Advertisement

Sustainable biogas mitigation and value-added resources recovery using methanotrophs intergrated into wastewater treatment plants

  • Ahmed AlSayed
  • Ahmed Fergala
  • Ahmed Eldyasti
review paper
  • 449 Downloads

Abstract

Methane is classified as the second major greenhouse gas with a global warming potential 25 times higher than carbon dioxide. Wastewater treatment plants (WWTPs) are considered as one of the main anthropogenic sources for global methane emissions. Utilizing the anaerobic digestion driven biogas, methanotrophs can offer a prominent solution for coupling methane mitigation with value-added resources recovery. Hence, methanotrophs can play a pivotal role in the paradigm shift to consider wastewater streams as proactive energy and value-added material resource instead of waste requiring further treatment. This review is destined to summarize the recent accomplishments in three methanotrophic-based biotechnological applications which are methanol, biopolymers production and biological nitrogen removal processes. Moreover, methanotrophs taxonomy, metabolism, and growth conditions are reviewed. In addition, the possibility to link the aforementioned applications within the operation of existing WWTPs in order to transform “energy-consuming treatment processes” into “energy-saving and energy-positive systems” is discussed.

Graphical Abstract

Keywords

Biogas Methanotrophs Methanol Biopolymers PHB Denitrification Wastewater treatment 

Notes

Acknowledgements

The authors gratefully acknowledge Natural Science and Engineering Research Council of Canada (NSERC) and Seed Fund, York University, and City of Toronto, ON, Canada for their endless support and interest at every stage of this research project.

References

  1. AlSayed A, Fergala A, Khattab S, ElSharkawy A, Eldyasti A (2018) Optimization of methane bio-hydroxylation using waste activated sludge mixed culture of type I methanotrophs as biocatalyst. Appl Energy 211:755–763.  https://doi.org/10.1016/j.apenergy.2017.11.090 CrossRefGoogle Scholar
  2. Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220.  https://doi.org/10.1111/j.1574-6968.1995.tb07421.x CrossRefGoogle Scholar
  3. Anthony C (1982) The biochemistry of methylotrophs. Academic Press, LondonGoogle Scholar
  4. Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci 105:10203–10208.  https://doi.org/10.1073/pnas.0702643105 CrossRefGoogle Scholar
  5. Babel W (1992) Pecularities of methylotrophs concerning overflow metabolism, especially the synthesis of polyhydroxyalkanoates. FEMS Microbiol Rev 9:141–148.  https://doi.org/10.1111/j.1574-6968.1992.tb05831.x CrossRefGoogle Scholar
  6. Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3:36–46.  https://doi.org/10.1111/j.1758-2229.2010.00180.x CrossRefGoogle Scholar
  7. Belova SE, Kulichevskaya IS, Bodelier PLE, Dedysh SN et al (2013) Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 63:1096–1104.  https://doi.org/10.1099/ijs.0.043505-0 CrossRefGoogle Scholar
  8. Bjorck CE, Dobson PD, Pandhal J (2018) Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng 5:1–38.  https://doi.org/10.3934/bioeng.2018.1.1 CrossRefGoogle Scholar
  9. Bachmann N, Jansen J, Baxter D, Bochmann G, MONTPART (2015) Sustainable biogas production in municipal wastewater treatment plants. EU Science Hub—European Commission [WWW Document]. EU Sci Hub. https://ec.europa.eu/jrc/en/publication/sustainable-biogas-production-municipal-wastewater-treatment-plants. Accessed 31 Oct 2016
  10. Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MSM, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng J-F, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001–7002.  https://doi.org/10.1128/JB.06267-11 CrossRefGoogle Scholar
  11. Bodrossy L, Holmes EM, Holmes AJ, Kovács KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs Methylocaldum gen. nov. Arch Microbiol 168:493–503CrossRefGoogle Scholar
  12. Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312.  https://doi.org/10.1016/j.femsec.2004.02.006 CrossRefGoogle Scholar
  13. Bowman J (2006) The methanotrophs—the families Methylococcaceae and Methylocystaceae. In: The prokaryotes. Springer, New York, pp 266–289Google Scholar
  14. Bowman JP (2014) The family Methylococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, pp 411–440Google Scholar
  15. Bowman JP, Sayler GS (1994) Optimization and maintenance of soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Biodegradation 5:1–11.  https://doi.org/10.1007/BF00695208 CrossRefGoogle Scholar
  16. Bowman JP, Sly LI, Cox JM, Hayward AC (1990) Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp.nov.: two closely related type I obligate methanotrophs. Syst Appl Microbiol 13:279–287.  https://doi.org/10.1016/S0723-2020(11)80199-2 CrossRefGoogle Scholar
  17. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753CrossRefGoogle Scholar
  18. Bowman JP, Sly LI, Stackebrandt E (1995) The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol 45:622.  https://doi.org/10.1099/00207713-45-3-622a CrossRefGoogle Scholar
  19. Bowman JP, McCammon SA, Skerrat JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459CrossRefGoogle Scholar
  20. Cai C, Hu S, Guo J, Shi Y, Xie G-J, Yuan Z (2015) Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. Water Res 87:211–217.  https://doi.org/10.1016/j.watres.2015.09.026 CrossRefGoogle Scholar
  21. Cal AJ, Sikkema WD, Ponce MI, Franqui-Villanueva D, Riiff TJ, Orts WJ, Pieja AJ, Lee CC (2016) Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. J Biol Macromol, Int.  https://doi.org/10.1016/j.ijbiomac.2016.02.056 CrossRefGoogle Scholar
  22. Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG (2011) Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Lett 322:82–89.  https://doi.org/10.1111/j.1574-6968.2011.02340.x CrossRefGoogle Scholar
  23. Cantera S, Lebrero R, García-Encina PA, Muñoz R (2016) Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures. J Environ Manag 171:11–20.  https://doi.org/10.1016/j.jenvman.2016.02.002 CrossRefGoogle Scholar
  24. Chi Z, Lu W, Wang H, Zhao Y (2012a) Diversity of methanotrophs in a simulated modified biocover reactor. J Environ Sci 24:1076–1082.  https://doi.org/10.1016/S1001-0742(11)60889-9 CrossRefGoogle Scholar
  25. Chi Z-F, Lu W-J, Li H, Wang H-T (2012b) Dynamics of CH4 oxidation in landfill biocover soil: effect of O2/CH4 ratio on CH4 metabolism. Environ Pollut 170:8–14.  https://doi.org/10.1016/j.envpol.2012.06.005 CrossRefGoogle Scholar
  26. Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2015) Biopolymers made from methane in bioreactors. Eng Life Sci.  https://doi.org/10.1002/elsc.201400203 CrossRefGoogle Scholar
  27. Chistoserdova L, Lidstrom ME (2013a) Aerobic methylotrophic prokaryotes. In: The prokaryotes. Springer, Berlin, pp 267–285Google Scholar
  28. Chistoserdova L, Lidstrom PME (2013b) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 267–285.  https://doi.org/10.1007/978-3-642-30141-4_68 CrossRefGoogle Scholar
  29. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499.  https://doi.org/10.1146/annurev.micro.091208.073600 CrossRefGoogle Scholar
  30. Ciğgin AS, Karahan O, Orhon D (2007) Effect of feeding pattern on biochemical storage by activated sludge under anoxic conditions. Water Res 41:924–934.  https://doi.org/10.1016/j.watres.2006.11.017 CrossRefGoogle Scholar
  31. Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:620–621.  https://doi.org/10.1126/science.1250214 CrossRefGoogle Scholar
  32. Corder RE, Johnson ER, Vega JL, Clausen EC, Gaddy JL (1986) Biological production of methanol from methane. http://www.anl.gov/PCS/acsfuel/preprint%20archive/Files/33_3_LOS%20ANGELES_09-88_0469.pdf. Accessed March 2018
  33. Costa C, Vecherskaya M, Dijkema C, Stams AJM (2001) The effect of oxygen on methanol oxidation by an obligate methanotrophic bacterium studied by in vivo 13C nuclear magnetic resonance spectroscopy. J Ind Microbiol Biotechnol 26:9–14.  https://doi.org/10.1038/sj.jim.7000075 CrossRefGoogle Scholar
  34. Criddle CS, Rostkowski KH, Sundstrom ER, Leland Stanford Junior University (2015a) Process for the selection of PHB-producing methanotrophic cultures. U.S. Patent 9,062,340Google Scholar
  35. Criddle CS, Sundstrom ER, Leland Stanford Junior University (2015b) Intermittent application of reduced nitrogen sources for selection of PHB producing methanotrophs. U.S. Patent Application 14/404,527Google Scholar
  36. Cui M, Ma A, Qi H, Zhuang X, Zhuang G (2015) Anaerobic oxidation of methane: an “active” microbial process. MicrobiologyOpen 4:1–11.  https://doi.org/10.1002/mbo3.232 CrossRefGoogle Scholar
  37. Culpepper MA, Rosenzweig AC (2014) Structure and Protein–protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath). Biochemistry (Mosc) 53:6211–6219.  https://doi.org/10.1021/bi500850j CrossRefGoogle Scholar
  38. Dam B, Dam S, Blom J, Liesack W (2013) Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLoS ONE 8:e74767.  https://doi.org/10.1371/journal.pone.0074767 CrossRefGoogle Scholar
  39. Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PLE, Trotsenko YA, Dedysh SN (2013) Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 63:2282–2289.  https://doi.org/10.1099/ijs.0.045658-0 CrossRefGoogle Scholar
  40. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969CrossRefGoogle Scholar
  41. Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261.  https://doi.org/10.1099/00207713-52-1-251 CrossRefGoogle Scholar
  42. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156.  https://doi.org/10.1099/ijs.0.02805-0 CrossRefGoogle Scholar
  43. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670.  https://doi.org/10.1128/JB.187.13.4665-4670.2005 CrossRefGoogle Scholar
  44. Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57:472–479.  https://doi.org/10.1099/ijs.0.64623-0 CrossRefGoogle Scholar
  45. Dedysh SN, Didriksen A, Danilova OV, Belova SE, Liebner S, Svenning MM (2015) Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int J Syst Evol Microbiol 65:3618–3624.  https://doi.org/10.1099/ijsem.0.000465 CrossRefGoogle Scholar
  46. Deutzmann JS, Hoppert M, Schink B (2014) Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 37:165–169.  https://doi.org/10.1016/j.syapm.2014.02.001 CrossRefGoogle Scholar
  47. Ding Z-W, Ding J, Fu L, Zhang F, Zeng RJ (2014) Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Appl Microbiol Biotechnol 98:10211–10221.  https://doi.org/10.1007/s00253-014-5936-8 CrossRefGoogle Scholar
  48. Dircks K, Henze M, van Loosdrecht MC, Mosbaek H, Aspegren H (2001) Storage and degradation of poly-beta-hydroxybutyrate in activated sludge under aerobic conditions. Water Res 35:2277–2285CrossRefGoogle Scholar
  49. Doronina NV, Ezhov VA, Trotsenko YA (2011) Growth of Methylosinus trichosporium OB3b on methane and poly-β-hydroxybutyrate biosynthesis. Appl Biochem Microbiol 44:182–185.  https://doi.org/10.1134/S0003683808020099 CrossRefGoogle Scholar
  50. Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102:7349–7353.  https://doi.org/10.1016/j.biortech.2011.04.096 CrossRefGoogle Scholar
  51. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239.  https://doi.org/10.1099/ijs.0.02481-0 CrossRefGoogle Scholar
  52. Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664.  https://doi.org/10.1099/ijs.0.020149-0 CrossRefGoogle Scholar
  53. Erikstad H-A, Birkeland N-K (2015) Draft genome sequence of “Candidatus Methylacidiphilum kamchatkense” Strain Kam1, a thermoacidophilic methanotrophic verrucomicrobium. Genome Announc 3:e00065-15.  https://doi.org/10.1128/genomeA.00065-15 CrossRefGoogle Scholar
  54. Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614.  https://doi.org/10.1016/j.biotechadv.2014.03.011 CrossRefGoogle Scholar
  55. Fennell DE, Underhill SE, Jewell WJ (1992) Methanotrophic attached‐film reactor development and biofilm characteristics. Biotechnol Bioeng 40:1218–1232.  https://doi.org/10.1002/bit.260401012 CrossRefGoogle Scholar
  56. Francisco José Fernández RTA (2005) Methanogenesis and methane oxidation in wetlands. Implications in the global carbon cycle. Hidrobiológica 15:327–349Google Scholar
  57. Furuto T, Takeguchi M, Okura I (1999) Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J Mol Catal Chem 144:257–261.  https://doi.org/10.1016/S1381-1169(99)00007-2 CrossRefGoogle Scholar
  58. García-Pérez T, López JC, Passos F, Lebrero R, Revah S, Muñoz R (2018) Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor. Chem Eng J 334:691–697.  https://doi.org/10.1016/j.cej.2017.10.106 CrossRefGoogle Scholar
  59. Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32:1460–1475.  https://doi.org/10.1016/j.biotechadv.2014.09.004 CrossRefGoogle Scholar
  60. Geymonat E, Ferrando L, Tarlera SE (2011) Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. Int J Syst Evol Microbiol 61:2568–2572.  https://doi.org/10.1099/ijs.0.028274-0 CrossRefGoogle Scholar
  61. Ginige MP, Bowyer JC, Foley L, Keller J, Yuan Z (2008) A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. Biodegradation 20:221–234.  https://doi.org/10.1007/s10532-008-9215-1 CrossRefGoogle Scholar
  62. Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol 25:1–17CrossRefGoogle Scholar
  63. Grosse S, Laramee L, Wendlandt KD, McDonald IR, Miguez CB, Kleber HP (1999) Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14. Appl Environ Microbiol 65:3929–3935Google Scholar
  64. Han B, Su T, Wu H, Gou Z, Xing X-H, Jiang H, Chen Y, Li X, Murrell JC (2009) Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 83:669–677.  https://doi.org/10.1007/s00253-009-1866-2 CrossRefGoogle Scholar
  65. Han J-S, Ahn C-M, Mahanty B, Kim C-G (2013) Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl Biochem Biotechnol 171:1487–1499.  https://doi.org/10.1007/s12010-013-0410-0 CrossRefGoogle Scholar
  66. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471Google Scholar
  67. He P, Yang N, Fang W, Lü F, Shao L (2011) Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium. Front Environ Sci Eng China 5:175–185.  https://doi.org/10.1007/s11783-011-0320-8 CrossRefGoogle Scholar
  68. Helm J, Wendlandt K-D, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105:1054–1061.  https://doi.org/10.1111/j.1365-2672.2008.03831.x CrossRefGoogle Scholar
  69. Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2:666–679.  https://doi.org/10.1046/j.1462-2920.2000.00149.x CrossRefGoogle Scholar
  70. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826.  https://doi.org/10.1099/ijs.0.63213-0 CrossRefGoogle Scholar
  71. Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61:2646–2653.  https://doi.org/10.1099/ijs.0.028092-0 CrossRefGoogle Scholar
  72. Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 63:1073–1082.  https://doi.org/10.1099/ijs.0.040568-0 CrossRefGoogle Scholar
  73. Hirayama H, Abe M, Miyazaki M, Nunoura T, Furushima Y, Yamamoto H, Takai K (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64:989–999.  https://doi.org/10.1099/ijs.0.058172-0 CrossRefGoogle Scholar
  74. Ho A, Lüke C, Reim A, Frenzel P (2013a) Selective stimulation in a natural community of methane oxidizing bacteria: effects of copper on pmoA transcription and activity. Soil Biol Biochem 65:211–216.  https://doi.org/10.1016/j.soilbio.2013.05.027 CrossRefGoogle Scholar
  75. Ho A, Vlaeminck SE, Ettwig KF, Schneider B, Frenzel P, Boon N (2013b) Revisiting methanotrophic communities in sewage treatment plants. Appl Environ Microbiol 79:2841–2846.  https://doi.org/10.1128/AEM.03426-12 CrossRefGoogle Scholar
  76. Hoefman S, Heylen K, De Vos P (2014a) Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int J Syst Evol Microbiol 64:1210–1217.  https://doi.org/10.1099/ijs.0.057794-0 CrossRefGoogle Scholar
  77. Hoefman S, van der Ha D, Boon N, Vandamme P, De Vos P, Heylen K (2014b) Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiol 14:83.  https://doi.org/10.1186/1471-2180-14-83 CrossRefGoogle Scholar
  78. Hoefman S, van der Ha D, Iguchi H, Yurimoto H, Sakai Y, Boon N, Vandamme P, Heylen K, De Vos P (2014c) Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int J Syst Evol Microbiol 64:2100–2107.  https://doi.org/10.1099/ijs.0.057760-0 CrossRefGoogle Scholar
  79. Hu S, Zeng RJ, Keller J, Lant PA, Yuan Z (2011) Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ Microbiol Rep 3:315–319.  https://doi.org/10.1111/j.1758-2229.2010.00227.x CrossRefGoogle Scholar
  80. Hur DH, Na J-G, Lee EY (2017) Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J Chem Technol Biotechnol 92:311–318.  https://doi.org/10.1002/jctb.5007 CrossRefGoogle Scholar
  81. Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24:1597–1605.  https://doi.org/10.4014/jmb.1407.07070 CrossRefGoogle Scholar
  82. Hwang IY, Hur DH, Lee JH, Park C-H, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25:375–380.  https://doi.org/10.4014/jmb.1412.12007 CrossRefGoogle Scholar
  83. Iguchi H, Yurimoto H, Sakai Y (2011) Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815.  https://doi.org/10.1099/ijs.0.019604-0 CrossRefGoogle Scholar
  84. Im J, Lee S-W, Yoon S, DiSpirito AA, Semrau JD (2011) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol: facultative methanotrophy in a Methylocystis sp. Environ Microbiol Rep 3:174–181.  https://doi.org/10.1111/j.1758-2229.2010.00204.x CrossRefGoogle Scholar
  85. Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland N-K (2008) Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci 105:300–304.  https://doi.org/10.1073/pnas.0704162105 CrossRefGoogle Scholar
  86. Jewell WJ, Nelson YM, Wilson MS (1992) Methanotrophic bacteria for nutrient removal from wastewater: attached film system. Water Environ Res 64:756–765CrossRefGoogle Scholar
  87. Kalyuzhnaya MG (1999) Methylomonas scandinavica sp.nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572CrossRefGoogle Scholar
  88. Kalyuzhnaya MG, Stolyar SM, Auman AJ, Lara JC, Lidstrom ME, Chistoserdova L (2005) Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. Int J Syst Evol Microbiol 55:2345–2350.  https://doi.org/10.1099/ijs.0.63405-0 CrossRefGoogle Scholar
  89. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y (2008) Classification of halo (alkali) philic and halo (alkali) tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58:591–596.  https://doi.org/10.1099/ijs.0.65317-0 CrossRefGoogle Scholar
  90. Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152.  https://doi.org/10.1016/j.ymben.2015.03.010 CrossRefGoogle Scholar
  91. Kampman C, Temmink H, Hendrickx TLG, Zeeman G, Buisman CJN (2014) Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20 °C. J Hazard Mater 274:428–435.  https://doi.org/10.1016/j.jhazmat.2014.04.031 CrossRefGoogle Scholar
  92. Karthikeyan OP, Chidambarampadmavathy K, Cirés S, Heimann K (2015) Review of sustainable methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45:1579–1610.  https://doi.org/10.1080/10643389.2014.966422 CrossRefGoogle Scholar
  93. Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Heimann K (2016) Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia. Environ Sci Pollut Res 23:4346–4357.  https://doi.org/10.1007/s11356-016-6174-7 CrossRefGoogle Scholar
  94. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs K-J, Stunnenberg HG, Jetten MSM, den Camp HJMO (2011) Autotrophic Methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicumSolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446.  https://doi.org/10.1128/JB.00407-11 CrossRefGoogle Scholar
  95. Khadem AF, Wieczorek AS, Pol A, Vuilleumier S, Harhangi HR, Dunfield PF, Kalyuzhnaya MG, Murrell JC, Francoijs K-J, Stunnenberg HG, Stein LY, DiSpirito AA, Semrau JD, Lajus A, Médigue C, Klotz MG, Jetten MSM, den Camp HJMO (2012) Draft genome sequence of the volcano-inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum Strain SolV. J Bacteriol 194:3729–3730.  https://doi.org/10.1128/JB.00501-12 CrossRefGoogle Scholar
  96. Khalifa A, Lee CG, Ogiso T, Ueno C, Dianou D, Demachi T, Katayama A, Asakawa S (2015) Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere. Int J Syst Evol Microbiol 65:3527–3534.  https://doi.org/10.1099/ijsem.0.000451 CrossRefGoogle Scholar
  97. Khmelenina VN, Rozova ON, But SY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA (2015) Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects. Appl Biochem Microbiol 51:150–158.  https://doi.org/10.1134/S0003683815020088 CrossRefGoogle Scholar
  98. Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424.  https://doi.org/10.1007/s00253-012-4649-0 CrossRefGoogle Scholar
  99. Kim HG, Han GH, Kim SW (2010) Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol Bioprocess Eng 15:476–480.  https://doi.org/10.1007/s12257-010-0039-6 CrossRefGoogle Scholar
  100. Kits KD, Campbell DJ, Rosana AR, Stein LY (2015a) Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Terr. Microbiol.  https://doi.org/10.3389/fmicb.2015.01072 CrossRefGoogle Scholar
  101. Kits KD, Klotz MG, Stein LY (2015b) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232.  https://doi.org/10.1111/1462-2920.12772 CrossRefGoogle Scholar
  102. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346.  https://doi.org/10.3389/fmicb.2015.01346 CrossRefGoogle Scholar
  103. Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317.  https://doi.org/10.1111/j.1462-2920.2005.00814.x CrossRefGoogle Scholar
  104. Lebrero R, Chandran K (2017) Biological conversion and revalorization of waste methane streams. Crit Rev Environ Sci Technol 47:2133–2157.  https://doi.org/10.1080/10643389.2017.1415059 CrossRefGoogle Scholar
  105. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14CrossRefGoogle Scholar
  106. Lee H-J, Bae J-H, Cho K-M (2001) Simultaneous nitrification and denitrification in a mixed methanotrophic culture. Biotechnol Lett 23:935–941.  https://doi.org/10.1023/A:1010566616907 CrossRefGoogle Scholar
  107. Lee SG, Goo JH, Kim HG, Oh J-I, Kim YM, Kim SW (2004) Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol Lett 26:947–950CrossRefGoogle Scholar
  108. Lee S-W, Im J, DiSpirito AA, Bodrossy L, Barcelona MJ, Semrau JD (2009) Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl Microbiol Biotechnol 85:389–403.  https://doi.org/10.1007/s00253-009-2238-7 CrossRefGoogle Scholar
  109. Li H, Chi Z, Lu W, Wang H (2014) Sensitivity of methanotrophic community structure, abundance, and gene expression to CH4 and O2 in simulated landfill biocover soil. Environ Pollut 184:347–353.  https://doi.org/10.1016/j.envpol.2013.09.002 CrossRefGoogle Scholar
  110. Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: The prokaryotes. Springer New York, pp 618–634Google Scholar
  111. Lindner AS, Pacheco A, Aldrich HC, Costello Staniec A, Uz I, Hodson DJ (2007) Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int J Syst Evol Microbiol 57:1891–1900.  https://doi.org/10.1099/ijs.0.64541-0 CrossRefGoogle Scholar
  112. López JC, Quijano G, Souza TSO, Estrada JM, Lebrero R, Muñoz R (2013) Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 97:2277–2303.  https://doi.org/10.1007/s00253-013-4734-z CrossRefGoogle Scholar
  113. López JC, Quijano G, Pérez R, Muñoz R (2014) Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. J Environ Manag 146:116–123.  https://doi.org/10.1016/j.jenvman.2014.06.026 CrossRefGoogle Scholar
  114. López JC, Porca E, Collins G, Pérez R, Rodríguez-Alija A, Muñoz R, Quijano G (2017) Biogas-based denitrification in a biotrickling filter: influence of nitrate concentration and hydrogen sulfide. Biotechnol Bioeng 114:665–673.  https://doi.org/10.1002/bit.26092 CrossRefGoogle Scholar
  115. López JC, Arnáiz E, Merchán L, Lebrero R, Muñoz R (2018a) Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: a step further in anaerobic digestion biorefineries. Chem Eng J 333:529–536.  https://doi.org/10.1016/j.cej.2017.09.185 CrossRefGoogle Scholar
  116. López JC, Merchán L, Lebrero R, Muñoz R (2018b) Feast-famine biofilter operation for methane mitigation. J Clean Prod 170:108–118.  https://doi.org/10.1016/j.jclepro.2017.09.157 CrossRefGoogle Scholar
  117. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14th edn. Pearson, BostonGoogle Scholar
  118. Majone M, Massanisso P, Ramadori R (1998) Comparison of carbon storage under aerobic and anoxic conditions. Water Sci Technol 38:77–84.  https://doi.org/10.1016/S0273-1223(98)00680-5 CrossRefGoogle Scholar
  119. Mardina P, Li J, Patel SKS, Kim I-W, Lee J-K, Selvaraj C (2016) Potential of immobilized whole-cell Methylocella tundrae as biocatalyst for methanol production from methane. J Microbiol Biotechnol.  https://doi.org/10.4014/jmb.1602.02074 CrossRefGoogle Scholar
  120. Marín I, Arahal DR (2014) The family Beijerinckiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 115–133.  https://doi.org/10.1007/978-3-642-30197-1_255 CrossRefGoogle Scholar
  121. Mehta PK, Mishra S, Ghose TK (1987) Methanol accumulation by resting cells of Methylosinus trichosporium (I). J Gen Appl Microbiol 33:221–229.  https://doi.org/10.2323/jgam.33.221 CrossRefGoogle Scholar
  122. Mehta PK, Ghose TK, Mishra S (1991) Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotechnol Bioeng 37:551–556.  https://doi.org/10.1002/bit.260370609 CrossRefGoogle Scholar
  123. Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738.  https://doi.org/10.1016/j.watres.2007.02.053 CrossRefGoogle Scholar
  124. Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354.  https://doi.org/10.1128/AEM.72.2.1346-1354.2006 CrossRefGoogle Scholar
  125. Murray RJ, Furlonge HI (2009) Market and economic assessment of using methanol for power generation in the Caribbean region. J Assoc Prof Eng Trinidad Tobago 38:88–99Google Scholar
  126. Murrell JC (2010) The aerobic methane oxidizing bacteria (methanotrophs). In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1953–1966CrossRefGoogle Scholar
  127. Myung J, Galega WM, Van Nostrand JD, Yuan T, Zhou J, Criddle CS (2015a) Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresour Technol 198:811–818CrossRefGoogle Scholar
  128. Myung J, Wang Z, Yuan T, Zhang P, Van Nostrand JD, Zhou J, Criddle CS (2015b) Production of nitrous oxide from nitrite in stable type II methanotrophic enrichments. Environ Sci Technol 49:10969–10975.  https://doi.org/10.1021/acs.est.5b03385 CrossRefGoogle Scholar
  129. Myung J, Flanagan JCA, Waymouth RM, Criddle CS (2016a) Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochem 51:561–567.  https://doi.org/10.1016/j.procbio.2016.02.005 CrossRefGoogle Scholar
  130. Myung J, Kim M, Pan M, Criddle CS, Tang SKY (2016b) Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresour Technol 207:302–307.  https://doi.org/10.1016/j.biortech.2016.02.029 CrossRefGoogle Scholar
  131. Myung J, Flanagan JCA, Waymouth RM, Criddle CS (2017) Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 7:118.  https://doi.org/10.1186/s13568-017-0417-y CrossRefGoogle Scholar
  132. Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6:261–284.  https://doi.org/10.1007/s11157-006-9114-z CrossRefGoogle Scholar
  133. Nyerges G, Stein LY (2009) Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 297:131–136.  https://doi.org/10.1111/j.1574-6968.2009.01674.x CrossRefGoogle Scholar
  134. Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A, Kimura M, Asakawa S (2012) Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol 62:1832–1837.  https://doi.org/10.1099/ijs.0.035261-0 CrossRefGoogle Scholar
  135. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306.  https://doi.org/10.1111/j.1758-2229.2009.00022.x CrossRefGoogle Scholar
  136. Ordaz A, López JC, Figueroa-González I, Muñoz R, Quijano G (2014) Assessment of methane biodegradation kinetics in two-phase partitioning bioreactors by pulse respirometry. Water Res 67:46–54.  https://doi.org/10.1016/j.watres.2014.08.054 CrossRefGoogle Scholar
  137. Park D, Lee J (2013) Biological conversion of methane to methanol. Korean J Chem Eng 30:977–987.  https://doi.org/10.1007/s11814-013-0060-5 CrossRefGoogle Scholar
  138. Park S, Hanna L, Taylor RT, Droege MW (1991) Batch cultivation of Methylosinus trichosporium OB3b. I: Production of soluble methane monooxygenase. Biotechnol Bioeng 38:423–433.  https://doi.org/10.1002/bit.260380412 CrossRefGoogle Scholar
  139. Park S, Shah NN, Taylor RT, Droege MW (1992) Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol Bioeng 40:151–157.  https://doi.org/10.1002/bit.260400121 CrossRefGoogle Scholar
  140. Patel SKS, Mardina P, Kim D, Kim S-Y, Kalia VC, Kim I-W, Lee J-K (2016a) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208.  https://doi.org/10.1016/j.biortech.2016.06.065 CrossRefGoogle Scholar
  141. Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W (2016b) Biological methanol production by a type II methanotroph Methylocystis bryophila. J Microbiol Biotechnol.  https://doi.org/10.4014/jmb.1601.01013 CrossRefGoogle Scholar
  142. Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang YC, Lee J-K (2016c) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391.  https://doi.org/10.1016/j.apenergy.2016.03.022 CrossRefGoogle Scholar
  143. Patel SKS, Singh RK, Kumar A, Jeong J-H, Jeong SH, Kalia VC, Kim I-W, Lee J-K (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour Technol 241:922–927.  https://doi.org/10.1016/j.biortech.2017.05.160 CrossRefGoogle Scholar
  144. Pen N, Soussan L, Belleville M-P, Sanchez J, Charmette C, Paolucci-Jeanjean D (2014) An innovative membrane bioreactor for methane biohydroxylation. Bioresour Technol 174:42–52.  https://doi.org/10.1016/j.biortech.2014.10.001 CrossRefGoogle Scholar
  145. Pfluger AR (2010) A thesis submitted to the Department of Civil and Environmental Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of Requirements for the Degree of Engineer. Stanford UniversityGoogle Scholar
  146. Pfluger AR, Wu W-M, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of type I and type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour Technol 102:9919–9926.  https://doi.org/10.1016/j.biortech.2011.08.054 CrossRefGoogle Scholar
  147. Pieja AJ, Rostkowski KH, Criddle CS (2011a) Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb Ecol 62:564–573.  https://doi.org/10.1007/s00248-011-9873-0 CrossRefGoogle Scholar
  148. Pieja AJ, Sundstrom ER, Criddle CS (2011b) Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019.  https://doi.org/10.1128/AEM.00509-11 CrossRefGoogle Scholar
  149. Pieja AJ, Sundstrom ER, Criddle CS (2012) Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour Technol 107:385–392.  https://doi.org/10.1016/j.biortech.2011.12.044 CrossRefGoogle Scholar
  150. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921.  https://doi.org/10.1038/nature04617 CrossRefGoogle Scholar
  151. Rahalkar M, Bussmann I, Schink B (2007) Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 57:1073–1080.  https://doi.org/10.1099/ijs.0.64574-0 CrossRefGoogle Scholar
  152. Rahnama F, Vasheghani-Farahani E, Yazdian F, Shojaosadati SA (2012) PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochem Eng J 65:51–56.  https://doi.org/10.1016/j.bej.2012.03.014 CrossRefGoogle Scholar
  153. Rasigraf O, Kool DM, Jetten MSM, Damsté JSS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460.  https://doi.org/10.1128/AEM.04199-13 CrossRefGoogle Scholar
  154. Reyes M, Borrás L, Seco A, Ferrer J (2015) Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes. Environ Technol 36:45–53.  https://doi.org/10.1080/09593330.2014.934745 CrossRefGoogle Scholar
  155. Romanovskaya VA, Rokitko PV, Shilin SO, Malashenko YR (2006) Emended description of Methylomonas rubra sp. nov. Microbiology 75:689–693.  https://doi.org/10.1134/S0026261706060117 CrossRefGoogle Scholar
  156. Rostkowski KH, Pfluger AR, Criddle CS (2013) Stoichiometry and kinetics of the PHB-producing type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour Technol 132:71–77.  https://doi.org/10.1016/j.biortech.2012.12.129 CrossRefGoogle Scholar
  157. Scheutz C, Kjeldsen P, Gentil E (2009) Greenhouse gases, radiative forcing, global warming potential and waste management—an introduction. Waste Manag Res 27:716–723.  https://doi.org/10.1177/0734242X09345599 CrossRefGoogle Scholar
  158. Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:107–115.  https://doi.org/10.1016/j.tibtech.2008.10.009 CrossRefGoogle Scholar
  159. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531.  https://doi.org/10.1111/j.1574-6976.2010.00212.x CrossRefGoogle Scholar
  160. Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research: facultative methanotrophy. FEMS Microbiol Lett 323:1–12.  https://doi.org/10.1111/j.1574-6968.2011.02315.x CrossRefGoogle Scholar
  161. Shah NN, Hanna ML, Taylor RT (1996) Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-β-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol Bioeng 49:161–171.  https://doi.org/10.1002/(SICI)1097-0290(19960120)49:2<161:AID-BIT5>3.0.CO;2-O CrossRefGoogle Scholar
  162. Sheets JP, Ge X, Li Y-F, Yu Z, Li Y (2016) Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour Technol 201:50–57.  https://doi.org/10.1016/j.biortech.2015.11.035 CrossRefGoogle Scholar
  163. Shen L, He Z, Wu H, Gao Z (2015) Nitrite-dependent anaerobic methane-oxidising bacteria: unique microorganisms with special properties. Curr Microbiol 70:562–570.  https://doi.org/10.1007/s00284-014-0762-x CrossRefGoogle Scholar
  164. Siniscalchi LAB, Vale IC, Dell’Isola J, Chernicharo CA, Calabria Araujo J (2015) Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge. Environ Technol 36:1563–1575.  https://doi.org/10.1080/09593330.2014.997298 CrossRefGoogle Scholar
  165. Sipkema EM, de Koning W, Ganzeveld KJ, Janssen DB, Beenackers AA (2000) NADH-regulated metabolic model for growth of Methylosinus trichosporium OB3b. Model presentation, parameter estimation, and model validation. Biotechnol Prog 16:176–188.  https://doi.org/10.1021/bp990155e CrossRefGoogle Scholar
  166. Smith TJ, Trotsenko YA, Murrell JC (2010) Physiology and biochemistry of the aerobic methane oxidizing bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 765–779CrossRefGoogle Scholar
  167. Soliman M, Eldyasti A (2016) Development of partial nitrification as a first step of nitrite shunt process in a sequential batch reactor (SBR) using ammonium oxidizing bacteria (AOB) controlled by mixing regime. Bioresour Technol 221:85–95.  https://doi.org/10.1016/j.biortech.2016.09.023 CrossRefGoogle Scholar
  168. Song H, Zhang Y, Kong W, Xia C (2012) Activities of key enzymes in the biosynthesis of poly-3-hydroxybutyrate by Methylosinus trichosporium IMV3011. Chin J Catal 33:1754–1761.  https://doi.org/10.1016/S1872-2067(11)60443-9 CrossRefGoogle Scholar
  169. Stein LY, Klotz MG (2011) Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 39:1826–1831.  https://doi.org/10.1042/BST20110712 CrossRefGoogle Scholar
  170. Stone KA, Hilliard MV, He QP, Wang J (2017) A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion. Biochem Eng J 128:83–92.  https://doi.org/10.1016/j.bej.2017.09.003 CrossRefGoogle Scholar
  171. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018.  https://doi.org/10.1021/es504242n CrossRefGoogle Scholar
  172. Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S (2016) The opportunity for high-performance biomaterials from methane. Microorganisms 4:11.  https://doi.org/10.3390/microorganisms4010011 CrossRefGoogle Scholar
  173. Sun F, Dong W, Shao M, Lv X, Li J, Peng L, Wang H (2013) Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresour Technol 145:2–9.  https://doi.org/10.1016/j.biortech.2013.03.115 CrossRefGoogle Scholar
  174. Sundstrom ER, Criddle CS (2015) Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system. Appl Environ Microbiol 81:4767–4773.  https://doi.org/10.1128/AEM.00025-15 CrossRefGoogle Scholar
  175. Svenning MM, Hestnes AG, Wartiainen I, Stein LY, Klotz MG, Kalyuzhnaya MG, Spang A, Bringel F, Vuilleumier S, Lajus A, Médigue C, Bruce DC, Cheng J-F, Goodwin L, Ivanova N, Han J, Han CS, Hauser L, Held B, Land ML, Lapidus A, Lucas S, Nolan M, Pitluck S, Woyke T (2011) Genome sequence of the arctic methanotroph Methylobacter tundripaludum SV96. J Bacteriol 193:6418–6419.  https://doi.org/10.1128/JB.05380-11 CrossRefGoogle Scholar
  176. Taher E, Chandran K (2013) High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ Sci Technol 47:3167–3173.  https://doi.org/10.1021/es3042912 CrossRefGoogle Scholar
  177. Takeguchi M, Okura I (2000) Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal Surv Jpn 4:51–63.  https://doi.org/10.1023/A:1019036105038 CrossRefGoogle Scholar
  178. Takeguchi M, Furuto T, Sugimori D, Okura I (1997) Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl Biochem Biotechnol 68:143–152CrossRefGoogle Scholar
  179. Takeuchi M, Kamagata Y, Oshima K, Hanada S, Tamaki H, Marumo K, Maeda H, Nedachi M, Hattori M, Iwasaki W, Sakata S (2014) Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int J Syst Evol Microbiol 64:3240–3246.  https://doi.org/10.1099/ijs.0.063503-0 CrossRefGoogle Scholar
  180. Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA, Orphan VJ (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’ clade of marine methanotrophs. Int J Syst Evol Microbiol 65:251–259.  https://doi.org/10.1099/ijs.0.062927-0 CrossRefGoogle Scholar
  181. Tourova TP, Omel’chenko MV, Fegeding KV, Vasil’eva LV (1999) The phylogenetic position of Methylobacter psychrophilus sp. nov. Microbiology 68:493–495Google Scholar
  182. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy⋆. Adv Appl Microbiol 63:183–229CrossRefGoogle Scholar
  183. Trotsenko YA, Medvedkova KA, Khmelenina VN, Eshinimayev BT (2009) Thermophilic and thermotolerant aerobic methanotrophs. Microbiology 78:387–401.  https://doi.org/10.1134/S0026261709040018 CrossRefGoogle Scholar
  184. Tsubota J, Eshinimaev BT, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884.  https://doi.org/10.1099/ijs.0.63691-0 CrossRefGoogle Scholar
  185. van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N (2010) Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 87:2355–2363.  https://doi.org/10.1007/s00253-010-2702-4 CrossRefGoogle Scholar
  186. van der Ha D, Vanwonterghem I, Hoefman S, Vos PD, Boon N (2012a) Selection of associated heterotrophs by methane-oxidizing bacteria at different copper concentrations. Antonie Van Leeuwenhoek 103:527–537.  https://doi.org/10.1007/s10482-012-9835-7 CrossRefGoogle Scholar
  187. van der Ha D, Nachtergaele L, Kerckhof F-M, Rameiyanti D, Bossier P, Verstraete W, Boon N (2012b) Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 46:13425–13431.  https://doi.org/10.1021/es303929s CrossRefGoogle Scholar
  188. van Kessel MA, Stultiens K, Slegers MF, Guerrero Cruz S, Jetten MS, Kartal B, Op den Camp HJ (2018) Current perspectives on the application of N-damo and anammox in wastewater treatment. Curr Opin Biotechnol 50:222–227.  https://doi.org/10.1016/j.copbio.2018.01.031 CrossRefGoogle Scholar
  189. van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, den Camp HJMO, van Niftrik L (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791.  https://doi.org/10.1128/AEM.01838-14 CrossRefGoogle Scholar
  190. Vecherskaya M, Dijkema C, Saad HR, Stams AJM (2009) Microaerobic and anaerobic metabolism of a Methylocystis parvus strain isolated from a denitrifying bioreactor. Environ Microbiol Rep 1:442–449.  https://doi.org/10.1111/j.1758-2229.2009.00069.x CrossRefGoogle Scholar
  191. Visscher AD, Schippers M, Cleemput OV (2001) Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biol Fertil Soils 33:231–237.  https://doi.org/10.1007/s003740000313 CrossRefGoogle Scholar
  192. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463.  https://doi.org/10.1099/ijs.0.028118-0 CrossRefGoogle Scholar
  193. Wang J, Xia F-F, Bai Y, Fang C-R, Shen D-S, He R (2011) Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manag 31:864–870.  https://doi.org/10.1016/j.wasman.2011.01.026 CrossRefGoogle Scholar
  194. Wang D, Wang Y, Liu Y, Ngo HH, Lian Y, Zhao J, Chen F, Yang Q, Zeng G, Li X (2017a) Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresour Technol 234:456–465.  https://doi.org/10.1016/j.biortech.2017.02.059 CrossRefGoogle Scholar
  195. Wang Y, Wang D, Yang Q, Zeng G, Li X (2017b) Wastewater opportunities for denitrifying anaerobic methane oxidation. Trends Biotechnol 35:799–802.  https://doi.org/10.1016/j.tibtech.2017.02.010 CrossRefGoogle Scholar
  196. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006a) Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78 N). Int J Syst Evol Microbiol 56:109–113.  https://doi.org/10.1099/ijs.0.63728-0 CrossRefGoogle Scholar
  197. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006b) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 N). Int J Syst Evol Microbiol 56:541–547.  https://doi.org/10.1099/ijs.0.63912-0 CrossRefGoogle Scholar
  198. Wendlandt K-D, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133.  https://doi.org/10.1016/S0168-1656(00)00408-9 CrossRefGoogle Scholar
  199. Wendlandt K-D, Geyer W, Mirschel G, Hemidi FA-H (2005) Possibilities for controlling a PHB accumulation process using various analytical methods. J Biotechnol 117:119–129.  https://doi.org/10.1016/j.jbiotec.2005.01.007 CrossRefGoogle Scholar
  200. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218CrossRefGoogle Scholar
  201. Wise MG, McArthur JV, Shimkets LJ (2001) Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp.nov., novel type 1 methanotrophs. Int J Syst Evol Microbiol 51:611–621.  https://doi.org/10.1099/00207713-51-2-611 CrossRefGoogle Scholar
  202. Wu ML, Ettwig KF, Jetten MSM, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Trans 39:243–248.  https://doi.org/10.1042/BST0390243 CrossRefGoogle Scholar
  203. Xin J, Cui J, Niu J, Hua S, Xia C, Li S, Zhu L (2004a) Production of methanol from methane by methanotrophic bacteria. Biocatal Biotransform 22:225–229.  https://doi.org/10.1080/10242420412331283305 CrossRefGoogle Scholar
  204. Xin J, Cui J, Niu J, Hua S, Xia C, Li S, Zhu L (2004b) Biosynthesis of methanol from CO2 and CH4 by methanotrophic bacteria. Biotechnology 3:67–71CrossRefGoogle Scholar
  205. Xin J, Zhang Y, Zhang S, Xia C, Li S (2007) Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011. J Basic Microbiol 47:426–435.  https://doi.org/10.1002/jobm.200710313 CrossRefGoogle Scholar
  206. Xin J, Zhang Y, Dong J, Song H, Xia C (2013) An experimental study on molecular weight of poly-3-hydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011. Afr J Biotechnol 10:7078–7087Google Scholar
  207. Yoo Y-S, Han J-S, Ahn C-M, Kim C-G (2015) Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ Technol 36:983–991.  https://doi.org/10.1080/09593330.2014.971059 CrossRefGoogle Scholar
  208. Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA (2001) Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J Bacteriol 183:6832–6840.  https://doi.org/10.1128/JB.183.23.6832-6840.2001 CrossRefGoogle Scholar
  209. Zhang Y, Xin J, Chen L, Song H, Xia C (2008) Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J Nat Gas Chem 17:103–109.  https://doi.org/10.1016/S1003-9953(08)60034-1 CrossRefGoogle Scholar
  210. Zhang Y, Xin J, Chen L, Xia C (2009) The methane monooxygenase intrinsic activity of kinds of methanotrophs. Appl Biochem Biotechnol 157:431–441.  https://doi.org/10.1007/s12010-008-8447-1 CrossRefGoogle Scholar
  211. Zhang X, Kong J-Y, Xia F-F, Su Y, He R (2014) Effects of ammonium on the activity and community of methanotrophs in landfill biocover soils. Syst Appl Microbiol 37:296–304.  https://doi.org/10.1016/j.syapm.2014.03.003 CrossRefGoogle Scholar
  212. Zhang W, Ge X, Li Y-F, Yu Z, Li Y (2016) Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Process Biochem.  https://doi.org/10.1016/j.procbio.2016.04.003 CrossRefGoogle Scholar
  213. Zhang T, Wang X, Zhou J, Zhang Y (2017a) Enrichments of methanotrophic–heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. J Environ Sci.  https://doi.org/10.1016/j.jes.2017.03.016 CrossRefGoogle Scholar
  214. Zhang T, Zhou J, Wang X, Zhang Y (2017b) Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. J Environ Sci 52:49–57.  https://doi.org/10.1016/j.jes.2016.03.001 CrossRefGoogle Scholar
  215. Zhu J, Wang Q, Yuan M, Tan G-YA, Sun F, Wang C, Wu W, Lee P-H (2016) Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res 90:203–215.  https://doi.org/10.1016/j.watres.2015.12.020 CrossRefGoogle Scholar
  216. Zúñiga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882.  https://doi.org/10.1016/j.jhazmat.2011.04.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering, Lassonde School of EngineeringYork UniversityTorontoCanada

Personalised recommendations