Skip to main content

Advertisement

Log in

Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Sustainable, clean, renewable energy without negotiating contiguous environment is a challenging task mainly comprises of natural resource management which involves operational efficiency, waste minimisation and energy recovery. Disposal of untreated industrial wastewater with chemical nutrients especially compounds containing nitrogen and phosphorous lead to eutrophication and related environmental issues that affect the recycling processes of bio system. Biotransformation of pollutants using microalgae has proven to be proficient and economic method of wastewater treatment due to their adaptability of growing in various wastewater streams and also useful in the process of CO2 fixation. Moreover this technology has the competence of producing bio fuels as an alternative energy resource in the form of bio diesel, bio ethanol and biogas. In this review paper, the applicability of microalgae cultivation in industrial wastewater treatment has been discussed extensively including the processes involved, influencing operational parameters such as study mode, cultivation mode and time, method of aeration, pH and intensity of light. Further, the cultivation methods, harvesting techniques involved in the treatment process have been presented. In addition, the analysis on removal efficiency of algal treatment, biomass productivity and lipid content of the cultivated biomass has been discussed widely which possibly will be helpful in adopting the process integration in industrial wastewater treatment with bio energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green algae Chlorella vulgaris. Process Biochem 40:1347–1361

    Article  CAS  Google Scholar 

  • Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Barragan J, Perales JA (2013) Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng 52:143–153

    Article  Google Scholar 

  • Bechet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663

    Article  Google Scholar 

  • Binaghi L, Borghi AD, Lodi A, Converti A, Borghi MD (2003) Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem 38(9):1341–1346

    Article  CAS  Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, MA, pp 205–218

    Google Scholar 

  • Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben-Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysisgalbana in open reactors. Aquaculture 72:247–253

    Article  Google Scholar 

  • Braun GZ, Braun BZ (1974) Light absorption, emission and photosynthesis. In: Stewert WDP (ed) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):805–821

    Google Scholar 

  • Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50(2):291–300

    Article  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369

    Article  CAS  Google Scholar 

  • Caporgno MP, TalebA Olkiewicz M, FontJ Pruvost J, Legrand J, Bengoa C (2015) Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Res 10:232–239

    Article  Google Scholar 

  • Cassidy KO (2011) Evaluating algal growth at different temperatures. Theses and Dissertations-Biosystems and Agricultural Engineering. Paper 3–47 pages. http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1002&context=bae_etds

  • Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic micro-algae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973–1983

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bio products. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Intensification 48(6):1146–1151

    Article  CAS  Google Scholar 

  • Dallaire V, Lessard P, Vandenberg G, de la Noue J (2007) Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol 98:1433–1439

    Article  CAS  Google Scholar 

  • Dalrymple OK, Halfhide T, Udom I, Gilles B, Wolan J, Zhang Q, Ergas S (2013) Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat Biosyst 9(1):2

    Article  Google Scholar 

  • de la Noue J, Laliberte G, Proulz D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • de Ortega AR, Roux JC (1986) Production of chlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10(2):141–156

    Article  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • FAO (2014) Food and agriculture organisation of United Nations. http://www.fao.org/docrep/003/w3732e/w3732e06.htm#2.3.%20Algal%20production. Accessed on 30 Sept 2015

  • Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JW (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    Article  CAS  Google Scholar 

  • Fillaudeau L, Blanpain-Avet P, Daufin G (2006) Water, wastewater and waste management in brewing industries. J Clean Prod 14(5):463–471

    Article  Google Scholar 

  • Fogg GE, Thake B (1987) Algal cultures and phytoplankton ecology. University of Wisconsin Press, Madison

    Google Scholar 

  • Fulke A, Chambhare K, Sangolkar LN, Giripunje MD, Krishnamurthi K, Juwarkar A, Chakrabarti T (2013) Potential of wastewater grown algae for biodiesel production and CO2 sequestration. Afr J Biotechnol 12(20):2939–2948

    CAS  Google Scholar 

  • Gardner R, Peters P, Peyton B, Cooksey KE (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23:1005–1016

    Article  CAS  Google Scholar 

  • Gerardo ML, Van Den Hende S, Vervaeren H, Coward T, Skill SC (2015) Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Res 11:248–262

    Article  Google Scholar 

  • Girard J, Roy M, Ben M, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschenes J (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248

    Article  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  Google Scholar 

  • Han F, Huang J, Li Y, Wang W, Wan M, Shen G, Wang J (2013) Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi continuous cultivation with nitrogen limitation and pH control by CO2. Bioresour Technol 136:418–424

    Article  CAS  Google Scholar 

  • Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard DR, Blowers P (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1(1):83–92

    Article  CAS  Google Scholar 

  • Hanumantha Rao P, Ranjith Kumar R, Raghavan B, Subramanian V, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA 37(1):7–14

    Google Scholar 

  • Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89:157–163

    Article  CAS  Google Scholar 

  • Heijman SGJ, Guo H, Li S, van Dijk JC, Wessels LP (2009) Zero liquid discharge: heading for 99% recovery in nanofiltration and reverse osmosis. Desalination 236(1–3):357–362

    Article  CAS  Google Scholar 

  • Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  Google Scholar 

  • Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas recirculation: anaerobic photoheterotrophic cultivation of a purple nonsulfur bacterium. Int J Hydro Energy 27:1331–1338

    Article  CAS  Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102(21):9884–9890

    Article  CAS  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of phototrophs. Biotechnol Bioeng 51:51–60

    Article  CAS  Google Scholar 

  • Jimenez C, Cossí BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221(1):331–345

    Article  Google Scholar 

  • Jinql L, Houtin L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Khalil ZI, Asker MM, El-Sayed S, Kobbia IA (2010) Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J Microbiol Biotechnol 26(7):1225–1231

    Article  CAS  Google Scholar 

  • Klein RM (1992) Effects of green light on biological systems. Biol Rev 67(2):199–284

    Article  CAS  Google Scholar 

  • Komolafe O, Velasquez Orta SB, Monje-Ramirez I, Noguez IY, Harvey AP, Orta Ledesma MT (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304

    Article  CAS  Google Scholar 

  • Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour Technol 144:499–503

    Article  CAS  Google Scholar 

  • Kotteswari M, Murugesan S, Ranjith Kumar R (2012) Phycoremediation of dairy effluent by using the microalgae Nostoc sp. Int J Environ Res Dev 2(1):35–43

    Google Scholar 

  • Kumar MS, Miao ZHH, Wyatt SK (2010) Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour Technol 101:6012–6018

    Article  CAS  Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae—a literature review. Vatten 62: 31–38. http://tidskriftenvatten.se/mag/tidskriftenvatten.se/dircode/docs/48_article_2125.pdf

  • Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • Lee RE (ed) (1989) Phycology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 3(4):307–315

    Article  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2009) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochlorisoleo abundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Li X, Hu HY, Gan K, Sun YX (2010) Effect of different nitrogen and phosphorus concentration on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  Google Scholar 

  • Li S, Luo S, Guo R (2013a) Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour Technol 136:267–272

    Article  CAS  Google Scholar 

  • Li C, Yang H, Xia X, Li Y, Chen L, Zhang M, Zhang M, Wang W (2013b) High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization. Bioresour Technol 127:248–255

    Article  CAS  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101(19):7314–7322

    Article  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010). A report on “A Realistic Technology and Engineering Assessment” submitted to Energy Biosciences Institute, University of California, Berkeley, California

  • Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives—a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  • Martinez ME, Jimenez JM, El Yousfi F (1999) Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. BioresourTechnol 67:233–240

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158

    Article  CAS  Google Scholar 

  • McGinn PJ, Dickinson KE, Park KC, Whitney CG, Mac Quarrie SP, Black FJ et al (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1:155–165

    Article  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178

    Article  Google Scholar 

  • Milner HW (1953) Rocking tray. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institution, Washington

    Google Scholar 

  • Miron AS, Garcıa MC, Camacho FG, Grima EM, Chisti Y (2002) Growth and characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31(7):1015–1023

    Article  Google Scholar 

  • Mitra D, van Leeuwen (Hans) J, Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res 1(1):40–48

    Article  CAS  Google Scholar 

  • Molina E, Fernandez J, Acien FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Article  Google Scholar 

  • Munter R (2004) Chapter 19. Industrial wastewater treatment. Baltic university programme, Uppsala, pp 195–210

    Google Scholar 

  • Narro ML (1987) Petroleum toxicity and the oxidation of aromatic hydrocarbons. In: Fay P, Balan V (eds) The cyanobacteria. Elsevier, Amsterdam, pp 493–511

    Google Scholar 

  • Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24

  • Nichols HW, Bold HC (1965) Trichosarcina polymorpha gen. et sp. nov. J Phycol 1:34–38

  • Ogbonna JC, Soejima T, Tanaka H (1998) Development of efficient large scale photobioreactors. In: Zaborosky OR (ed) Biohydrogen. Plenum Press, New York, pp 329–343

    Google Scholar 

  • Olguin EJ, Sanchez-Galvan G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bio adsorption and bioaccumulation. New Biotechnol 30(1):3–8

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42

    Article  CAS  Google Scholar 

  • Pathak VV, Singh DP, Kothari R, Chopra AK (2014) Phycoremediation of textile wastewater by unicellular microalga Chlorella pyrenoidosa. Cell Mol Biol 60(5):35–40

    CAS  Google Scholar 

  • Pinto G, Pollio O, Previtera L, Temussi L (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24:2047–2051

    Article  CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659

    Article  CAS  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2013) Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut R 20(8):5096–5105

    Article  CAS  Google Scholar 

  • Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular photobioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J Chem Tech Biotechnol 33B:35–38

    CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Posadas E, Bochon S, Coca M, García-González MC, García-Encina PA, Muñoz R (2014) Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol 26(6):2335–2345

    Article  CAS  Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31(8):1408–1425

    Article  CAS  Google Scholar 

  • Prasad MNV (2015) Bioremediation and bioeconomy. Elsevier publications, New York

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour Technol 101(8):2616–2622

    Article  CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, De Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing: a review. Renew Sustain Energy Rev 27:622–653

    Article  CAS  Google Scholar 

  • Riano B, Molinuevo B, García-González MC (2011) Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour Technol 102(23):10829–10833

    Article  CAS  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Richmond A (2004) Handbook of microalgae culture: biotechnology and applied phycology. Blackwell Science Ltd, Hoboken

    Google Scholar 

  • Ritchie RJ, Larkum AWD (2012) Modelling photosynthesis in shallow algal production ponds. Photosynthetica 50:481–500

    Article  CAS  Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenerg 35(9):3865–3876

    Article  CAS  Google Scholar 

  • Rossignol N, Vandanjon L, Jaouen P, Quemeneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultra-filtration. Aquacult Eng 20:191–208

    Article  Google Scholar 

  • Salerno M, Nurdogan Y, Lundquist TJ (2009) Biogas production from algae biomass harvested at wastewater treatment ponds. American Society of Agricultural and Biological Engineers, Lincoln

    Google Scholar 

  • Samson R, Leduy A (1985) Multistage continuous cultivation of bluegreen alga Spirulina maxima in the flat tank photobioreactors. Can J Chem Eng 63:105–112

    Article  CAS  Google Scholar 

  • Sarkar B, Chakrabarti PP, Vijaykuma A, Kale V (2006) Wastewater treatment in dairy industries—possibility of reuse. Desalination 195(1–3):141–152

    Article  CAS  Google Scholar 

  • Scragg AH, Illman AM, CardenA Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. BiomassBioenerg 23(1):67–73

    CAS  Google Scholar 

  • Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7(6):e38975

    Article  CAS  Google Scholar 

  • Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52:1275–1287

    Article  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J 39:369–375

    Article  CAS  Google Scholar 

  • Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova L, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E (2014) Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res 6:234–241

    Article  Google Scholar 

  • Song L, Liu Y (1999) FACHB-collection: list of strains. Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan

    Google Scholar 

  • Sorokin C, Krauss R (1958) The effects of light intensity on the growth rates of green algae. Plant Physiol 33:109–113

    Article  CAS  Google Scholar 

  • Takabe Y, Hidaka T, Tsumori J, Minamiyama M (2016) Effects of hydraulic retention time on cultivation of indigenous microalgae as a renewable energy source using secondary effluent. Bioresour Technol 207:399–408

    Article  CAS  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84:1–5

    Article  CAS  Google Scholar 

  • Taştan BE, Duygu E, Donmez G (2012) Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators. Water Res 46:167–175

    Article  CAS  Google Scholar 

  • Teoh M, Chu W, Marchant H, Phang S (2005) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 2:421–430

    Google Scholar 

  • Travieso L, Hall DO, Rao KK, Benıtez F, Sánchez E, Borja R (2001) A helical tubular photobioreactor producing Spirulina in a semi continuous mode. Int Biodeter Biodegr 47(3):151–155

    Article  CAS  Google Scholar 

  • Tredici MR, Materassi P (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. J Appl Phycol 4:221–231

    Article  Google Scholar 

  • Tredici MR, Zittelli CG (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):012701

    Article  CAS  Google Scholar 

  • Ugwu CU (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Article  CAS  Google Scholar 

  • Valderrama LT, Del Campo CM, Rodriguez CM, De-Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemnaminuscula. Water Res 36(17):4185–4192

    Article  CAS  Google Scholar 

  • Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae: the Indian experience. Department of Science and Technology, New Delhi

    Google Scholar 

  • Vonshak A, Richmond A (1988) Mass production of the blue–green alga Spirulina: an overview. Biomass 15(4):233–247

    Article  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO (2) bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  Google Scholar 

  • Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol 104:215–220

    Article  CAS  Google Scholar 

  • Watanabe Y, Saiki H (1997) Development of photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Convers Manage 38:499–503

    Article  Google Scholar 

  • Woertz I, Fulton L, Lundquist T (2009) Nutrient removal & greenhouse gas abatement with CO2 supplemented algal high rate ponds. Proc Water Environ Fed 2009(10):5469–5481

    Article  Google Scholar 

  • Wood A (1987) A simple wastewater treatment system incorporating the selective cultivation of a filamentous algae. Water Sci Technol 19:1251–1254

    CAS  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    Article  CAS  Google Scholar 

  • Yang CF, Ding ZY, Zhang KC (2008) Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. World J Microbiol Biotechnol 24(12):2919–2925

    Article  CAS  Google Scholar 

  • Yeh KL, Chang JS, Chen WM (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10(3):201–208

    Article  CAS  Google Scholar 

  • Yonezawa N, Matsuura H, Shiho M, Kaya K, Watanabe MM (2012) Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22. Bioresour Technol 109:304–307

    Article  CAS  Google Scholar 

  • Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Bioeng 25:97–101

    Article  CAS  Google Scholar 

  • Zhang TY, Hu HY, Wu YH, Zhuang LL, Xu XQ, Wang XX, Dao GH (2016) Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew Sustain Energy Rev 60:1602–1614

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (YSS/2015/000527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanthakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umamaheswari, J., Shanthakumar, S. Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol 15, 265–284 (2016). https://doi.org/10.1007/s11157-016-9397-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9397-7

Keywords

Navigation