Reviews in Environmental Science and Bio/Technology

, Volume 14, Issue 3, pp 523–534 | Cite as

Recovery of sulphur from contaminated air in wastewater treatment plants by biofiltration: a critical review

  • K. A. Rabbani
  • W. Charles
  • R. Cord-Ruwisch
  • G. Ho
Review paper


Biofilters are popular as an alternative method for treatment of volatile air pollutants like hydrogen sulphide originating from wastewater treatment plants. Despite several advantages over conventional chemical systems, one of the concerns of biological treatment of hydrogen sulphide is the production of large volumes of neutral or acidic leachate which needs to be treated or disposed safely. Instead of treating as an unwanted product, a waste stream of weakly acidic leachate can be thought of as a sulphur resource. This paper provides an overview of recent literature on the removal of H2S from contaminated air in an aerobic environment and discusses the possibility of recovering sulphur from contaminated air with special emphasis on polluted air originating from wastewater treatment plants. We also add our perspectives on future research and development needs in this area.


Biofilter Leachate Hydrogen sulphide Wastewater treatment Sulphur recovery 


  1. Agrawal A, Sahu KK (2009) An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J Hazard Mater 171:61–75. doi: 10.1016/j.jhazmat.2009.06.099 Google Scholar
  2. Al-Tarazi M, Heesink ABM, Versteeg GF (2004) Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling. Chem Eng Sci 59:567–579. doi: 10.1016/j.ces.2003.11.006 Google Scholar
  3. Araujo ALC, de Oliveira R, Mara DD, Pearson HW, Silva SA (2000) Sulphur and phosphorus transformations in wastewater storage and treatment reservoirs in northeast Brazil. Water Sci Technol 42:203–210Google Scholar
  4. Aroca G, Urrutia H, Nunez D, Oyarzun P, Arancibia A, Guerrero K (2007) Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J Biotechnol 10:514–520Google Scholar
  5. Bagreev A, Bandosz TJ (2002a) H2S adsorption/oxidation on materials obtained using sulfuric acid activation of sewage sludge-derived fertilizer. J Colloid Interf Sci 252:188–194. doi: 10.1006/jcis.2002.8419 Google Scholar
  6. Bagreev A, Bandosz TJ (2002b) A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Ind Eng Chem Res 41:672–679. doi: 10.1021/Ie010599r Google Scholar
  7. Bagreev A, Rahman H, Bandosz RJ (2000) Study of H2S adsorption and water regeneration of spent coconut-based activated carbon. Environ Sci Technol 34:4587–4592. doi: 10.1021/Es001150c Google Scholar
  8. Bagreev A, Adib F, Bandosz TJ (2001) pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. Carbon 39:1897–1905. doi: 10.1016/S0008-6223(00)00317-1 Google Scholar
  9. Bagreev A, Bashkova S, Bandosz TJ (2002a) Sewage sludge-derived materials as adsorbents of acidic gases. Abstracts Paper of the American Chemical Society 224:U573–U573Google Scholar
  10. Bagreev A, Rahman H, Bandosz TJ (2002b) Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants Adv. Environ Res 6:303–311. doi: 10.1016/S1093-0191(01)00063-6 Google Scholar
  11. Bandosz TJ (2002) On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J Colloid Interf Sci 246:1–20. doi: 10.1006/jcis.2001.7952 Google Scholar
  12. Bandosz TJ, Le Q (1998) Evaluation of surface properties of exhausted carbons used as H2S adsorbents in sewage treatment plants. Carbon 36:39–44. doi: 10.1016/S0008-6223(97)00148-6 Google Scholar
  13. Bandosz T, Askew S, Kelly WR, Bagreev A, Adib F, Turk A (2000) Biofiltering action on hydrogen sulfide by unmodified activated carbon in sewage treatment plants. Water Sci Technol 42:399–401Google Scholar
  14. Bandosz TJ, Seredych M, Allen J, Wood J, Rosenberg E (2007) Silica-polyamine-based carbon composite adsorbents as media for effective hydrogen sulfide adsorption/oxidation. Chem Mater 19:2500–2511. doi: 10.1021/Cm062984i Google Scholar
  15. Bartholomew FJ (1952) Sulfuric acid recovery from waste liquors. Ind Eng Chem 44:541–545. doi: 10.1021/Ie50507a031 Google Scholar
  16. Bashkova S, Baker FS, Wu XX, Armstrong TR, Schwartz V (2007) Activated carbon catalyst for selective oxidation of hydrogen sulphide: on the influence of pore structure, surface characteristics, and catalytically-active nitrogen. Carbon 45:1354–1363. doi: 10.1016/j.carbon.2007.01.005 Google Scholar
  17. Basu S, Khan AL, Cano-Odena A, Liu CQ, Vankelecom IFJ (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768. doi: 10.1039/B817050a Google Scholar
  18. Bernstein R, Freger V, Lee JH, Kim YG, Lee J, Herzberg M (2014) Should I stay or should I go? Bacterial attachment vs biofilm formation on surface-modified membranes. Biofouling 30:367–376. doi: 10.1080/08927014.2013.876011 Google Scholar
  19. Brennan BM, Donlon M, Bolton E (1996) Peat biofiltration as an odour control technology for sulphur-based odours. J Chart Inst Water E 10:190–198Google Scholar
  20. Buisman CJN, Geraats BG, Ijspeert P, Lettinga G (1990) Optimization of sulfur production in a biotechnological sulfide-removing reactor. Biotechnol Bioeng 35:50–56. doi: 10.1002/bit.260350108 Google Scholar
  21. Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63. doi: 10.1016/S0734-9750(00)00058-6 Google Scholar
  22. Chaiprapat S, Mardthing R, Kantachote D, Karnchanawong S (2011) Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem 46:344–352. doi: 10.1016/j.procbio.2010.09.007 Google Scholar
  23. Chen JM, Jiang LY, Sha HL (2006) Removal efficiency of high-concentration H2S in a pilot-scale biotrickling filter. Environ Technol 27:759–766. doi: 10.1080/09593332708618687 Google Scholar
  24. Cherosky P, Li Y (2013) Hydrogen sulfide removal from biogas by bio-based iron sponge. Biosyst Eng 114:55–59. doi: 10.1016/j.biosystemseng.2012.10.010 Google Scholar
  25. Comas J, Balaguer M, Poch M, Rigola M (1999) Pilot plant evaluation for hydrogen sulphide biological treatment: determination of optimal conditions linking experimental and mathematical modelling. Environ Technol 20:53–59Google Scholar
  26. Converse BM, Schroeder ED, Iranpour R, Cox HHJ, Deshusses MA (2003) Odor and volatile organic compound removal from wastewater treatment plant headworks ventilation air using a biofilter. Water Environ Res 75:444–454. doi: 10.2175/106143003x141240 Google Scholar
  27. Cortinovis D (1974) Activated biofilter: simple-efficient. Water Sew Work. 121:52Google Scholar
  28. Cox HH, Deshusses MA, Converse BM, Schroeder ED, Iranpour R (2002) Odor and volatile organic compound treatment by biotrickling filters: pilot-scale studies at hyperion treatment plant. Water Environ Res 74:557–563Google Scholar
  29. Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. Lewis Publishers, Boca Raton, FlaGoogle Scholar
  30. Duan HQ, Yan R, Koe LCC, Wang XL (2007) Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration. Chemosphere 66:1684–1691. doi: 10.1016/j.chemosphere.2006.07.020 Google Scholar
  31. Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D (2005) Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chem Eng J 113:93–104. doi: 10.1016/j.cej.2005.04.007 Google Scholar
  32. Einsiedl F, Mayer B, Schafer T (2008) Evidence for incorporation of H2S in groundwater fulvic acids from stable isotope ratios and sulfur K-edge X-ray absorption near edge structure spectroscopy. Environ Sci Technol 42:2439–2444. doi: 10.1021/Es7025455 Google Scholar
  33. Escalas A, Guadayol JM, Cortina M, Rivera J, Caixach J (2003) Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res 37:3913–3920. doi: 10.1016/S0043-1354(03)00336-1 Google Scholar
  34. Estrada JM, Kraakman NJRB, Munoz R, Lebrero R (2011) A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ Sci Technol 45:1100–1106. doi: 10.1021/Es103478j Google Scholar
  35. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882. doi: 10.1128/AEM.67.7.2873-2882.2001 Google Scholar
  36. Gabriel D, Deshusses MA (2003) Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds. Environ Prog 22:111–118. doi: 10.1002/Ep.670220213 Google Scholar
  37. Gabriel D, Cox HHJ, Deshusses MA (2004) Conversion of full-scale wet scrubbers to biotrickling filters for H2S control at publicly owned treatment works. J Environ Eng-Asce 130:1110–1117. doi: 10.1061/(Asce)0733-9372(2004)130:10(110) Google Scholar
  38. Gao L, Keener TC, Zhuang L, Siddiqui KF (2001) A technical and economic comparison of biofiltration and wet chemical oxidation (scrubbing) for odor control at wastewater treatment plants. Environ Eng Policy 2:203–212Google Scholar
  39. Ghanbarabadi H, Khoshandam B (2015) Simulation and comparison of Sulfinol solvent performance with Amine solvents in removing sulfur compounds and acid gases from natural sour gas. J Nat Gas Sci Eng 22:415–420. doi: 10.1016/ingse.2014.12.024 Google Scholar
  40. Godayol A, Besalú E, Anticó E, Sanchez JM (2015) Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography. Chemosphere 119:363–370. doi: 10.1016/j.chemosphere.2014.06.072 Google Scholar
  41. Goncalves JJ, Govind R (2008) H2S Abatement in a biotrickling filter using iron(III) foam media. Chemosphere 73:1478–1483. doi: 10.1016/j.chemosphere.2008.07.048 Google Scholar
  42. Gostelow P, Parsons SA (2000) Sewage treatment works odour measurement. Water Sci Technol 41:33–40Google Scholar
  43. Guidotti TL (2010) Hydrogen sulfide: advances in understanding human toxicity. Int J Toxicol 29:569–581. doi: 10.1177/1091581810384882 Google Scholar
  44. Hansen NG, Rindel K (2000) Bioscrubbing, an effective and economic solution to odour control at wastewater treatment plants. Water Sci Technol 41(6):155–164Google Scholar
  45. Hao TW et al (2014) A review of biological sulfate conversions in wastewater treatment. Water Res 65:1–21. doi: 10.1016/j.watres.2014.06.043 Google Scholar
  46. He C, Li XZ, Sharma VK, Li SY (2009) elimination of sludge odor by oxidizing sulfur-containing compounds with ferrate(VI). Environ Sci Technol 43:5890–5895. doi: 10.1021/Es900397y Google Scholar
  47. Herbert M, Glick R, Black H (1967) Olfactory precipitants of bronchial asthma. J Psychosom Res 11:195. doi: 10.1016/0022-3999(67)90007-4 Google Scholar
  48. Herszage J, Afonso MD (2000) The autooxidation of hydrogen sulfide in the presence of hematite. Colloid Surf A 168:61–69. doi: 10.1016/S0927-7757(99)00453-7 Google Scholar
  49. Hocking MB (2006) Handbook of chemical technology and pollution control. Academic Press, AmsterdamGoogle Scholar
  50. Hodgson E (2004) A textbook of modern toxicology. Wiley, HobokenGoogle Scholar
  51. Iranpour R, Coxa HHJ, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24:254–267. doi: 10.1002/Ep.10077 Google Scholar
  52. Janssen AJH, Lettinga G, de Keizer A (1999) Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur—colloidal and interfacial aspects of biologically produced sulphur particles. Colloid Surf A 151:389–397. doi: 10.1016/S0927-7757(98)00507-X Google Scholar
  53. Jefferson B, Nazareno C, Georgaki S, Gostelow P, Stuetz RM, Longhurst P, Robinson T (2005) Membrane gas absorbers for H2S removal—design, operation and technology integration into existing odour treatment strategies. Environ Technol 26:793–804. doi: 10.1080/09593332608618511 Google Scholar
  54. Jensen AB, Webb C (1995) treatment of H2 s-containing gases—a review of microbiological alternatives. Enzyme Microb Tech 17:2–10. doi: 10.1016/0141-0229(94)00080-B Google Scholar
  55. Jensen HS, Nielsen AH, Hvitved-Jacobsen T, Vollertsen J (2008) Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems. Water Sci Technol 57:1721–1726. doi: 10.2166/Wst.2008.293 Google Scholar
  56. Jensen HS, Lens PNL, Nielsen JL, Bester K, Nielsen AH, Hvitved-Jacobsen T, Vollertsen J (2011) Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers. J Hazard Mater 189:685–691. doi: 10.1016/j.jhazmat.2011.03.005 Google Scholar
  57. Jiang LY, Zhu JM (2013) Separation technologies for current and future biorefineries—status and potential of membrane-based separation Wiley Interdisciplinary Reviews. Energy Environ 2:673–690. doi: 10.1002/wene.73 Google Scholar
  58. Judd DK (1978) Selexol unit saves energy. Hydro process 57(4):122–124Google Scholar
  59. Karbanee N, Van Hille RP, Lewis AE (2008) Controlled nickel sulfide precipitation using gaseous hydrogen sulfide. Ind Eng Chem Res 47:1596–1602. doi: 10.1021/Ie0711224 Google Scholar
  60. Kazemi A, Malayeri M, kharaji AG, Shariati A (2014) Feasibility study, simulation and economical evaluation of natural gas sweetening processes—part 1: a case study on a low capacity plant in iran. J Natural Gas Sci Eng 20:16–22. doi: 10.1016/j.jngse.2014.06.001 Google Scholar
  61. Kennes C, Veiga M (2002) Inert filter media for the biofiltration of waste gases—characteristics and biomass control. Rev Environ Sci Biotechnol 1:201–214. doi: 10.1023/A:1021240500817 Google Scholar
  62. Kesieme UK, Aral H, Duke M, Milne N, Cheng CY (2013) Recovery of sulphuric acid from waste and process solutions using solvent extraction. Hydrometallurgy 138:14–20. doi: 10.1016/j.hydromet.2013.06.005 Google Scholar
  63. Khazini L, Fatehifar E, Fouladpanjeh B, Ebrahimzadeh M (2014) A simulation of a claus tail gas treatment unit in a petroleum refinery. Energy Source Part A 36:2431–2442. doi: 10.1080/15567036.2010.536831 Google Scholar
  64. Kraakman NJR (2003) Robustness of a full-scale biological system treating industrial CS2 emissions. Environ Prog 22:79–85. doi: 10.1002/Ep.670220209 Google Scholar
  65. Lafita C, Penya-Roja JM, Sempere F, Waalkens A, Gabaldon C (2012) Hydrogen sulfide and odor removal by field-scale biotrickling filters: Influence of seasonal variations of load and temperature. J Environ Sci Health A 47:970–978. doi: 10.1080/10934529.2012.667302 Google Scholar
  66. Laursen JK, Karavanov AN (2006) Processes for sulfur recovery, regeneration of spent acid, and reduction of nox emissions. Chem Petrol Eng 42:229–234. doi: 10.1007/s10556-006-0084-3 Google Scholar
  67. Lebrero R, Bouchy L, Stuetz R, Muñoz R (2011) Odor assessment and management in wastewater treatment plants: a review. Crit Rev Environ Sci Technol 41:915–950. doi: 10.1080/10643380903300000 Google Scholar
  68. Lebrero R, Rangel MGL, Muñoz R (2013) Characterization and biofiltration of a real odorous emission from wastewater treatment plant sludge. J Environ Manage 116:50–57. doi: 10.1016/j.jenvman.2012.11.038 Google Scholar
  69. Lee CJ, Rasmussen TJ (2006) Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas. Sci Total Environ 371:258–269. doi: 10.1016/j.scitotenv.2006.07.023 Google Scholar
  70. Lee EY, Lee NY, Cho KS, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101:309–314. doi: 10.1263/jbb.101.309 Google Scholar
  71. Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104:222–234. doi: 10.1016/j.hydromet.2010.06.010 Google Scholar
  72. Li JJ, Huang LM, He JL (2014) The study of the influence of sulfur on the catalyst structure in low temperature claus processes. Adv Mater Res Switz 884–885:182–185. doi: 10.4028/ Google Scholar
  73. Liu J, Feng YJ, He WH, Gong YY, Qu YP, Ren NQ (2014) A novel boost circuit design and in situ electricity application for elemental sulfur recovery. J Power Sources 248:317–322. doi: 10.1016/j.jpowsour.2013.09.098 Google Scholar
  74. Lohwacharin J, Annachhatre AP (2010) Biological sulfide oxidation in an airlift bioreactor. Bioresour Technol 101:2114–2120. doi: 10.1016/j.biortech.2009.10.093 Google Scholar
  75. Lu CS, Lin MR, Chu CH (2002) Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal Adv. Environ Res 6:99–106. doi: 10.1016/S1093-0191(00)00072-1 Google Scholar
  76. Maksimova YG (2014) Microbial biofilms in biotechnological processes. Appl Biochem Microbiol 50:750–760. doi: 10.1134/S0003683814080043 Google Scholar
  77. McNevin D, Barford J (2000) Biofiltration as an odour abatement strategy. Biochem Eng J 5:231–242. doi: 10.1016/S1369-703x(00)00064-4 Google Scholar
  78. Mudliar S et al (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manage 91:1039–1054. doi: 10.1016/j.jenvman.2010.01.006 Google Scholar
  79. Nour M et al (2014) Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal. J Membr Sci 470:346–355. doi: 10.1016/j.memsci.2014.07.047 Google Scholar
  80. Occupational Safety and Health Administration Hydrogen Sulphide: OSHA Standards. United States Department of Labor. Accessed 13 April 2015
  81. Oprime MEAG, Garcia O, Cardoso AA (2001) Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochem 37:111–114. doi: 10.1016/S0032-9592(01)00179-0 Google Scholar
  82. Oviedo ER, Johnson D, Shipley H (2012) Evaluation of hydrogen sulphide concentration and control in a sewer system. Environ Technol 33:1207–1215. doi: 10.1080/09593330.2011.618932 Google Scholar
  83. Oyarzun P, Arancibia F, Canales C, Aroca GE (2003) Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem 39:165–170. doi: 10.1016/S0032-9592(03)00050-5 Google Scholar
  84. Ozturk ZZ, Tasaltin C, Engin GO, Gurek AG, Atilla D, Ahsen V, Ince M (2009) Evaluation of a fast wastewater odour characterisation procedure using a chemical sensor array. Environ Monit Assess 151:369–375. doi: 10.1007/s10661-008-0278-6 Google Scholar
  85. Parande AK, Ramsamy PL, Ethirajan S, Rao CRK, Palanisamy N (2006) Deterioration of reinforced concrete in sewer environments. Proc Inst Civ Eng Munic Eng 159:11–20Google Scholar
  86. Park K et al (2014) Mitigation strategies of hydrogen sulphide emission in sewer networks—a review. Int Biodeter Biodegr 95:251–261. doi: 10.1016/j.ibiod.2014.02.013 Google Scholar
  87. Perlinger JA, Kalluri VM, Venkatapathy R, Angst W (2002) Addition of hydrogen sulfide to juglone. Environ Sci Technol 36:2663–2669. doi: 10.1021/Es015602c Google Scholar
  88. Pikaar I, Rozendal RA, Yuan ZG, Keller J, Rabaey K (2011) Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Water Res 45:5381–5388. doi: 10.1016/j.watres.2011.07.033 Google Scholar
  89. Pikaar I, Sharma KR, Hu SH, Gernjak W, Keller J, Yuan ZG (2014) Reducing sewer corrosion through integrated urban water management. Science 345:812–814. doi: 10.1126/science.1251418 Google Scholar
  90. Poulton SW, Krom MD, Raiswell R (2004) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta 68:3703–3715. doi: 10.1016/j.gca.2004.03.012 Google Scholar
  91. Prabu M, Ramalingam K (2015) Environmentally benign, recyclable nano hollandite and metal intercalated nano hollandites for hydrogen sulfide removal. Rsc Adv 5:18554–18564. doi: 10.1039/C4ra14714f Google Scholar
  92. Rhodes Z (2013) Heating helps amine plants purify natural gas: some gas sweetening plants utilize thermal fluid heaters to help remove carbon dioxide and hydrogen sulfide from natural gas, purifying the product for market. Process Heating, p 16Google Scholar
  93. Ritchie BJ, Hill GA (1995) Biodegradation of phenol-polluted air using an external loop airlift bioreactor. J Chem Technol Biot 62:339–344. doi: 10.1002/jctb.280620405 Google Scholar
  94. Rodríguez I, Gómez J, Cantero D, Ramírez M, Jover J (2012) Strategies for pH control in a biofilter packed with sugarcane bagasse for hydrogen sulfide removal. J Environ Sci Health Part A 47:990–996. doi: 10.1080/10934529.2012.667308 Google Scholar
  95. Safe work australia Hazardous Substances Information System (HSIS). Accessed 13 April 2015
  96. Santos A, Guimera X, Dorado AD, Gamisans X, Gabriel D (2015) Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times. Appl Microbiol Biotechnol 99:67–76. doi: 10.1007/s00253-014-5796-2 Google Scholar
  97. Schiffman SS, Williams CM (2005) Science of odor as a potential health issue. J Environ Qual 34:129–138Google Scholar
  98. Scholz M, Melin T, Wessling M (2013) Transforming biogas into biomethane using membrane technology. Renew Sustain Energy Rev 17:199–212. doi: 10.1016/j.rser.2012.08.009 Google Scholar
  99. SCOEL Recommendation from the Scientific Committee on Occupational Exposure Limits for Hydrogen Sulphide Accessed 13 April 2015
  100. Selim H, Gupta AK, Al Shoaibi A (2013) Effect of reaction parameters on the quality of captured sulfur in Claus process. Appl Energy 104:772–776. doi: 10.1016/j.apenergy.2012.12.015 Google Scholar
  101. Shareefdeen Z (2015) Hydrogen sulfide (H2S) removal using schist packings in industrial biofilter applications Korean. J Chem Eng 32:15–19. doi: 10.1007/s11814-014-0349-z Google Scholar
  102. Shareefdeen Z, Singh A (2005) Biotechnology for odor and air pollution control. Springer, New YorkGoogle Scholar
  103. Shareefdeen Z, Herner B, Webb D, Wilson S (2003a) Biofiltration eliminates nuisance chemical odors from industrial air streams. J Ind Microbiol Biotechnol 30:168–174. doi: 10.1007/s10295-002-0026-4 Google Scholar
  104. Shareefdeen Z, Herner B, Webb D, Wilson S (2003b) Hydrogen sulfide (H2S) removal synthetic media biofiters. Environ Prog 22:207–213. doi: 10.1002/Ep.670220319 Google Scholar
  105. Shim C, Williams MH (1986) Effect of odors in asthma. Am J Med 80:18–22. doi: 10.1016/0002-9343(86)90043-4 Google Scholar
  106. Shim JS, Jung JT, Sofer S, Lakhwala F (1995) Oxidation of ethanol vapors in a spiral bioreactor. J Chem Technol Biot 64:49–54. doi: 10.1002/jctb.280640109 Google Scholar
  107. Sjaastad O, Bakketeig LS (2006) Hydrogen sulphide headache and other rare, global headaches: vaga study. Cephalalgia 26:466–476. doi: 10.1111/j.1468-2982.2005.01044.x Google Scholar
  108. Stanley WBM, Muller CO (2002) Choosing an odor control technology—effectiveness and cost considerations. Proc Water Environ Fed 2002:259–276. doi: 10.2175/193864702785140023 Google Scholar
  109. Stuetz R, Frechen F-B (2001) Odours in wastewater treatment measurement, modelling and control. IWA, LondonGoogle Scholar
  110. Stuetz RM, Gostelow P, Burgess JE (2001) Odour Perception. In: Stuetz R, Frechen FB (eds) Odours in wastewater treatment: measurement, modelling and control. IWA, LondonGoogle Scholar
  111. Sweney JW (1980) High CO2-high H2S removal with selexol solvent. In: Gas processors association 59th annual conference, Houston, p 163Google Scholar
  112. Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2Google Scholar
  113. Tang JJ, Zhou KG (2006) Hydrochloric acid recovery from rare earth chloride solutions by vacuum membrane distillation. Rare Met 25:287–292. doi: 10.1016/S1001-0521(06)60055-7 Google Scholar
  114. Tomaszewska M (1993) Concentration of the extraction fluid from sulfuric-acid treatment of phosphogypsum by membrane distillation. J Membr Sci 78:277–282. doi: 10.1016/0376-7388(93)80007-K Google Scholar
  115. Van Eckstaedt S, Ho.G., Charles W, Cord-Ruwisch R (2013) Design and development of a novel biofilter. In: Proceeding of the 5th IWA odourand air emissions conference San Francisco, March, 2013Google Scholar
  116. Wang H, Dalla Lana IG, Chuang KT (2003) Thermodynamics and stoichiometry of reactions between hydrogen sulfide and concentrated sulfuric acid. Can J Chem Eng 81:80–85Google Scholar
  117. Wang B et al (2014) Is H2S a suitable process indicator for odour abatement performance of sewer odours? Water Sci Technol 69:92–98. doi: 10.2166/Wst.2013.559 Google Scholar
  118. Wilks B, Rezac ME (2002) Properties of rubbery polymers for the recovery of hydrogen sulfide from gasification gases. J Appl Polym Sci 85:2436–2444. doi: 10.1002/App.10881 Google Scholar
  119. Williams TO, Miller FC (1992) Odor control—biofilters and facility operations 2. Biocycle 33:75–79Google Scholar
  120. Wu L, Loo YY, Koe LCC (2001) A pilot study of a biotrickling filter for the treatment of odorous sewage air. Water Sci Technol 44:295–299Google Scholar
  121. Yang YH, Allen ER (1994a) Biofiltration control of hydrogen-sulfide 1. Design and operational parameters. J Air Waste Manage 44:863–868Google Scholar
  122. Yang YH, Allen ER (1994b) Biofiltration control of hydrogen-sulfide 2. Kinetics, biofilter performance, and maintenance. J Air Waste Manage 44:1315–1321Google Scholar
  123. Yasyerli S, Ar I, Dogu G, Dogu T (2002) Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chem Eng Process 41:785–792Google Scholar
  124. Yongsiri C, Vollertsen J, Hvitved-Jacobsen T (2004a) Effect of temperature on air-water transfer of hydrogen sulfide. J Environ Eng Asce 130:104–109. doi: 10.1061/(Asce)0733-9372(2004)130:1(104) Google Scholar
  125. Yongsiri C, Vollertsen J, Rasmussen M, Hvitved-Jacobsen T (2004b) Air-water transfer of hydrogen sulfide: an approach for application in sewer networks. Water Environ Res 76:81–88. doi: 10.2175/106143004x141618 Google Scholar
  126. Yongsiri C, Vollertsen J, Hvitved-Jacobsen T (2005) Influence of wastewater constituents on hydrogen sulfide emission in sewer networks. J Environ Eng Asce 131:1676–1683. doi: 10.1061/(Asce)0733-9372(2005)131:12(1676) Google Scholar
  127. Zakarina NA, Volkova LD, Kim OK, Brodskii AR, Latypov IF, Yaskevich VI, Komashko LV (2013) Natural iron-containing materials and catalysts on their basis on use for photocatalytic decomposition of hydrogen sulfide. Petrol Chem 53:181–186. doi: 10.1134/S0965544113030146 Google Scholar
  128. Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12. doi: 10.1016/j.watres.2007.07.013 Google Scholar
  129. Zhou JH, Huo CX (2009) Study on desulfurization(H(2)S) capacity of regenerated activated carbon. In: International conference on future biomedical information engineering (Fbie 2009), pp 518–520. doi:  10.1109/Fbie.2009.5405770
  130. Zytoon MAM, AlZahrani AA, Noweir MH, El-Marakby FA (2014) Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor. Sci World J 2014:675673. doi: 10.1155/2014/675673 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyMurdoch UniversityPerthAustralia

Personalised recommendations