Valorizing potato peel waste: an overview of the latest publications

  • Rui Galhano dos Santos
  • Patrícia Ventura
  • João Carlos Bordado
  • Maria Margarida Mateus
Mini Review


The highly acclaimed exhaustion of fossil sources explored as raw materials for the production of energy, commodities, and materials is getting closer. It is, therefore, imperative to allocate resources to the research and development of alternatives, preferably, focusing our targets on those that are more sustainable and with a minor ecological impact than the existing ones. Being this agricultural wastes cost effective, renewable and abundant, the use of such residues as alternatives has been envisaged, and investigated. Worldwide, potato production has been increasing up to more than 300 M/year, creating a problem concerning the management of the industrial waste resulting from potato peeling, the potato peel waste (PPW). The identification of environmentally friendly and sustainable solutions for the mitigation of such waste have been explored and reported. In this short review, covering the last 5 years, the peer-reviewed papers focusing the use of PPW for the development of added-valuable solutions are assembled. The purpose of this manuscript is not to present a detailed, exhaustive, and comprehensive description of each study, not even to discuss the advantages and disadvantages of the published work. Instead, a broad view and a shortened update of state of the art is offered. This broad and summarized survey present the research that has been conducted in recent years concerning the use of the PPW for the development of solutions to mitigate its environmental impact.


Potato peel Review Applications Chemicals Recycling Wastes 



R. Galhano dos Santos would like to acknowledge FCT—Fundação para a Ciência e Tecnologia for the Postdoctoral Grant SFRH/BPD/105662/2015.


  1. Afsar N, Ozgur E, Gurgan M et al (2011) Hydrogen productivity of photosynthetic bacteria on dark fermenter effluent of potato steam peels hydrolysate. Int J Hydrog Energy 36:432–438. doi: 10.1016/j.ijhydene.2010.09.096 CrossRefGoogle Scholar
  2. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78. doi: 10.1016/j.tibtech.2010.11.006 CrossRefGoogle Scholar
  3. Albishi T, John JA, Al-Khalifa AS, Shahidi F (2013) Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J Funct Foods 5:590–600. doi: 10.1016/j.jff.2012.11.019 CrossRefGoogle Scholar
  4. Alvarez VH, Cahyadi J, Xu D, Saldana MDA (2014) Optimization of phytochemicals production from potato peel using subcritical water: experimental and dynamic modeling. J Supercrit Fluids 90:8–17. doi: 10.1016/j.supflu.2014.02.013 CrossRefGoogle Scholar
  5. Al-Weshahy A, Rao VA (2012) Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health-A review. Intech Open Access PublisherGoogle Scholar
  6. Al-Weshahy A, El-Nokety M, Bakhete M, Rao V (2013) Effect of storage on antioxidant activity of freeze-dried potato peels. Food Res Int 50:507–512. doi: 10.1016/j.foodres.2010.12.014 CrossRefGoogle Scholar
  7. Anastopoulos I, Kyzas GZ (2014) Agricultural peels for dye adsorption: a review of recent literature. J Mol Liq 200:381–389. doi: 10.1016/j.molliq.2014.11.006 CrossRefGoogle Scholar
  8. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902. doi: 10.1016/j.wasman.2010.04.017 CrossRefGoogle Scholar
  9. Arun KB, Chandran J, Dhanya R et al (2015) A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Biosci 9:36–46. doi: 10.1016/j.fbio.2014.10.003 CrossRefGoogle Scholar
  10. Bhattacharyya S, Chakraborty S, Datta S et al (2013) Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization. Environ Technol 34:1077–1084. doi: 10.1080/09593330.2012.733965 CrossRefGoogle Scholar
  11. Chen D, Lawton D, Thompson MR, Liu Q (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90:709–716. doi: 10.1016/j.carbpol.2012.06.002 CrossRefGoogle Scholar
  12. Chintagunta AD, Jacob S, Banerjee R (2016) Integrated bioethanol and biomanure production from potato waste. Waste Manag 49:320–325. doi: 10.1016/j.wasman.2015.08.010 CrossRefGoogle Scholar
  13. Claassen PAM, de Vrije T, Koukios E et al (2010) Non-thermal production of pure hydrogen from biomass: hyvolution. J Clean Prod 18:S4–S8. doi: 10.1016/j.jclepro.2010.05.009 CrossRefGoogle Scholar
  14. Curti E, Carini E, Diantom A, Vittadini E (2016) The use of potato fibre to improve bread physico-chemical properties during storage. Food Chem 195:64–70. doi: 10.1016/j.foodchem.2015.03.092 CrossRefGoogle Scholar
  15. da Batista MS, Guimaraes CO, Marra LC, Maloncy ML (2015) Bio-oil production from waste potato peel and rice hush. Rev Eletronica Em Gest Educ E Tecnol Ambient 19:220–227. doi: 10.5902/2236117015002 Google Scholar
  16. FAO (2016) Food and Agriculture Organization of the United Nations—Statistics Division. Accessed 20 May 2016
  17. Farvin KHS, Grejsen HD, Jacobsen C (2012) Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): effect on lipid and protein oxidation. Food Chem 131:843–851. doi: 10.1016/j.foodchem.2011.09.056 CrossRefGoogle Scholar
  18. Guechi E-K, Hamdaoui O (2011) Sorption of malachite green from aqueous solution by potato peel: kinetics and equilibrium modeling using non-linear analysis method. Arab J Chem. doi: 10.1016/j.arabjc.2011.05.011 Google Scholar
  19. Guechi E-K, Hamdaoui O (2016a) Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies. Desalin Water Treat 57:10270–10285CrossRefGoogle Scholar
  20. Guechi E-K, Hamdaoui O (2016b) Evaluation of potato peel as a novel adsorbent for the removal of Cu(II) from aqueous solutions: equilibrium, kinetic, and thermodynamic studies. Desalin Water Treat 57:10677–10688CrossRefGoogle Scholar
  21. Hilal NM, Ahmed IA, Badr EE (2012) Removal of acid dye (AR37) by adsorption onto potatoes and egg husk: a comparative study. J Am Sci 8:341–348Google Scholar
  22. Hoseinzadeh E, Samarghandi M-R, McKay G et al (2014) Removal of acid dyes from aqueous solution using potato peel waste biomass: a kinetic and equilibrium study. Desalin Water Treat 52:4999–5006. doi: 10.1080/19443994.2013.810355 CrossRefGoogle Scholar
  23. Hossain MB, Tiwari BK, Gangopadhyay N et al (2014) Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason Sonochem 21:1470–1476. doi: 10.1016/jultsonch.2014.01.023 CrossRefGoogle Scholar
  24. Hossain MB, Aguilo-Aguayo I, Lyng JG et al (2015a) Effect of pulsed electric field and pulsed light pre-treatment on the extraction of steroidal alkaloids from potato peels. Innov Food Sci Emerg Technol 29:9–14. doi: 10.1016/j.ifset.2014.10.014 CrossRefGoogle Scholar
  25. Hossain MB, Rawson A, Aguilo-Aguayo I et al (2015b) Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction. Molecules 20:8560–8573. doi: 10.3390/molecules20058560 CrossRefGoogle Scholar
  26. Izmirlioglu G, Demirci A (2012) Ethanol production from waste potato mash by using Saccharomyces Cerevisiae. Appl Sci 2:738. doi: 10.3390/app2040738 CrossRefGoogle Scholar
  27. Khawla BJ, Sameh M, Imen G et al (2014) Potato peel as feedstock for bioethanol production: a comparison of acidic and enzymatic hydrolysis. Ind Crops Prod 52:144–149. doi: 10.1016/j.indcrop.2013.10.025 CrossRefGoogle Scholar
  28. Kulkarni SJ, Shinde NL, Goswami AK (2015) A review on ethanol production from agricultural waste raw material. Int J Sci Res Sci Eng Technol 1:231–233Google Scholar
  29. Kumar P, Ray S, Kalia VC (2016a) Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 200:413–419. doi: 10.1016/j.biortech.2015.10.045 CrossRefGoogle Scholar
  30. Kumar VB, Pulidindi IN, Gedanken A (2016b) Glucose production from potato peel waste under microwave irradiation. J Mol Catal A: Chem 417:163–167. doi: 10.1016/j.molcata.2016.03.025 CrossRefGoogle Scholar
  31. Kyzas GZ, Deliyanni EA (2015) Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chem Eng Res Des 97:135–144. doi: 10.1016/j.cherd.2014.08.020 CrossRefGoogle Scholar
  32. Kyzas GZ, Deliyanni EA, Matis KA (2016) Activated carbons produced by pyrolysis of waste potato peels: cobalt ions removal by adsorption. Colloids Surf A Physicochem Eng Asp 490:74–83. doi: 10.1016/j.colsurfa.2015.11.038 CrossRefGoogle Scholar
  33. Lappalainen K, Karkkainen J, Joensuu P, Lajunen M (2015) Modification of potato peel waste with base hydrolysis and subsequent cationization. Carbohydr Polym 132:97–103. doi: 10.1016/j.carbpol.2015.05.069 CrossRefGoogle Scholar
  34. Liang S, McDonald AG (2014) Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J Agric Food Chem 62:8421–8429. doi: 10.1021/jf5019406 CrossRefGoogle Scholar
  35. Liang S, McDonald AG (2015) Anaerobic digestion of pre-fermented potato peel wastes for methane production. Waste Manag 46:197–200. doi: 10.1016/j.wasman.2015.09.029 CrossRefGoogle Scholar
  36. Liang S, McDonald AG, Coats ER (2014) Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag 34:2022–2027. doi: 10.1016/j.wasman.2014.07.009 CrossRefGoogle Scholar
  37. Liang S, McDonald AG, Coats ER (2015) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manag 45:51–56. doi: 10.1016/j.wasman.2015.02.004 CrossRefGoogle Scholar
  38. Maldonado AFS, Mudge E, Gaenzle MG, Schieber A (2014) Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res Int 65:27–34. doi: 10.1016/j.foodres.2014.06.018 CrossRefGoogle Scholar
  39. Meenakshi A, Kumaresan R (2014) Ethanol production from corn, potato peel waste and its process development. Int J ChemTech Res 6:2843–2853Google Scholar
  40. Moreno-Pirajan JC, Giraldo L (2011) Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions. J Anal Appl Pyrolysis 90:42–47. doi: 10.1016/j.jaap.2010.10.004 CrossRefGoogle Scholar
  41. Mutongo F, Kuipa O, Kuipa PK (2014) Removal of Cr(VI) from aqueous solutions using powder of potato peelings as a low cost sorbent. Bioinorg Chem Appl. doi: 10.1155/2014/973153 Google Scholar
  42. Oktem YA, Soylu SGP, Aytan N (2012) The adsorption of methylene blue from aqueous solution by using waste potato peels; equilibrium and kinetic studies. J Sci Ind Res 71:817–821Google Scholar
  43. Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP et al (2015) Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod 102:521–528. doi: 10.1016/j.jclepro.2015.04.055 CrossRefGoogle Scholar
  44. Rodriguez Amado I, Franco D, Sanchez M et al (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299. doi: 10.1016/j.foodchem.2014.05.103 CrossRefGoogle Scholar
  45. Rommi K, Rahikainen J, Vartiainen J et al (2016) Potato peeling costreams as raw materials for biopolymer film preparation. J Appl Polym Sci. doi: 10.1002/app.42862 Google Scholar
  46. Saldana MDA, Valdivieso-Ramirez CS (2015) Pressurized fluid systems: phytochemical production from biomass. J Supercrit Fluids 96:228–244. doi: 10.1016/j.supflu.2014.09.037 CrossRefGoogle Scholar
  47. Samarghandy MR, Hoseinzade E, Taghavi M, Hoseinzadeh S (2011) Biosorption of reactive black 5 from aqueous solution using acid-treated biomass from potato peel waste. Bioresources 6:4840–4855Google Scholar
  48. Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci Technol 12:401–413. doi: 10.1016/S0924-2244(02)00012-2 CrossRefGoogle Scholar
  49. Sharma N, Tiwari DP, Singh SK (2014) The efficiency appraisal for removal of malachite green by potato peel and neem bark: isotherm and kinetic studies. Int J Chem Environ Eng 5:83–88CrossRefGoogle Scholar
  50. Sheikh RA, Al-Bar OA, Soliman YMA (2016) Biochemical studies on the production of biofuel (bioethanol) from potato peels wastes by Saccharomyces cerevisiae: effects of fermentation periods and nitrogen source concentration. Biotechnol Biotechnol Equip 30:497–505. doi: 10.1080/13102818.2016.1159527 CrossRefGoogle Scholar
  51. Singh PP, Saldana MDA (2011) Subcritical water extraction of phenolic compounds from potato peel. Food Res Int 44:2452–2458. doi: 10.1016/j.foodres.2011.02.006 CrossRefGoogle Scholar
  52. Singh A, Sabally K, Kubow S et al (2011) Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 16:2218–2232. doi: 10.3390/molecules16032218 CrossRefGoogle Scholar
  53. Singh A, Nair GR, Liplap P et al (2014) Effect of dielectric properties of a solvent-water mixture used in microwave-assisted extraction of antioxidants from potato peels. Antioxidants (Basel, Switzerland) 3:99–113. doi: 10.3390/antiox3010099 Google Scholar
  54. Sinha P, Pandey A (2014) Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. Int J Hydrog Energy 39:7518–7525. doi: 10.1016/j.ijhydene.2013.08.134 CrossRefGoogle Scholar
  55. Sugumaran V, Vimal KK, Kapur GS, Narula AK (2015) Preparation and morphological, thermal, and physicomechanical properties of polypropylene-potato peel biocomposites. J Appl Polym Sci. doi: 10.1002/app.42445 Google Scholar
  56. Taher A, Mohsin M, Farooqui M, Farooqui M (2012) Studies on the isotherms, kinetics and thermodynamics of adsorption of crystal violet on low cost materials. J Adv Sci Res 3:36–44Google Scholar
  57. Tiwari DP, Singh SK, Sharma N (2015) Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies. Appl Water Sci 5:81–88. doi: 10.1007/s13201-014-0171-0 CrossRefGoogle Scholar
  58. Urbaniec K, Friedl A, Huisingh D, Claassen P (2010) Hydrogen for a sustainable global economy. J Clean Prod 18:S1–S3. doi: 10.1016/j.jclepro.2010.05.010 CrossRefGoogle Scholar
  59. Ventura P, Bordado JCM, Mateus MM, Galhano dos Santos R (2016) Upcycling potato peel waste—data of the pre-screening of the acid-catalyzed liquefaction. Data Br 7:1455–1457. doi: 10.1016/j.dib.2016.04.032 CrossRefGoogle Scholar
  60. Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 69:91–103. doi: 10.1016/j.indcrop.2015.02.011 CrossRefGoogle Scholar
  61. Wijngaard HH, Ballay M, Brunton N (2012) The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem 133:1123–1130. doi: 10.1016/j.foodchem.2011.01.136 CrossRefGoogle Scholar
  62. Wu D (2016) Recycle technology for potato peel waste processing: a review. Proced Environ Sci 31:103–107. doi: 10.1016/j.proenv.2016.02.014 CrossRefGoogle Scholar
  63. Wu Z-G, Xu H-Y, Ma Q et al (2012) Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem 135:2425–2429. doi: 10.1016/j.foodchem.2012.07.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CERENA-Centre for Natural Resources and the EnvironmentInstituto Superior TécnicoLisbonPortugal
  2. 2.Engineering DepartmentUniversidade AtlânticaBarcarena, OeirasPortugal

Personalised recommendations