Skip to main content
Log in

Recovery of sulphur from contaminated air in wastewater treatment plants by biofiltration: a critical review

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biofilters are popular as an alternative method for treatment of volatile air pollutants like hydrogen sulphide originating from wastewater treatment plants. Despite several advantages over conventional chemical systems, one of the concerns of biological treatment of hydrogen sulphide is the production of large volumes of neutral or acidic leachate which needs to be treated or disposed safely. Instead of treating as an unwanted product, a waste stream of weakly acidic leachate can be thought of as a sulphur resource. This paper provides an overview of recent literature on the removal of H2S from contaminated air in an aerobic environment and discusses the possibility of recovering sulphur from contaminated air with special emphasis on polluted air originating from wastewater treatment plants. We also add our perspectives on future research and development needs in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal A, Sahu KK (2009) An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J Hazard Mater 171:61–75. doi:10.1016/j.jhazmat.2009.06.099

    CAS  Google Scholar 

  • Al-Tarazi M, Heesink ABM, Versteeg GF (2004) Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling. Chem Eng Sci 59:567–579. doi:10.1016/j.ces.2003.11.006

    CAS  Google Scholar 

  • Araujo ALC, de Oliveira R, Mara DD, Pearson HW, Silva SA (2000) Sulphur and phosphorus transformations in wastewater storage and treatment reservoirs in northeast Brazil. Water Sci Technol 42:203–210

    CAS  Google Scholar 

  • Aroca G, Urrutia H, Nunez D, Oyarzun P, Arancibia A, Guerrero K (2007) Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J Biotechnol 10:514–520

    Google Scholar 

  • Bagreev A, Bandosz TJ (2002a) H2S adsorption/oxidation on materials obtained using sulfuric acid activation of sewage sludge-derived fertilizer. J Colloid Interf Sci 252:188–194. doi:10.1006/jcis.2002.8419

    CAS  Google Scholar 

  • Bagreev A, Bandosz TJ (2002b) A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Ind Eng Chem Res 41:672–679. doi:10.1021/Ie010599r

    CAS  Google Scholar 

  • Bagreev A, Rahman H, Bandosz RJ (2000) Study of H2S adsorption and water regeneration of spent coconut-based activated carbon. Environ Sci Technol 34:4587–4592. doi:10.1021/Es001150c

    CAS  Google Scholar 

  • Bagreev A, Adib F, Bandosz TJ (2001) pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. Carbon 39:1897–1905. doi:10.1016/S0008-6223(00)00317-1

    CAS  Google Scholar 

  • Bagreev A, Bashkova S, Bandosz TJ (2002a) Sewage sludge-derived materials as adsorbents of acidic gases. Abstracts Paper of the American Chemical Society 224:U573–U573

  • Bagreev A, Rahman H, Bandosz TJ (2002b) Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants Adv. Environ Res 6:303–311. doi:10.1016/S1093-0191(01)00063-6

    CAS  Google Scholar 

  • Bandosz TJ (2002) On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J Colloid Interf Sci 246:1–20. doi:10.1006/jcis.2001.7952

    CAS  Google Scholar 

  • Bandosz TJ, Le Q (1998) Evaluation of surface properties of exhausted carbons used as H2S adsorbents in sewage treatment plants. Carbon 36:39–44. doi:10.1016/S0008-6223(97)00148-6

    CAS  Google Scholar 

  • Bandosz T, Askew S, Kelly WR, Bagreev A, Adib F, Turk A (2000) Biofiltering action on hydrogen sulfide by unmodified activated carbon in sewage treatment plants. Water Sci Technol 42:399–401

    CAS  Google Scholar 

  • Bandosz TJ, Seredych M, Allen J, Wood J, Rosenberg E (2007) Silica-polyamine-based carbon composite adsorbents as media for effective hydrogen sulfide adsorption/oxidation. Chem Mater 19:2500–2511. doi:10.1021/Cm062984i

    CAS  Google Scholar 

  • Bartholomew FJ (1952) Sulfuric acid recovery from waste liquors. Ind Eng Chem 44:541–545. doi:10.1021/Ie50507a031

    CAS  Google Scholar 

  • Bashkova S, Baker FS, Wu XX, Armstrong TR, Schwartz V (2007) Activated carbon catalyst for selective oxidation of hydrogen sulphide: on the influence of pore structure, surface characteristics, and catalytically-active nitrogen. Carbon 45:1354–1363. doi:10.1016/j.carbon.2007.01.005

    CAS  Google Scholar 

  • Basu S, Khan AL, Cano-Odena A, Liu CQ, Vankelecom IFJ (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768. doi:10.1039/B817050a

    CAS  Google Scholar 

  • Bernstein R, Freger V, Lee JH, Kim YG, Lee J, Herzberg M (2014) Should I stay or should I go? Bacterial attachment vs biofilm formation on surface-modified membranes. Biofouling 30:367–376. doi:10.1080/08927014.2013.876011

    CAS  Google Scholar 

  • Brennan BM, Donlon M, Bolton E (1996) Peat biofiltration as an odour control technology for sulphur-based odours. J Chart Inst Water E 10:190–198

    CAS  Google Scholar 

  • Buisman CJN, Geraats BG, Ijspeert P, Lettinga G (1990) Optimization of sulfur production in a biotechnological sulfide-removing reactor. Biotechnol Bioeng 35:50–56. doi:10.1002/bit.260350108

    CAS  Google Scholar 

  • Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63. doi:10.1016/S0734-9750(00)00058-6

    CAS  Google Scholar 

  • Chaiprapat S, Mardthing R, Kantachote D, Karnchanawong S (2011) Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem 46:344–352. doi:10.1016/j.procbio.2010.09.007

    CAS  Google Scholar 

  • Chen JM, Jiang LY, Sha HL (2006) Removal efficiency of high-concentration H2S in a pilot-scale biotrickling filter. Environ Technol 27:759–766. doi:10.1080/09593332708618687

    CAS  Google Scholar 

  • Cherosky P, Li Y (2013) Hydrogen sulfide removal from biogas by bio-based iron sponge. Biosyst Eng 114:55–59. doi:10.1016/j.biosystemseng.2012.10.010

    Google Scholar 

  • Comas J, Balaguer M, Poch M, Rigola M (1999) Pilot plant evaluation for hydrogen sulphide biological treatment: determination of optimal conditions linking experimental and mathematical modelling. Environ Technol 20:53–59

  • Converse BM, Schroeder ED, Iranpour R, Cox HHJ, Deshusses MA (2003) Odor and volatile organic compound removal from wastewater treatment plant headworks ventilation air using a biofilter. Water Environ Res 75:444–454. doi:10.2175/106143003x141240

    CAS  Google Scholar 

  • Cortinovis D (1974) Activated biofilter: simple-efficient. Water Sew Work. 121:52

  • Cox HH, Deshusses MA, Converse BM, Schroeder ED, Iranpour R (2002) Odor and volatile organic compound treatment by biotrickling filters: pilot-scale studies at hyperion treatment plant. Water Environ Res 74:557–563

    CAS  Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. Lewis Publishers, Boca Raton, Fla

  • Duan HQ, Yan R, Koe LCC, Wang XL (2007) Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration. Chemosphere 66:1684–1691. doi:10.1016/j.chemosphere.2006.07.020

    CAS  Google Scholar 

  • Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D (2005) Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chem Eng J 113:93–104. doi:10.1016/j.cej.2005.04.007

    CAS  Google Scholar 

  • Einsiedl F, Mayer B, Schafer T (2008) Evidence for incorporation of H2S in groundwater fulvic acids from stable isotope ratios and sulfur K-edge X-ray absorption near edge structure spectroscopy. Environ Sci Technol 42:2439–2444. doi:10.1021/Es7025455

    CAS  Google Scholar 

  • Escalas A, Guadayol JM, Cortina M, Rivera J, Caixach J (2003) Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res 37:3913–3920. doi:10.1016/S0043-1354(03)00336-1

    CAS  Google Scholar 

  • Estrada JM, Kraakman NJRB, Munoz R, Lebrero R (2011) A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ Sci Technol 45:1100–1106. doi:10.1021/Es103478j

    CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882. doi:10.1128/AEM.67.7.2873-2882.2001

    CAS  Google Scholar 

  • Gabriel D, Deshusses MA (2003) Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds. Environ Prog 22:111–118. doi:10.1002/Ep.670220213

    CAS  Google Scholar 

  • Gabriel D, Cox HHJ, Deshusses MA (2004) Conversion of full-scale wet scrubbers to biotrickling filters for H2S control at publicly owned treatment works. J Environ Eng-Asce 130:1110–1117. doi:10.1061/(Asce)0733-9372(2004)130:10(110)

    CAS  Google Scholar 

  • Gao L, Keener TC, Zhuang L, Siddiqui KF (2001) A technical and economic comparison of biofiltration and wet chemical oxidation (scrubbing) for odor control at wastewater treatment plants. Environ Eng Policy 2:203–212

    Google Scholar 

  • Ghanbarabadi H, Khoshandam B (2015) Simulation and comparison of Sulfinol solvent performance with Amine solvents in removing sulfur compounds and acid gases from natural sour gas. J Nat Gas Sci Eng 22:415–420. doi:10.1016/ingse.2014.12.024

    CAS  Google Scholar 

  • Godayol A, Besalú E, Anticó E, Sanchez JM (2015) Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography. Chemosphere 119:363–370. doi:10.1016/j.chemosphere.2014.06.072

    CAS  Google Scholar 

  • Goncalves JJ, Govind R (2008) H2S Abatement in a biotrickling filter using iron(III) foam media. Chemosphere 73:1478–1483. doi:10.1016/j.chemosphere.2008.07.048

    CAS  Google Scholar 

  • Gostelow P, Parsons SA (2000) Sewage treatment works odour measurement. Water Sci Technol 41:33–40

    CAS  Google Scholar 

  • Guidotti TL (2010) Hydrogen sulfide: advances in understanding human toxicity. Int J Toxicol 29:569–581. doi:10.1177/1091581810384882

    CAS  Google Scholar 

  • Hansen NG, Rindel K (2000) Bioscrubbing, an effective and economic solution to odour control at wastewater treatment plants. Water Sci Technol 41(6):155–164

  • Hao TW et al (2014) A review of biological sulfate conversions in wastewater treatment. Water Res 65:1–21. doi:10.1016/j.watres.2014.06.043

    CAS  Google Scholar 

  • He C, Li XZ, Sharma VK, Li SY (2009) elimination of sludge odor by oxidizing sulfur-containing compounds with ferrate(VI). Environ Sci Technol 43:5890–5895. doi:10.1021/Es900397y

    CAS  Google Scholar 

  • Herbert M, Glick R, Black H (1967) Olfactory precipitants of bronchial asthma. J Psychosom Res 11:195. doi:10.1016/0022-3999(67)90007-4

    CAS  Google Scholar 

  • Herszage J, Afonso MD (2000) The autooxidation of hydrogen sulfide in the presence of hematite. Colloid Surf A 168:61–69. doi:10.1016/S0927-7757(99)00453-7

    CAS  Google Scholar 

  • Hocking MB (2006) Handbook of chemical technology and pollution control. Academic Press, Amsterdam

    Google Scholar 

  • Hodgson E (2004) A textbook of modern toxicology. Wiley, Hoboken

    Google Scholar 

  • Iranpour R, Coxa HHJ, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24:254–267. doi:10.1002/Ep.10077

    CAS  Google Scholar 

  • Janssen AJH, Lettinga G, de Keizer A (1999) Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur—colloidal and interfacial aspects of biologically produced sulphur particles. Colloid Surf A 151:389–397. doi:10.1016/S0927-7757(98)00507-X

    CAS  Google Scholar 

  • Jefferson B, Nazareno C, Georgaki S, Gostelow P, Stuetz RM, Longhurst P, Robinson T (2005) Membrane gas absorbers for H2S removal—design, operation and technology integration into existing odour treatment strategies. Environ Technol 26:793–804. doi:10.1080/09593332608618511

    CAS  Google Scholar 

  • Jensen AB, Webb C (1995) treatment of H2 s-containing gases—a review of microbiological alternatives. Enzyme Microb Tech 17:2–10. doi:10.1016/0141-0229(94)00080-B

    CAS  Google Scholar 

  • Jensen HS, Nielsen AH, Hvitved-Jacobsen T, Vollertsen J (2008) Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems. Water Sci Technol 57:1721–1726. doi:10.2166/Wst.2008.293

    CAS  Google Scholar 

  • Jensen HS, Lens PNL, Nielsen JL, Bester K, Nielsen AH, Hvitved-Jacobsen T, Vollertsen J (2011) Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers. J Hazard Mater 189:685–691. doi:10.1016/j.jhazmat.2011.03.005

    CAS  Google Scholar 

  • Jiang LY, Zhu JM (2013) Separation technologies for current and future biorefineries—status and potential of membrane-based separation Wiley Interdisciplinary Reviews. Energy Environ 2:673–690. doi:10.1002/wene.73

    CAS  Google Scholar 

  • Judd DK (1978) Selexol unit saves energy. Hydro process 57(4):122–124

  • Karbanee N, Van Hille RP, Lewis AE (2008) Controlled nickel sulfide precipitation using gaseous hydrogen sulfide. Ind Eng Chem Res 47:1596–1602. doi:10.1021/Ie0711224

    CAS  Google Scholar 

  • Kazemi A, Malayeri M, kharaji AG, Shariati A (2014) Feasibility study, simulation and economical evaluation of natural gas sweetening processes—part 1: a case study on a low capacity plant in iran. J Natural Gas Sci Eng 20:16–22. doi:10.1016/j.jngse.2014.06.001

    CAS  Google Scholar 

  • Kennes C, Veiga M (2002) Inert filter media for the biofiltration of waste gases—characteristics and biomass control. Rev Environ Sci Biotechnol 1:201–214. doi:10.1023/A:1021240500817

    CAS  Google Scholar 

  • Kesieme UK, Aral H, Duke M, Milne N, Cheng CY (2013) Recovery of sulphuric acid from waste and process solutions using solvent extraction. Hydrometallurgy 138:14–20. doi:10.1016/j.hydromet.2013.06.005

    CAS  Google Scholar 

  • Khazini L, Fatehifar E, Fouladpanjeh B, Ebrahimzadeh M (2014) A simulation of a claus tail gas treatment unit in a petroleum refinery. Energy Source Part A 36:2431–2442. doi:10.1080/15567036.2010.536831

    CAS  Google Scholar 

  • Kraakman NJR (2003) Robustness of a full-scale biological system treating industrial CS2 emissions. Environ Prog 22:79–85. doi:10.1002/Ep.670220209

    CAS  Google Scholar 

  • Lafita C, Penya-Roja JM, Sempere F, Waalkens A, Gabaldon C (2012) Hydrogen sulfide and odor removal by field-scale biotrickling filters: Influence of seasonal variations of load and temperature. J Environ Sci Health A 47:970–978. doi:10.1080/10934529.2012.667302

    CAS  Google Scholar 

  • Laursen JK, Karavanov AN (2006) Processes for sulfur recovery, regeneration of spent acid, and reduction of nox emissions. Chem Petrol Eng 42:229–234. doi:10.1007/s10556-006-0084-3

    CAS  Google Scholar 

  • Lebrero R, Bouchy L, Stuetz R, Muñoz R (2011) Odor assessment and management in wastewater treatment plants: a review. Crit Rev Environ Sci Technol 41:915–950. doi:10.1080/10643380903300000

    Google Scholar 

  • Lebrero R, Rangel MGL, Muñoz R (2013) Characterization and biofiltration of a real odorous emission from wastewater treatment plant sludge. J Environ Manage 116:50–57. doi:10.1016/j.jenvman.2012.11.038

    CAS  Google Scholar 

  • Lee CJ, Rasmussen TJ (2006) Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas. Sci Total Environ 371:258–269. doi:10.1016/j.scitotenv.2006.07.023

    CAS  Google Scholar 

  • Lee EY, Lee NY, Cho KS, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101:309–314. doi:10.1263/jbb.101.309

    CAS  Google Scholar 

  • Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104:222–234. doi:10.1016/j.hydromet.2010.06.010

    CAS  Google Scholar 

  • Li JJ, Huang LM, He JL (2014) The study of the influence of sulfur on the catalyst structure in low temperature claus processes. Adv Mater Res Switz 884–885:182–185. doi:10.4028/www.scientific.net/AMR.884-885.182

    Google Scholar 

  • Liu J, Feng YJ, He WH, Gong YY, Qu YP, Ren NQ (2014) A novel boost circuit design and in situ electricity application for elemental sulfur recovery. J Power Sources 248:317–322. doi:10.1016/j.jpowsour.2013.09.098

    CAS  Google Scholar 

  • Lohwacharin J, Annachhatre AP (2010) Biological sulfide oxidation in an airlift bioreactor. Bioresour Technol 101:2114–2120. doi:10.1016/j.biortech.2009.10.093

    CAS  Google Scholar 

  • Lu CS, Lin MR, Chu CH (2002) Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal Adv. Environ Res 6:99–106. doi:10.1016/S1093-0191(00)00072-1

    CAS  Google Scholar 

  • Maksimova YG (2014) Microbial biofilms in biotechnological processes. Appl Biochem Microbiol 50:750–760. doi:10.1134/S0003683814080043

    CAS  Google Scholar 

  • McNevin D, Barford J (2000) Biofiltration as an odour abatement strategy. Biochem Eng J 5:231–242. doi:10.1016/S1369-703x(00)00064-4

    CAS  Google Scholar 

  • Mudliar S et al (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manage 91:1039–1054. doi:10.1016/j.jenvman.2010.01.006

    CAS  Google Scholar 

  • Nour M et al (2014) Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal. J Membr Sci 470:346–355. doi:10.1016/j.memsci.2014.07.047

    CAS  Google Scholar 

  • Occupational Safety and Health Administration Hydrogen Sulphide: OSHA Standards. United States Department of Labor. https://www.osha.gov/SLTC/hydrogensulfide/standards.html. Accessed 13 April 2015

  • Oprime MEAG, Garcia O, Cardoso AA (2001) Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochem 37:111–114. doi:10.1016/S0032-9592(01)00179-0

    CAS  Google Scholar 

  • Oviedo ER, Johnson D, Shipley H (2012) Evaluation of hydrogen sulphide concentration and control in a sewer system. Environ Technol 33:1207–1215. doi:10.1080/09593330.2011.618932

    CAS  Google Scholar 

  • Oyarzun P, Arancibia F, Canales C, Aroca GE (2003) Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem 39:165–170. doi:10.1016/S0032-9592(03)00050-5

    CAS  Google Scholar 

  • Ozturk ZZ, Tasaltin C, Engin GO, Gurek AG, Atilla D, Ahsen V, Ince M (2009) Evaluation of a fast wastewater odour characterisation procedure using a chemical sensor array. Environ Monit Assess 151:369–375. doi:10.1007/s10661-008-0278-6

    Google Scholar 

  • Parande AK, Ramsamy PL, Ethirajan S, Rao CRK, Palanisamy N (2006) Deterioration of reinforced concrete in sewer environments. Proc Inst Civ Eng Munic Eng 159:11–20

    Google Scholar 

  • Park K et al (2014) Mitigation strategies of hydrogen sulphide emission in sewer networks—a review. Int Biodeter Biodegr 95:251–261. doi:10.1016/j.ibiod.2014.02.013

    CAS  Google Scholar 

  • Perlinger JA, Kalluri VM, Venkatapathy R, Angst W (2002) Addition of hydrogen sulfide to juglone. Environ Sci Technol 36:2663–2669. doi:10.1021/Es015602c

    CAS  Google Scholar 

  • Pikaar I, Rozendal RA, Yuan ZG, Keller J, Rabaey K (2011) Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Water Res 45:5381–5388. doi:10.1016/j.watres.2011.07.033

    CAS  Google Scholar 

  • Pikaar I, Sharma KR, Hu SH, Gernjak W, Keller J, Yuan ZG (2014) Reducing sewer corrosion through integrated urban water management. Science 345:812–814. doi:10.1126/science.1251418

    CAS  Google Scholar 

  • Poulton SW, Krom MD, Raiswell R (2004) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta 68:3703–3715. doi:10.1016/j.gca.2004.03.012

    CAS  Google Scholar 

  • Prabu M, Ramalingam K (2015) Environmentally benign, recyclable nano hollandite and metal intercalated nano hollandites for hydrogen sulfide removal. Rsc Adv 5:18554–18564. doi:10.1039/C4ra14714f

    CAS  Google Scholar 

  • Rhodes Z (2013) Heating helps amine plants purify natural gas: some gas sweetening plants utilize thermal fluid heaters to help remove carbon dioxide and hydrogen sulfide from natural gas, purifying the product for market. Process Heating, p 16

  • Ritchie BJ, Hill GA (1995) Biodegradation of phenol-polluted air using an external loop airlift bioreactor. J Chem Technol Biot 62:339–344. doi:10.1002/jctb.280620405

    CAS  Google Scholar 

  • Rodríguez I, Gómez J, Cantero D, Ramírez M, Jover J (2012) Strategies for pH control in a biofilter packed with sugarcane bagasse for hydrogen sulfide removal. J Environ Sci Health Part A 47:990–996. doi:10.1080/10934529.2012.667308

    Google Scholar 

  • Safe work australia Hazardous Substances Information System (HSIS). http://hsis.safeworkaustralia.gov.au/ExposureStandards/Details?exposureStandardID=327. Accessed 13 April 2015

  • Santos A, Guimera X, Dorado AD, Gamisans X, Gabriel D (2015) Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times. Appl Microbiol Biotechnol 99:67–76. doi:10.1007/s00253-014-5796-2

    CAS  Google Scholar 

  • Schiffman SS, Williams CM (2005) Science of odor as a potential health issue. J Environ Qual 34:129–138

    CAS  Google Scholar 

  • Scholz M, Melin T, Wessling M (2013) Transforming biogas into biomethane using membrane technology. Renew Sustain Energy Rev 17:199–212. doi:10.1016/j.rser.2012.08.009

    CAS  Google Scholar 

  • SCOEL Recommendation from the Scientific Committee on Occupational Exposure Limits for Hydrogen Sulphide http://ec.europa.eu/social/BlobServlet?docId=3864&langId=en. Accessed 13 April 2015

  • Selim H, Gupta AK, Al Shoaibi A (2013) Effect of reaction parameters on the quality of captured sulfur in Claus process. Appl Energy 104:772–776. doi:10.1016/j.apenergy.2012.12.015

    CAS  Google Scholar 

  • Shareefdeen Z (2015) Hydrogen sulfide (H2S) removal using schist packings in industrial biofilter applications Korean. J Chem Eng 32:15–19. doi:10.1007/s11814-014-0349-z

    CAS  Google Scholar 

  • Shareefdeen Z, Singh A (2005) Biotechnology for odor and air pollution control. Springer, New York

    Google Scholar 

  • Shareefdeen Z, Herner B, Webb D, Wilson S (2003a) Biofiltration eliminates nuisance chemical odors from industrial air streams. J Ind Microbiol Biotechnol 30:168–174. doi:10.1007/s10295-002-0026-4

    CAS  Google Scholar 

  • Shareefdeen Z, Herner B, Webb D, Wilson S (2003b) Hydrogen sulfide (H2S) removal synthetic media biofiters. Environ Prog 22:207–213. doi:10.1002/Ep.670220319

    CAS  Google Scholar 

  • Shim C, Williams MH (1986) Effect of odors in asthma. Am J Med 80:18–22. doi:10.1016/0002-9343(86)90043-4

    CAS  Google Scholar 

  • Shim JS, Jung JT, Sofer S, Lakhwala F (1995) Oxidation of ethanol vapors in a spiral bioreactor. J Chem Technol Biot 64:49–54. doi:10.1002/jctb.280640109

    CAS  Google Scholar 

  • Sjaastad O, Bakketeig LS (2006) Hydrogen sulphide headache and other rare, global headaches: vaga study. Cephalalgia 26:466–476. doi:10.1111/j.1468-2982.2005.01044.x

    CAS  Google Scholar 

  • Stanley WBM, Muller CO (2002) Choosing an odor control technology—effectiveness and cost considerations. Proc Water Environ Fed 2002:259–276. doi:10.2175/193864702785140023

    Google Scholar 

  • Stuetz R, Frechen F-B (2001) Odours in wastewater treatment measurement, modelling and control. IWA, London

    Google Scholar 

  • Stuetz RM, Gostelow P, Burgess JE (2001) Odour Perception. In: Stuetz R, Frechen FB (eds) Odours in wastewater treatment: measurement, modelling and control. IWA, London

    Google Scholar 

  • Sweney JW (1980) High CO2-high H2S removal with selexol solvent. In: Gas processors association 59th annual conference, Houston, p 163

  • Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2

    Google Scholar 

  • Tang JJ, Zhou KG (2006) Hydrochloric acid recovery from rare earth chloride solutions by vacuum membrane distillation. Rare Met 25:287–292. doi:10.1016/S1001-0521(06)60055-7

    CAS  Google Scholar 

  • Tomaszewska M (1993) Concentration of the extraction fluid from sulfuric-acid treatment of phosphogypsum by membrane distillation. J Membr Sci 78:277–282. doi:10.1016/0376-7388(93)80007-K

    CAS  Google Scholar 

  • Van Eckstaedt S, Ho.G., Charles W, Cord-Ruwisch R (2013) Design and development of a novel biofilter. In: Proceeding of the 5th IWA odourand air emissions conference San Francisco, March, 2013

  • Wang H, Dalla Lana IG, Chuang KT (2003) Thermodynamics and stoichiometry of reactions between hydrogen sulfide and concentrated sulfuric acid. Can J Chem Eng 81:80–85

    CAS  Google Scholar 

  • Wang B et al (2014) Is H2S a suitable process indicator for odour abatement performance of sewer odours? Water Sci Technol 69:92–98. doi:10.2166/Wst.2013.559

    CAS  Google Scholar 

  • Wilks B, Rezac ME (2002) Properties of rubbery polymers for the recovery of hydrogen sulfide from gasification gases. J Appl Polym Sci 85:2436–2444. doi:10.1002/App.10881

    CAS  Google Scholar 

  • Williams TO, Miller FC (1992) Odor control—biofilters and facility operations 2. Biocycle 33:75–79

    CAS  Google Scholar 

  • Wu L, Loo YY, Koe LCC (2001) A pilot study of a biotrickling filter for the treatment of odorous sewage air. Water Sci Technol 44:295–299

  • Yang YH, Allen ER (1994a) Biofiltration control of hydrogen-sulfide 1. Design and operational parameters. J Air Waste Manage 44:863–868

    CAS  Google Scholar 

  • Yang YH, Allen ER (1994b) Biofiltration control of hydrogen-sulfide 2. Kinetics, biofilter performance, and maintenance. J Air Waste Manage 44:1315–1321

    CAS  Google Scholar 

  • Yasyerli S, Ar I, Dogu G, Dogu T (2002) Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chem Eng Process 41:785–792

    CAS  Google Scholar 

  • Yongsiri C, Vollertsen J, Hvitved-Jacobsen T (2004a) Effect of temperature on air-water transfer of hydrogen sulfide. J Environ Eng Asce 130:104–109. doi:10.1061/(Asce)0733-9372(2004)130:1(104)

    CAS  Google Scholar 

  • Yongsiri C, Vollertsen J, Rasmussen M, Hvitved-Jacobsen T (2004b) Air-water transfer of hydrogen sulfide: an approach for application in sewer networks. Water Environ Res 76:81–88. doi:10.2175/106143004x141618

    CAS  Google Scholar 

  • Yongsiri C, Vollertsen J, Hvitved-Jacobsen T (2005) Influence of wastewater constituents on hydrogen sulfide emission in sewer networks. J Environ Eng Asce 131:1676–1683. doi:10.1061/(Asce)0733-9372(2005)131:12(1676)

    CAS  Google Scholar 

  • Zakarina NA, Volkova LD, Kim OK, Brodskii AR, Latypov IF, Yaskevich VI, Komashko LV (2013) Natural iron-containing materials and catalysts on their basis on use for photocatalytic decomposition of hydrogen sulfide. Petrol Chem 53:181–186. doi:10.1134/S0965544113030146

    CAS  Google Scholar 

  • Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12. doi:10.1016/j.watres.2007.07.013

    CAS  Google Scholar 

  • Zhou JH, Huo CX (2009) Study on desulfurization(H(2)S) capacity of regenerated activated carbon. In: International conference on future biomedical information engineering (Fbie 2009), pp 518–520. doi: 10.1109/Fbie.2009.5405770

  • Zytoon MAM, AlZahrani AA, Noweir MH, El-Marakby FA (2014) Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor. Sci World J 2014:675673. doi:10.1155/2014/675673

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Rabbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbani, K.A., Charles, W., Cord-Ruwisch, R. et al. Recovery of sulphur from contaminated air in wastewater treatment plants by biofiltration: a critical review. Rev Environ Sci Biotechnol 14, 523–534 (2015). https://doi.org/10.1007/s11157-015-9367-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-015-9367-5

Keywords

Navigation