(6):2290–2296CrossRefGoogle Scholar
  26. Kato Y, Yoshida S, Asano Y (2005) Polymerase chain reaction for identification of aldoxime dehydratase in aldoxime- or nitrile-degrading microorganism. FEMS Microbiol Lett 246:243–249CrossRefGoogle Scholar
  27. Kiziak C, Stolz A (2009) Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 75:5592–5599CrossRefGoogle Scholar
  28. Kriechbaumer V, Park WJ, Gierl A, Glawischnig E (2006) Auxin biosynthesis in maize. Plant Biol 8(3):334–339CrossRefGoogle Scholar
  29. Lanfranchi E, Sheldon RA (2013) Recent developments in hydroxynitrile lyases for industrial biotechnology. Recent Patents Biotechnol 7:197–206CrossRefGoogle Scholar
  30. Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG (2014) Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereo-specific biosynthesis of (R)-(−)-mandelic acid. J Agric Food Chem 62:4685–4694CrossRefGoogle Scholar
  31. Luck K, Jia Q, Huber M, Handrick V, Wong GK, Nelson DR, Chen F, Gershenzon J, Köllner TG (2017) CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata. Plant Mol Biol 95:169–180CrossRefGoogle Scholar
  32. Mahadevan S (1973) Role of oximes in nitrogen metabolism in plants. Ann Rev Plant Physiol 24:69–88CrossRefGoogle Scholar
  33. Martinkova L, Kren V (2010) Biotransformations with nitrilases. Curr Opinion Chem Biol 14:130–137CrossRefGoogle Scholar
  34. Martinkova L, Vesela AB, Rinagelova A, Chmatal M (2015) Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide. Appl Microbiol Biotechnol 99:8875–8882CrossRefGoogle Scholar
  35. Martínková L, Rucka L, Nesvera J, Patek M (2017) Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 33:8CrossRefGoogle Scholar
  36. Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase–nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron: Asymmetry 17:320–323CrossRefGoogle Scholar
  37. Mathew S, Nadarajan SP, Sundaramoorthy U, Jeon H, Chung T, Yun H (2017) Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnol Lett 39(4):535–543CrossRefGoogle Scholar
  38. Metzner R, Okazaki S, Asano Y, Groger H (2014) Cyanide-free enantioselective synthesis of nitriles: synthetic proof of a biocatalytic concept and mechanistic insights. Chem Cat Chem 6:3105–3109Google Scholar
  39. Miki Y, Asano Y (2014) Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase. Appl Environ Microbiol 80:6828–6836CrossRefGoogle Scholar
  40. Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA (2002) Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22(3):279–295CrossRefGoogle Scholar
  41. Nomura J, Hashimoto H, Ohtac T, Hashimotoa Y, Wadaa K, Naruta Y, Oinumaa K, Kobayashi M (2012) Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis. PNAS 110:2810–2815CrossRefGoogle Scholar
  42. Oinuma K, Hashimoto Y, Konishi K, Goda M, Noguchi T, Higashibata H, Kobayashi M (2003) Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphisB23. J Biol Chem 278:29600–29608CrossRefGoogle Scholar
  43. Padhi SK (2017) Modern approaches to discovering new hydroxynitrile lyases for biocatalysis. Chembiochem 18(2):152–160CrossRefGoogle Scholar
  44. Petrickova A, Vesela AB, Kaplan O, Kubac D, Uhnakova B, Malandra A, Felsberg J, Rinagelova A, Weyrauch P et al (2012) Purification and characterization of heterologously expressed nitrilases from filamentous fungi. App Microbiol Biotechnol 93:1553–1561CrossRefGoogle Scholar
  45. Pinakoulaki E, Koutsoupakis C, Sawai H, Pavlou A, Kato Y, Asano Y, Aono S (2011) Aldoxime dehydratase: probing the heme environment involved in the synthesis of the carbon nitrogen triple bond. J Phy Chem B 115:13012–13018CrossRefGoogle Scholar
  46. Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741CrossRefGoogle Scholar
  47. Rantwijka FV, Stolz A (2015) Enzymatic cascade synthesis of (S)-2-hydroxycarboxylic amides and acids: cascade reactions employing a hydroxynitrile lyase, nitrile-converting enzymes and an amidase. J Mol Catal B Enzymatic 114:25–30CrossRefGoogle Scholar
  48. Reetz MT (2016) What are the limitations of enzymes in synthetic organic chemistry? Chem Rec 16:2449–2459CrossRefGoogle Scholar
  49. Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785.  https://doi.org/10.3389/fmicb.2016.01785 CrossRefGoogle Scholar
  50. Schreiner U, Hecher B, Obrowsky S, Waich K, Klempier N, Steinkellner G, Gruber K, Rozzell JD, Glieder A, Winkler M (2010) Directed evolution of Alcaligenes faecalis nitrilase. Enzym Microb Technol 47:140–146CrossRefGoogle Scholar
  51. Sharma M, Sharma NN, Bhalla TC (2005) Hydroxynitrile lyases: at the interface of biology and chemistry. Enz Microb Technol 37:279–294CrossRefGoogle Scholar
  52. Sharma M, Sharma NN, Bhalla TC (2009) Amidases: versatile enzymes in nature. Rev Environ Sci Biotechnol 8:343–366CrossRefGoogle Scholar
  53. Sheldon RA (2016) Engineering a more sustainable world through catalysis and green chemistry. J R Soc Interface 13:20160087CrossRefGoogle Scholar
  54. Shin JH, Lee SY (2014) Metabolic engineering of microorganisms for the production of l-arginine and its derivatives. Microb Cell Fact 13:166CrossRefGoogle Scholar
  55. Sosedov O, Stolz A (2015) Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Appl Microb Biotechnol 99:2623–2635CrossRefGoogle Scholar
  56. Sosedov O, Baum S, Burger S, Kiziak C, Stolz A, Bu S, Matzer K (2010) Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Appl Environ Microbiol 76:3668–3674CrossRefGoogle Scholar
  57. Sun Z, Zhang K, Chen C, Wu Y, Tang Y, Georgiev MI, Zhang X, Lin M, Zhou M (2018) Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Appl Microbiol Biotechnol 102:9–16CrossRefGoogle Scholar
  58. Weeks AM, Chang MCY (2011) Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry 50(24):5404–5418CrossRefGoogle Scholar
  59. Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42:12056–12066CrossRefGoogle Scholar
  60. Yamaguchi T, Asano Y (2015) Complete genome sequence of an aldoxime degrader, Bacillus sp OxB-1. Genome Announc 3(1):e00025-15CrossRefGoogle Scholar
  61. Yasukawa K, Asano Y (2012) Enzymatic synthesis of chiral phenylalanine derivatives by a dynamic kinetic resolution of corresponding amide and nitrile substrates with a multi-enzyme system. Adv Synth Catal 354:3327–3332CrossRefGoogle Scholar
  62. Yasukawa K, Hasemi R, Asano Y (2011) Dynamic kinetic resolution of α-aminonitriles to form chiral α-amino acids. Adv Synth Catal 353:2328–2332CrossRefGoogle Scholar
  63. Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, Kuroda A, Ohtake H (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11:120CrossRefGoogle Scholar
  64. Zagrobelny M, Moller L (2011) Cynogenic glycosides in chemical warfare between plants and insects: the burnet moth-birds foot trefoil model system. Phytochem 72:1585–1592CrossRefGoogle Scholar
  65. Zagrobelny M, Bak S, Moller BL (2008) Cyanogenesis in plants and arthropods. J Phytochem 69:1457–1468CrossRefGoogle Scholar
  66. Zhang L, Yin B, Wang C, Jiang S, Wang H, Yuan YA, Wei D (2014a) Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. J Struct Biol 188:93–101CrossRefGoogle Scholar
  67. Zhang XH, Liu ZQ, Xue YP, Zheng YG (2014b) Activity improvement of a regioselective nitrilase from Acidovorax facilis and its application in the production of 1-(cyanocyclohexyl) acetic acid. Process Biochem 49:2141–2148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyHimachal Pradesh UniversityHimachalIndia

Personalised recommendations