Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review

Review Paper


The waste generated from industrial processes and operations including domestic wastes when treated partially and disposed in soil–water environment enter to lakes, streams, rivers, oceans and other water bodies. The pollutants get dissolved or lie suspended in water or get deposited on soil sediment beds. This results on aquatic and terrestrial pollution which ultimately impact ecosystems causing toxicity to biota and human beings. Industries such as petrochemical, pharmaceutical, insecticides and fertilizers generates the hazardous waste comprising of inorganic and organic compounds. Organic compounds mainly composed polycyclic aromatic hydrocarbons (PAHs), are one of the toxic environmental pollutant. This paper highlights the physicochemical properties, bioremediation treatment and its mechanism for the waste containing PAH. The process of biological remediation depends upon the metabolic action of microbe toward the contaminant which can be achieved by optimum water and nutrient supply and some other limiting factors. The enzymatic degradation gives the molecular approaches for bioremediation. The study also highlighted the molecular approaches which are helpful in revealing functional, structural and communal information about microbial diversity for exploring the routes of degradation pathway of bioremediation process and future scope to bioremediation of PAHs.


Polycyclic aromatic hydrocarbons (PAHs) Biodegradation Co-metabolism Molecular techniques 


  1. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796Google Scholar
  2. Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH (1998) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44:743–752Google Scholar
  3. Alcade M, Bulter T, Arnold FH (2002) Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. J Biomol Screen 7(6):547–553Google Scholar
  4. Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, NewYork, p 207Google Scholar
  5. Allen CCR, Boyd DR, Hempenstall F, Larkin MJ, Sharma ND (1999) Contrasting effects of nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. Appl Environ Microbiol 65:1335–1339Google Scholar
  6. Amann RI, Ludwig W, Schleifer KH (1995) Identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  7. Amatya PL, Hettiaratchi JPA, Joshi RC (2002) Biotreatment of flare pit waste. J Can Petrol Technol 41:30–36Google Scholar
  8. Arun A, Raja PP, Arth R, Ananthi M, Kumar KS, Eyin M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by Basidiomycetes Fungi, PseudomonasIsolate and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:13–142Google Scholar
  9. Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307Google Scholar
  10. Baastiaens L, Springael D, Dejonghe W, Wattiau P, Verachtert H, Diels L (2001) A transcriptional luxAB reporter fusion responding to fluorene in 305 Sphingomonas sp. LB126 and its initial characterization for whole-cell bioreporter purposes. Res Microbiol 15:849–859Google Scholar
  11. Baldrian P, Der Wiesche IN, Gabriel J, Nerud F, Zadražil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotusostreatusin soil. Appl Environ Microbiol 66(6):2471–2478Google Scholar
  12. Bamforth SM, Manning DAC, Singleton I (2005) Naphthalene transformation by the Pseudomonas at an elevated pH. J Chem Technol Biotechnol 80:723–736. doi: 10.1002/jctb.1276 Google Scholar
  13. Banerjee DK, Fedorak PM, Hashimoto A, Masliyah JH, Pickard MA, Gray MR (1995) Monitoring the biological treatment of anthracene-contaminated soil in a rotating-drum bioreactor. Appl Microbiol Biotechnol 43:521–528Google Scholar
  14. Beam HW, Perry JJ (1973) Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons. Arch Microbiol 91:87–90Google Scholar
  15. Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU (2011) Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 13:1125–1137Google Scholar
  16. Bezalel Y, Hadar P, Fu P, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotusostreatus. Appl Environ Microbiol 62(7):2554–2559Google Scholar
  17. Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotusostreatus. Appl Environ Microbiol 63:2495–2501Google Scholar
  18. Boldrin B, Andreas T, Fritzche C (1993) Degradation of phenanthrene, fluorene, fluoranthene and pyrene by a Mycobacterium spp. Appl Environ Microbiol 59:1927–1930Google Scholar
  19. Boonchan S (1998) Biodegradation of polycyclic aromatic hydrocarbons: application of fungal–bacterial cocultures and surfactants. Thesis, Victoria University of Technology, Melbourne VictoriaGoogle Scholar
  20. Boonchan S, Britz FL, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66:1007–1019Google Scholar
  21. Børresen MH, Rike AG (2007) Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Regions Sci Technol 48:129–138Google Scholar
  22. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995Google Scholar
  23. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601Google Scholar
  24. Caracciolo AB, Bottoni P, Grenni P (2010) Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol Environ Chem 92:567–579Google Scholar
  25. Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102—the oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268:3117–3125Google Scholar
  26. Casillas RP, Crow SA, Heinze TM, Deck J, Cerniglia CE (1996) Initial oxidation and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16:205–215Google Scholar
  27. Cerniglia CE (1984) Microbial degradation of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71Google Scholar
  28. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368Google Scholar
  29. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333Google Scholar
  30. Cerniglia CE, Heitkamp MA (1989) In: Varanasi U (ed) Metabolism of Polycyclic aromatic hydrocarbon in Aquatic Environment. CRC Press Inc., Boca Raton FLGoogle Scholar
  31. Cerniglia CE, Kelly DW, Freeman JP, Miller DW (1986) Microbial metabolism of pyrene. Chem Biol Interact 57:203–216Google Scholar
  32. Chauhan A, Fazlurrahman Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. J Ind Microbiol 48:95–113Google Scholar
  33. Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439Google Scholar
  34. Collins PJ, Dobson ADW (1996) Oxidation of fluorene and phenanthrene by Mn(II) dependent peroxidase activity in whole cultures of Trametes (coriolus) versicolor. Biotechnol Lett 18:801–804Google Scholar
  35. Collins JF, Brown JP, Dawson SV, Marty MA (1991) Risk assessment for benzo[a] pyrene. Regul Toxicol Pharmacol 13:170–184Google Scholar
  36. Cooper CS, Grover PL, Sims P (1983) The metabolism and activation of benzo(a)pyrene. Progress Drug Metabol 7:295–396Google Scholar
  37. Crameri A, Stemmer WPC (1995) Combinatorial multiple cassette mutagenesis creates all the permutations of mutant and wildtype sequences. Biotechniques 18:194–196Google Scholar
  38. Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319Google Scholar
  39. Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Biodeterior Biodegrad 54(2–3):167–174Google Scholar
  40. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview biotechnology research international volume. Article ID 941810. p 13. doi: 10.4061/2011/941810
  41. Da-Silva M, Cerniglia CE, Pothuluri JV, Canhos VO, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidise polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405Google Scholar
  42. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433Google Scholar
  43. Denome SA, Stanley DC, Olson ES, Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175:6890–6901Google Scholar
  44. Derz K, Klinner U, Schupan I, Stackebrandt E, Kroppenstedt RM (2005) Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatichydrocarbon-degrading species. Int J Syst Evolut Microbiol 54:2313–2317Google Scholar
  45. DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383Google Scholar
  46. Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79(2):145–153Google Scholar
  47. Ding A, Sun Y, Dou J, Cheng L, Jiang L, Zhang D, Zhao X (2013) Characterizing microbial activity and diversity of hydrocarbon-contaminated sites 137-160.
  48. Dodor DE, Hwang HM, Ekunwe SIN (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametesversicolor. Enzyme Microb Technol 35:210–217Google Scholar
  49. Dubey SK, Tripathi AK, Upadhyay SN (2006) Exploration of soil bacterial communities for their potential as bioresource. Bioresour Technol 97(17):2217–2224Google Scholar
  50. Erickson DC, Loehr RC, Neuhauser EF (1993) PAH loss during bioremediation of manufactured gas plant site soil. Water Res 27:911–919Google Scholar
  51. Fan CE, Reinfelder JR (2003) Phenanthrene accumulation kinetics in marine diatoms. Environ Sci Technol 37:3405–3412Google Scholar
  52. Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381Google Scholar
  53. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636Google Scholar
  54. Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. BioTechniques 26(1):112–122, 1245Google Scholar
  55. Furono S, Pazolt K, Rabe C, Neutr TR, Harm H, Wickly LY (2009) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon degrading bacteria in water unsaturated system. Environ Microbiol 12(6):1391–1398Google Scholar
  56. Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175Google Scholar
  57. Gianfreda L, Bollag JM (2002) Isolated enzymes for the transformation and detoxification of organic pollutants. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker Inc, New York, pp 495–538Google Scholar
  58. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354Google Scholar
  59. Gibson DT, Subranian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker Inc, New York, pp 181–252Google Scholar
  60. Gibson DT, Venkatanarayana D, Jerina M, Yagi H, Yeh H (1975) Oxidation of carcinogens benzo(a)pyrene and benzo(a) anthracene to dihydrodiols by a bacterium. Science 189:295–297Google Scholar
  61. Goyal AK, Zylstra GJ (1997) Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. J Ind Microbiol Biotechnol 19:401–407Google Scholar
  62. Grimm AC, Harwood CS (1997) Chemotaxis of pseudomonas putida to the polyaromatic hydrocarbon napthalene. Appl Envion Microb 63:4111–4115Google Scholar
  63. Guillen MD, Sopelana P, Partearroyo MA (1997) Food as a source of polycyclic aromatic carcinogens. Rev Environ Health 12:133–146Google Scholar
  64. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon degradation by diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243Google Scholar
  65. Hahn D, Amann RI, Ludwig W, Akkermans ADL, Schleifer KH (1992) Detection of microorganisms in soil after in situ hybridization with rRNA-targeted, fluorescently labeled oligonucleotides. J Gen Microbiol 138:879–887Google Scholar
  66. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo(p)dioxins by Phanerochaete chrysosporiumligninase. J Biol Chem 261:16948–16952Google Scholar
  67. Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1838Google Scholar
  68. Han M-J, Lee SY (2006) The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 70:362–439Google Scholar
  69. Harayama S (1997) polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273Google Scholar
  70. Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Marcel Dekker, New York, pp 99–156Google Scholar
  71. Harford-Cross CF, Carmichael AB, Allan FK, England PA, Rouch DA, Wong LL (2000) Protein engineering of cytochrome P450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng 13:1218Google Scholar
  72. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15. doi: 10.1016/j.jhazmat.2009.03.137 Google Scholar
  73. Harvey RG (1996) Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 9:1–23Google Scholar
  74. Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614Google Scholar
  75. Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973Google Scholar
  76. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241Google Scholar
  77. Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramireza S, Lyncha ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36Google Scholar
  78. Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36(2):146–155Google Scholar
  79. Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur S (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112Google Scholar
  80. Janke D, Fritsche W (1985) Nature and significance of microbial cometabolism of xenobiotics. J Basic Microbiol 25:603–619Google Scholar
  81. Joyce C (2002) Quantitative RT-PCR. A review of current methodologies. Methods Mol Biol 193(83):92. doi: 10.1385/1-59259-283-X:083 Google Scholar
  82. Juhasz A, Naidu R (2000) Enrichment and isolation of non-specific aromatic degraders from unique uncontaminated (Plant and Fecal Material) sources and contaminated coils. J Appl Microbiol 89:642–650Google Scholar
  83. Kallimanis A, Frillingos S, Drainas C, Koukkou AI (2007) Taxonomic identification, phenanthrene uptake activity and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 76:709–717Google Scholar
  84. Kanaly RA, Harayama S (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067Google Scholar
  85. Kanaly R, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralisation of benzo(a)pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66(10):4205–4211Google Scholar
  86. Kang XP, Jiang T, Li YQ (2010) A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus. Virol J 7:113. doi: 10.1186/1743-422X-7-113 Google Scholar
  87. Kapoor M, Lin W (1984) Studies on the induction of aryl hydrocarbon (benzo(a)pyrene) hydroxylase in Neurosporacrassa, and itssuppression by sodium selenite. Xenobiotica 14:903–915Google Scholar
  88. Kastner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44:668–675Google Scholar
  89. Kastner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocol, salinity and pH on the degradation of polycyclic aromatic hydrocarbons and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64(1):359–362Google Scholar
  90. Keller M, Hettich R (2009) Environmental proteomics: a paradigm shift in characterizing microbial community. Microbiol Mol Biol Rev 73(1):62–70. doi: 10.1128/MMBR.00028-08 Google Scholar
  91. Kelley I, Freeman JP, Evans FE, Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806Google Scholar
  92. Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence and expression of genes encoding a polycyclic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585Google Scholar
  93. Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, Yoo JS, Kim SI (2006a) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318Google Scholar
  94. Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006b) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72(2):1045–1054Google Scholar
  95. Kirchhof G, Schloter M, Assmus B, Hartmann A (1997) Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol Biochem 29:853–862Google Scholar
  96. Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176:2439–2443Google Scholar
  97. Koukkou AI, Drainas C (2008) Addressing PAH biodegradation in Greece: biochemical and molecular approaches. IUBMB Life 60(5):275–280Google Scholar
  98. Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring hydroxylating dioxygenase. J Bacteriol 185:3828–3841Google Scholar
  99. Lafortune I, Juteau P, Déziel E, Lépine F, Beaudet R, Villemur R (2009) Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol 57:455–468Google Scholar
  100. Laha S, Tansel B, Ussawarujikulchai A (2009) Surfactant–soil interactions during surfactant amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manag 90:95–100Google Scholar
  101. Larsson B, Sahlberg G (1982) Polycyclic aromatic hydrocarbons in lettuce. Influence of a highway and an aluminium smelter. In: Cooke M, Denis AJ, Fisher GL (eds) Polynuclear aromatic hydrocarbons: physical and biological chemistry. Battelle Press, Colombus, pp 417–426Google Scholar
  102. Lau KL, Tsang YY, Chiu S (2003) Use of spentmushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546Google Scholar
  103. Launen L, Pinto LJ, Wiebe C, Kiehlmann E, Moore MM (1995) The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Canad J Microbiol 41:477–488Google Scholar
  104. Lee HS, Lee K (2001) Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics. J Microbiol Biotechnol 11:1038–1045Google Scholar
  105. Legge R (2012) Analysis of microbial diversity by amplicon pyrosequencing. Dissertations and Theses in Food Science and Technology. Paper 25Google Scholar
  106. Li T, Wu TD, Mazéas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T (2008a) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588Google Scholar
  107. Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008b) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150(1):21–26Google Scholar
  108. Liang Y, Gardener D, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strainKMS KMS. Appl Environ Microbiol 72:7821–7828Google Scholar
  109. Lijinsky W (1991) The formation and occurence of polynucleararo- matic hydrocarbons associated with food. Mutat Res 259:251–262Google Scholar
  110. Liu Y, Zhang J, Zhang Z (2004) Isolation and characterisation of polycyclicaromatic hydrocarbons-degrading Sphingomonas sp. Strain ZL5. Biodegradation 15:205–212Google Scholar
  111. Lopez de Victoria G, Lovell CR (1993) Chemotaxis of azospirillum species to aromatic compounds. Appl Environ Microb 59:2951–2955Google Scholar
  112. Low JYS, Abdullah N, Vikineswary S (2009) Evaluation of support materials for immobilization of Pycnoporus sanguinues mycelia for laccase production and biodegradation of polycyclic aromatic hydrocarbons. Res J Environ Sci 3(3):357–366. ISSN 1819-3412Google Scholar
  113. Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametesversicolor. Enzyme Microbiol Technol 22:335–341Google Scholar
  114. Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115Google Scholar
  115. Mapelli V, Olsson L, Nielsen J (2009) Metabolicfootprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol 26:490–497Google Scholar
  116. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663Google Scholar
  117. Mastral AM, Callen MS (2000) A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 34:3051–3057Google Scholar
  118. McKenna EJ, Heath RD (1976) Biodegradation of polynuclear aromatic hydrocarbon pollutants by soil and water microorganisms. University of Illinois (Urbana-Champaign) Research Report no. 113Google Scholar
  119. Mersch-Sundermann V, Mochayedi S, Kevekordes S (1992) Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37. Mutat Res 278:1–9Google Scholar
  120. Mester T, Tien M (2000) Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeterior Biodegrad 46:51–59Google Scholar
  121. Miyata N, Iwahori K, Foght JM, Gray MR (2004) Saturable, energy dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol 70(1):363–369Google Scholar
  122. Molina MC, González N, Bautista LF, Sanz R, Simarro R, Sánchez I, Sanz JL (2009) Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation 20:789–800Google Scholar
  123. Moody J, Freeman J, Doerge D, Cerniglia C (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. PYR-1. Appl Environ Microbiol 67(4):1476–1483Google Scholar
  124. Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 4:329–335Google Scholar
  125. Mori T, Kitano S, Kondo R (2003) Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebialindtneri. Appl Microbiol Biotechnol 61(4):380–383Google Scholar
  126. Mueller JG, Lantz SE, Blattmann BO, Chapman PJ (1991) Bench-scale evaluation of alternative biological treatment process for the remediation of pentachlorophenol and creosote contaminated materials: solid phase bioremediation. Environ Sci Technol 25:1045–1055Google Scholar
  127. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219Google Scholar
  128. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141Google Scholar
  129. Muyzer GE, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700. PMID 7683183.
  130. Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004) Obtaining multiple separate food sources: behavioural intelligence in the Physarium plasmodium. Proc R Soc B 271:2305–2310Google Scholar
  131. Nichols NN, Lunde TA, Graden KC, Hallock KA, Kowalchyk CK, Southern RM, Soskin EJ, Ditty JL (2012) Chemotaxis to furan compounds by furan-degrading Pseudomonas strains. Appl Environ Microbiol 78(17):6365. doi: 10.1128/AEM.01104-12 Google Scholar
  132. Nylund L, Heikkila P, Hameila M, Pyy L, Linnainmaa K, Sorsa M (1992) Genotoxic e€ects and chemical composition of four creosotes. Mutat Res 265:223–236Google Scholar
  133. Ortegocalvo JJ, Marchenko AI, Votobyow AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar and oil polluted rhizospheres. FEMS Microb Ecol 44:373–381Google Scholar
  134. Park KS, Sims RC, Dupont R (1990) Transformations of PAHs in soil systems. J Environ Eng (ASCE) 116:32–640Google Scholar
  135. Peltola R (2010) Bioavailability aspects of hydrophobic contaminant degradation in soils. ISSN 1795-7079. ISBN 978-952-10-4683-4Google Scholar
  136. Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:472–486Google Scholar
  137. Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonassp. strain P2. FEMS Microbiol Lett 191:115–121Google Scholar
  138. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126Google Scholar
  139. Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1990) Fungal transformation of fluoranthene. Appl Environ Microbiol 56:2974–2983Google Scholar
  140. Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int. Article ID 243217, p 20. doi: 10.1155/2012/243217
  141. Prabhu Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351Google Scholar
  142. Qiu YL, Sekiguchi Y, Imachi H, Kamagata Y, Tseng IC, Cheng SS, Ohashi A, Harada H (2004) Identification and isolation of anaerobic, syntropic phthalate isomer degrading microbes from methanogenic sludges treating wastewater from terepthalate manufacturing. Appl Environ Microbiol 70:1617–1626Google Scholar
  143. Rahman RNZA, Ghazali FM, Salleh AB, Basri M (2006) Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J Microbiol 44(3):354–359Google Scholar
  144. Rama R, Mougin C, Boyer FD, Kollmann A, Malosse C, Sigoillot JC (1998) Biotransformation of benzo(a)pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20:1101–1104Google Scholar
  145. Rastogi G, Sani R (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. Microbes Microb Technol Agric Environ Appl. doi: 10.1007/978-1-4419-7931-5_2
  146. Renner R (1999) EPA to strengthen persistent, bioaccumulative and toxic pollutant controls—mercury first to be targeted. Environ Sci Technol 33:62Google Scholar
  147. Rockne KJ, Strand SE (1998) Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ Sci Technol 32:2962–2967Google Scholar
  148. Ruggaber TP, Talley JW (2006) Enhancing bioremediation with enzymatic processes: a review. Pract Period Hazard Toxic Radioact Waste Manag 10:73–85Google Scholar
  149. Sack U, Fritsche W (1997) Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiol Ecol 22(1):77–83Google Scholar
  150. Sack U, Gunther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J. Basic Microbiol. 33:269–277Google Scholar
  151. Salicis F, Krivobok MJS, Benoit-Guyod JL (1999) Biodegradation of fluoranthene by soil fungi. Chemosphere 38:3031–3039Google Scholar
  152. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Microbiol 14:303–310Google Scholar
  153. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene byMycobacterium sp. strain RJGII-135, isolated from a former coal gasificationsite. Appl Environ Microbiol 62:13–19Google Scholar
  154. Schutzendubel A, Majcherczyk A, Johannes C, Huttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene and pyrene lacks connection to the production of extracellular enzymes by Pleurotusostreatus and Bjerkanderaadjusta. Int Biodeterior Biodegrad 43:93–100Google Scholar
  155. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876Google Scholar
  156. Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300Google Scholar
  157. Semple KT, Morriss WJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818Google Scholar
  158. Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2006) Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65:2388–2394Google Scholar
  159. Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2007) Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavages of naphthalene-1,2-diol. Biodegradation 18:123–131Google Scholar
  160. Seo J-S, Keum Y-S, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Pub Health 6:278–309. doi: 10.3390/ijerph6010278 Google Scholar
  161. Sharma PM, Bhattacharya D, Krishnan S, Lal B (2004) Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium Leclercia adecarboxylata. Appl Environ Microbiol 70(5):3163–3166Google Scholar
  162. Shi Z, Tian L, Zhang Y (2010) Molecular biology approaches for understanding microbial polycyclic aromatic hydrocarbons (PAHs) degradation. Acta Ecol Sin 30:292–295Google Scholar
  163. Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev 88:1–68Google Scholar
  164. Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhya D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016–6027Google Scholar
  165. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20Google Scholar
  166. Steffen K, Hatakka A, Hofrichter M (2003) Removal and mineralization of polycyclic aromatic hydrocarbons by litter decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60(1–2):212–217Google Scholar
  167. Stemmer WPC (1994a) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91:10747–10751Google Scholar
  168. Stemmer WPC (1994b) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391Google Scholar
  169. Su D, Li PJ, Frank S, Xiong XZ (2006) Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci 18(6):1204–1209Google Scholar
  170. Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316Google Scholar
  171. Sutherland JB, Fu PP, Yang SK, Vontungeln LS, Casillas RP, Crow SA, Cerniglia CE (1993) Enantiomeric composition of the trans-dihydrodiols produced from phenanthrene by fungi. Appl Environ Microbiol 59:2145–2149Google Scholar
  172. Takata N, Sakata M (2002) Effect of photooxidation on delta C-13 of benzo(a)pyrene and benzo(e)pyrene in the atmosphere. Geochem J 36(3):235–245Google Scholar
  173. Tao X-Q, Lu G-N, Liu J-P, Li T, Yang L-N (2009) Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. Int J Environ Res Publ Health 6:2470–2480Google Scholar
  174. Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591Google Scholar
  175. Tomotada I, NaSu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8Google Scholar
  176. University of Minnesota Biocatalysis/Biodegradation Database (UMBBD) (2004) University of Minnesota.
  177. Vanrooij JGM, Bodelierbade MM, Jongeneelen FJ (1993) Estimation of individual dermal and respiratory uptake of polycyclic aromatic-hydrocarbons in 12 coke-oven workers. Brit Jn Ind Med 50:623–632Google Scholar
  178. Varkonyi-Gasic E, Hellens RP (2010) qRT-PCR of small RNAs. Methods Mol Biol 631(109):22. doi: 10.1007/978-1-60761-646-7_10 Google Scholar
  179. Veeken AHM, Hamelers BVM (1999) Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste. In: Mata-Alvarez J, Tilche A, Cecchi F (eds) Proceedings of the second international symposium on anaerobic digestion of solid wastes. Barcelona 1. Gr_A®Ques 92:15-18: 250–257Google Scholar
  180. Verdin A, Sahraoui AL-H, Durand R (2003) Degradation of benzo(a)pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegrad 53:65–70Google Scholar
  181. Voordouw G (1998) Reverse sample genome probing of microbial community dynamics. ASM News 64:627–633Google Scholar
  182. Vyas B, Sasek V, Matucha M (1994) Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol 14(1):65–70Google Scholar
  183. Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676Google Scholar
  184. Wang S, Li X, Liu W, Li P, Kong L, Ren W, Wu H, Tu Y (2012) Degradation of pyrene by immobilized microorganisms in saline-alkaline soil. J Environ Sci 24(9):1662–1669Google Scholar
  185. Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons JR, Renard ME, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol. 52(10):861–872Google Scholar
  186. Weissenfels WD, Beyer M, Klein J, Rehm HJ (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl Microbiol Biotechnol 34:528–535Google Scholar
  187. Widdle F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276Google Scholar
  188. Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92–97Google Scholar
  189. Wilmes P, Wexler M, Bond PL (2008) Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 12(e1778):1–11Google Scholar
  190. Wilson NG, Bradley G (1996) The effect of immobilization on rhamnolipid production by Pseudomonas fluorescens. J Appl Bacteriol 81(5):525–530Google Scholar
  191. Wilson SC, Jones KC (1993) Bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 88(229):249Google Scholar
  192. Wong JWC, Lai KM, Wan CK, Ma KK, Fang M (2002) Isolation and optimisation of PAH-degradative bacteria from contaminated soil for PAH bioremediation. Water Air Soil Pollut 139:1–13Google Scholar
  193. Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578Google Scholar
  194. Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008a) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40:789–796Google Scholar
  195. Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z (2008b) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Moilinia sp.: degradation and microbial community analysis. Biodegradation 19:247–257Google Scholar
  196. Wullings BA, van Beuningen AR, Janse JD, Akkermanns ADL (1998) Detection of Ralstoniasolanacearumwhich causes brown rot of potato, by fluorescent in situ hybridization with 23S rRNA-targeted probes. Appl Environ Microbiol 64:4546–4554Google Scholar
  197. Wunder T, Marr J, Kremer S, Sterner O, Anke H (1997) 1- Methoxypyrene and 1,6-dimethoxypyrene: two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Arch Microbiol 167:310–316Google Scholar
  198. Xie S, Liu J, Li L, Qiao C (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci 21(1):2176–2182Google Scholar
  199. Xu YH, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183(1–3):395–401Google Scholar
  200. Yamazoe A, Yagi O, Oyaizu H (2004) Degradation of polycyclic aromatic hydrocarbon by a newly isolated dibenzofuran utilizing Janibacter sp strain yy 1. Appl microbial biot 65:211–218Google Scholar
  201. Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41:1463–1468Google Scholar
  202. Zhang C, Bennet GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618Google Scholar
  203. Zhang Y, Zhu YX, Kwon KK, Park JH, Kim SJ (2002) Detection of biodegradation of pyrene by synchronous fluorometry. China Environ Sci 22:289–292Google Scholar
  204. Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004a) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131Google Scholar
  205. Zhang W, Wang H, Zhang R, Yu XZ, Qian PY, Wong MH (2004b) Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology 19:96–104Google Scholar
  206. Zhong Y, Luan T, Wang X, Lan C, Tam NF (2007) Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl Microbiol Biotechnol 75(1):175–186Google Scholar
  207. Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294Google Scholar
  208. Zhou HW, Wong AHY, Yu RMK, Park YD, Wong YS, Tam NFY (2009) Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microb Ecol 58:153–160Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Environment and Sustainable DevelopmentCentral University of GujaratGandhinagarIndia

Personalised recommendations