Reviews in Environmental Science and Bio/Technology

, Volume 14, Issue 3, pp 453–472 | Cite as

Overview of Fenton pre-treatment of sludge aiming to enhance anaerobic digestion

  • Sridhar Pilli
  • S. Yan
  • R. D. Tyagi
  • R. Y. Surampalli
Review paper


Availability of the biodegradable matter in wastewater sludge limits the anaerobic digestion (AD) process efficiency. Therefore, sludge pre-treatment is required to increase sludge solid degradability and, in turn, AD efficiency. Advanced oxidation processes, particularly Fenton pre-treatment, are emerging as popular methods aiming to enhance sludge biodegradability. This review summarizes the major findings of Fenton pre-treatment application in sludge disintegration and dewaterability, and elucidates the impacts on both mesophilic and thermophilic digestion. Efforts are made to understand the effect of the Fenton pre-treatment of wastewater sludge on enhancing AD efficiency (increased biogas production and solids reduction) and outline the future research direction. A case study of mass–energy balance and greenhouse gas (GHG) emission computations for mesophilic and thermophilic digestion of control (without pre-treatment) and Fenton pre-treatment sludge at different sludge retention times is also illustrated.


Fenton pre-treatment Sludge biodegradability Sludge dewaterability Anaerobic digestion 



Anaerobic digestion


Biochemical oxygen demand




Carbon dioxide


Chemical oxygen demand


Capillary suction time


Dissolved solids


Degree of disintegration


Dry solids


Ferrous ion


Greenhouse gases


Hydrogen peroxide






Kilowatt hour




Nitrous oxide




Organic dry solids


Resource for future


Soluble chemical oxygen demand


Soluble COD of untreated sludge


Soluble COD of Fenton pre-treated


Specific resistance to filtration


Suspended solids


Volatile solids


Volatile suspended solids


Waste activated solids


Wastewater treatment plant


Wastewater treatment plants


Difference of organic dry solids



The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grants A4984, Canada Research Chair) for financial support. The views or opinions expressed in this article are those of the authors.


  1. Álvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol 101(4):1153–1158CrossRefGoogle Scholar
  2. Andrews JP, Asaadi M, Clarke B, Ouki S (2006) Potentially toxic element release by fenton oxidation of sewage sludge. Water Sci Technol 54(5):197–205CrossRefGoogle Scholar
  3. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781CrossRefGoogle Scholar
  4. Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83(10):1323–1338CrossRefGoogle Scholar
  5. Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T, Ahmed MA, Sutamihardja RT, Gregory R (2008) Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag Resh 26(1):11–32CrossRefGoogle Scholar
  6. Brown S, Beecher N, Carpenter A (2010) Calculator tool for determining greenhouse gas emissions for biosolids processing and end use. Environ Sci Technol 44(24):9509–9515CrossRefGoogle Scholar
  7. Buda F, Ensing B, Gribnau MCM, Baerends EJ (2003) O2 evolution in the Fenton reaction. Chem Eur J 9(14):3436–3444CrossRefGoogle Scholar
  8. Buyukkamaci N (2004) Biological sludge conditioning by Fenton’s reagent. Process Biochem 39(11):1503–1506CrossRefGoogle Scholar
  9. Cacho Rivero JA, Suidan MT (2006) Effect of H2O2 dose on the thermo-oxidative co-treatment with anaerobic digestion of excess municipal sludge. Water Sci Technol 54:253–259CrossRefGoogle Scholar
  10. Cacho Rivero JA, Madhavan N, Suidan MT, Ginestet P, Audic J-M (2006) Oxidative co-treatment using hydrogen peroxide with anaerobic digestion of excess municipal sludge. Water Environ Res 78:691–700CrossRefGoogle Scholar
  11. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83(6):769–776CrossRefGoogle Scholar
  12. Dewil R, Baeyens J, Neyens E (2005) Fenton peroxidation improves the drying performance of waste activated sludge. J Hazard Mater 117(2–3):161–170CrossRefGoogle Scholar
  13. Dewil R, Appels L, Baeyens J, Degrève J (2007) Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. J Hazard Mater 146(3):577–581CrossRefGoogle Scholar
  14. Dhar BR, Youssef E, Nakhla G, Ray MB (2011) Pretreatment of municipal waste activated sludge for volatile sulfur compounds control in anaerobic digestion. Bioresour Technol 102(4):3776–3782CrossRefGoogle Scholar
  15. Erden G, Filibeli A (2010) Improving anaerobic biodegradability of biological sludges by Fenton pre-treatment: effects on single stage and two-stage anaerobic digestion. Desalination 251(1–3):58–63CrossRefGoogle Scholar
  16. Erden G, Filibeli A (2011) Effects of Fenton pre-treatment on waste activated sludge properties. Clean-Soil Air Water 39(7):626–632CrossRefGoogle Scholar
  17. Eskicioglu C, Prorot A, Marin J, Droste RL, Kennedy KJ (2008) Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res 42(18):4674–4682CrossRefGoogle Scholar
  18. Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8):1749–1758CrossRefGoogle Scholar
  19. Gassara F, Brar SK, Pelletier F, Verma M, Godbout S, Tyagi RD (2011) Pomace waste management scenarios in Québec—impact on greenhouse gas emissions. J Hazard Mater 192(3):1178–1185CrossRefGoogle Scholar
  20. GE AES Greenhouse Gas Services (2008) Methodology for landfill gas methane capture and destruction projects (version 1.1).
  21. Hammond G, Jones C (2008) Inventory of carbon & energy: ICE. Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath, BathGoogle Scholar
  22. Hong J, Hong J, Otaki M, Jolliet O (2009) Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manag 29(2):696–703CrossRefGoogle Scholar
  23. Hospido A, Moreira T, Martín M, Rigola M, Feijoo G (2005) Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes (10pp). Int J Life Cycle Assess 10(5):336–345CrossRefGoogle Scholar
  24. Jorfi S, Rezaee A, Moheb-ali G-A, Jaafarzadeh H (2013) Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J Environ Health Sci Eng 11:17–25CrossRefGoogle Scholar
  25. Jung YS, Lim WT, Park JY, Kim YH (2009) Effect of pH on Fenton and Fenton-like oxidation. Environ Technol 30:183–190CrossRefGoogle Scholar
  26. Kaynak GE, Filibeli A (2008) Assesment of Fenton process as a minimization technique for biological sludge: effects on anaerobic sludge bioprocessing. J Residuals Sci Technol 5(3):151–160Google Scholar
  27. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744CrossRefGoogle Scholar
  28. Khanal SK, DavidSung, Shihwuvan Leeuwen, J. (2007) Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol 37(4):277–313CrossRefGoogle Scholar
  29. Kim D-H, Cho S-K, Lee M-K, Kim M-S (2013) Increased solubilization of excess sludge does not always result in enhanced anaerobic digestion efficiency. Bioresour Technol 143:660–664CrossRefGoogle Scholar
  30. Kumar R, Pal P (2012) Response surface-optimized Fenton’s pre-treatment for chemical precipitation of struvite and recycling of water through downstream nanofiltration. Chem Eng J 210:33–44CrossRefGoogle Scholar
  31. Lee H, Shoda M (2009) Comparison of treatment efficiencies of Fenton’s oxidation for untreated and biologically treated wastewaters. Environ Eng Sci 26(5):891–896CrossRefGoogle Scholar
  32. Lu MC, Lin CJ, Liao CH, Ting WP, Huang RY (2001) Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Sci Technol 44:327–332Google Scholar
  33. Lu M-C, Lin C-J, Liao C-H, Huang R-Y, Ting W-P (2003) Dewatering of activated sludge by Fenton’s reagent. Adv Environ Res 7(3):667–670CrossRefGoogle Scholar
  34. Maletzky P, Bauer R, Lahnsteiner J, Pouresmael B (1999) Immobilisation of iron ions on Nafion® and its applicability to the photo-Fenton method. Chemosphere 38(10):2315–2325CrossRefGoogle Scholar
  35. Mata-Alvarez J, Dosta J, Mace S, Astals S (2011) Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31(2):99–111CrossRefGoogle Scholar
  36. Metcalf E (2003) Wastewater engineering: treatment, disposal, reuse. Metcalf & Eddy. Inc., McGraw-Hill, New YorkGoogle Scholar
  37. Muller J (2000) Disintegration as a key-step in sewage sludge treatment. Water Sci Technol 41(8):123–130Google Scholar
  38. Munter R (2001) Advanced oxidation processes–current status and prospects. Proc Estonian Acad Sci Chem 50(2):59–80Google Scholar
  39. Mustranta A, Viikari L (1993) Dewatering of activated sludge by an oxidative treatment. Water Sci Technol 28(1):213–221Google Scholar
  40. Nayono SE (2009) Anaerobic digestion of organic solid waste for energy production. KIT Scientific Publishing, KarlsruheGoogle Scholar
  41. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50CrossRefGoogle Scholar
  42. Neyens E, Baeyens J, Weemaes M, De Heyder B (2002) Advanced biosolids treatment using H2O2-oxidation. Environ Eng Sci 19(1):27–35CrossRefGoogle Scholar
  43. Neyens E, Baeyens J, Weemaes M, De Heyder B (2003) Pilot-scale peroxidation (H2O2) of sewage sludge. J Hazard Mater 98(1–3):91–106CrossRefGoogle Scholar
  44. Neyens E, Baeyens J, De Heyder B, Weemaes M (2004a) The potential of advanced treatment methods for sewage sludge. Manag Environ Qual 15(1):9–16CrossRefGoogle Scholar
  45. Neyens E, Baeyens J, Dewil R, De Heyder B (2004b) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater 106(2–3):83–92CrossRefGoogle Scholar
  46. Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5–6):411–490CrossRefGoogle Scholar
  47. Pere J, Alen R, Viikari L, Eriksson L (1993) Characterization and dewatering of activated sludge from the pulp and paper industry. Water Sci Technol 28(1):193–201Google Scholar
  48. Pérez-Elvira SI, Nieto Diez P, Fdz-Polanco F (2006) Sludge minimisation technologies. Rev Environ Sci Biotechnol 5:375–398CrossRefGoogle Scholar
  49. Pham TTH, Brar SK, Tyagi RD, Surampalli RY (2010a) Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge. Ultrason Sonochem 17(1):38–45CrossRefGoogle Scholar
  50. Pham TTH, Brar SK, Tyagi RD, Surampalli RY (2010b) Optimization of Fenton oxidation pre-treatment for B. thuringiensis—based production of value added products from wastewater sludge. J Environ Manage 91(8):1657–1664CrossRefGoogle Scholar
  51. Pham TTH, Tyagi RD, Brar SK, Surampalli RY (2011) Effect of ultrasonication and Fenton oxidation on biodegradation of bis(2-ethylhexyl) phthalate (DEHP) in wastewater sludge. Chemosphere 82(6):923–928CrossRefGoogle Scholar
  52. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrasonic Sonochem 18(1):1–18CrossRefGoogle Scholar
  53. Pilli S, Yan S, Tyagi RD, Surampalli RY (2014) Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol 45:669–702CrossRefGoogle Scholar
  54. Pradel M, Reverdy A (2012) Assessing GHG emissions from sludge treatment and disposal routes: the method behind GESTABoues tool. In: Proceedings of the 8th international conference on organic waste management, Rennes, France, 12–14 June 2012. ORBIT, France, pp 23–31Google Scholar
  55. Primo O, Rueda A, Rivero MJ, Ortiz I (2008) An integrated process, Fenton reaction—ultrafiltration, for the treatment of landfill leachate: pilot plant operation and analysis. Ind Eng Chem Res 47(3):946–952CrossRefGoogle Scholar
  56. Prousek J (2007) Fenton chemistry in biology and medicine. Pure Appl Chem 79(12):2325–2338CrossRefGoogle Scholar
  57. Ramaswamy N, Arruda TM, Wen W, Hakim N, Saha M, Gullá A, Mukerjee S (2009) Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method. Electrochim Acta 54(26):6756–6766CrossRefGoogle Scholar
  58. Seol Y, Javandel I (2008) Citric acid-modified Fenton’s reaction for the oxidation of chlorinated ethylenes in soil solution systems. Chemosphere 72:537–542CrossRefGoogle Scholar
  59. Shaw A, Coleman P, Nolasco D, Rosso D, Yuan Z, van Loosdrecht MCM, Shiskowski D, Chandran K, Houweling D, Willis J, Beecher N, Corominas LI, Siegrist H, Porro J, Nopens I (2010) Workshop summary: the role of modeling in assessing greenhouse gas (GHG) emissions. Proc Water Environ Fed 2010(16):1050–1053CrossRefGoogle Scholar
  60. Spinosa L, Vesilind PA (2001) Sludge into biosolids: processing, disposal, utilization. IWA publishing, LondonGoogle Scholar
  61. Taricska JR, Long DA, Chen JP, Hung Y, Zou S (2009) Anaerobic digestion. In: Wang LK, Pereira NC, Hung Y (eds) Biological treatment processes. Humana Press, New York, pp 589–634CrossRefGoogle Scholar
  62. Tokumura M, Sekine M, Yoshinari M, Znad HT, Kawase Y (2007) Photo-Fenton process for excess sludge disintegration. Process Biochem 42(4):627–633CrossRefGoogle Scholar
  63. Tony MA, Zhao YQ, Fu JF, Tayeb AM (2008) Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: effectiveness and optimising study to improve dewaterability. Chemosphere 72(4):673–677CrossRefGoogle Scholar
  64. Tony MA, Zhao YQ, Tayeb AM (2009) Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning. J Environ Sci 21(1):101–105CrossRefGoogle Scholar
  65. Van Haandel AC, Van Der Lubbe J (2007) Handbook biological waste water treatment + design and optimisation of activated sludge systems. Webshop Wastewater Handbook
  66. Wang LK, Shammas NK, Hung YT (2008) Biosolids engineering and management. Springer, BerlinCrossRefGoogle Scholar
  67. Yasui H, Komatsu K, Goel R, Li YY, Noike T (2005) Full-scale application of anaerobic digestion process with partial ozonation of digested sludge. Water Sci Technol 52(1–2):245–252Google Scholar
  68. Yasui H, Matsuhashi R, Noike T, Harada H (2006) Anaerobic digestion with partial ozonation minimises greenhouse gas emission from sludge treatment and disposal. Water Sci Technol 53(3):255–263CrossRefGoogle Scholar
  69. Zhang H (2010) Sludge treatment to increase biogas production. In: Department of Land and Water Resources Engineering, Vol, Ph D, Royal Institute of Technology. SE-100 44 Stockholm, SwedenGoogle Scholar
  70. Zhen G, Lu X, Wang B, Zhao Y, Chai X, Niu D, Zhao T (2014) Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization. Front Environ Sci Eng 8(2):267–276CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sridhar Pilli
    • 1
  • S. Yan
    • 1
  • R. D. Tyagi
    • 1
  • R. Y. Surampalli
    • 2
  1. 1.INRS Eau, Terre, EnvironnementQuébecCanada
  2. 2.Department of Civil EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations