Membrane applications for microalgae cultivation and harvesting: a review

  • Ivy L. C. Drexler
  • Daniel H. Yeh
review paper


With renewed interest in microalgae due to their potential for biofuel and bioproducts production, efficient cultivation and harvesting mechanisms are needed to increase the economic competitiveness of microalgal products against traditional sources. With pore sizes ranging from microns to angstroms, membranes provide tailored functions for solid/liquid separation (cell retention, biomass concentration and dewatering), gas/liquid separation (gas delivery and removal), and solute/liquid separation (bioproduct recovery, feedstock preparation and effluent recycling) that are problematic or not possible with other technologies. Existing knowledge on membrane systems used in other disciplines, such as environmental engineering, marine science, and biomedicine, can be applied to algae production. Though membranes have great potential to facilitate cultivation and harvesting, challenges in energy reduction and fouling mitigation need to be overcome for long-term, cost-effective application.


Dewatering Filtration Fouling Gas exchange Photobioreactor 



The authors gratefully acknowledge funding from the U.S. Department of Education Graduate Assistants in Areas of National Need (GAANN) Fellowship and the National Science Foundation (Awards 1236746 and 1200682). Any opinions, findings, and conclusions or recommendations in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The funding source did not influence the manuscript content or decision to submit it for publication. We thank Ana Prieto, Robert Bair, Onur Ozcan and Melanie Pickett for useful comments and recommendations for references included in this review.


  1. Babel S, Takizawa S (2010) Microfiltration membrane fouling and cake behavior during algae filtration. Desalination 261:46–51CrossRefGoogle Scholar
  2. Babel S, Takizawa S, Ozaki H (2002) Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae. Water Res 36:1193–1202CrossRefGoogle Scholar
  3. Berman T, Holenberg M (2005) Don’t fall foul of biofilm through high TEP levels. Filtr Sep 42:30–32CrossRefGoogle Scholar
  4. Berman T, Mizrahi R, Dosoretz CG (2011) Transparent exopolymer particles (TEP): a critical factor in aquatic biofilm initiation and fouling on filtration membranes. Desalination 276:184–190CrossRefGoogle Scholar
  5. Bhave R, Kuritz T, Powell L, Adcock D (2012) Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products. Environ Sci Technol 46:5599–5606CrossRefGoogle Scholar
  6. Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ (2012) Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour Technol 111:343–352CrossRefGoogle Scholar
  7. Bilad MR, Discart V, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ (2013) Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption. Bioresour Technol 138:329–338CrossRefGoogle Scholar
  8. Blais C, Fournier R, Marsot P (1984) Continuous microalgal culture using swine manure dialysate as a nutrient source. Aquac Eng 3:275–287CrossRefGoogle Scholar
  9. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  10. Buckwalter P, Embaye T, Gormly S, Trent JD (2013) Dewatering microalgae by forward osmosis. Desalination 312:19–22CrossRefGoogle Scholar
  11. Castaing JB, Masse A, Pontie M, Sechet V, Haure J, Jaouen P (2010) Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae. Desalination 253:71–77CrossRefGoogle Scholar
  12. Castaing JB, Masse A, Sechet V, Sabiri NE, Pontie M, Haure J, Jaouen P (2011) Immersed hollow fiber microfiltration (MF) for removing undesirable micro-algae and protecting semi-closed aquaculture basins. Desalination 276:386–396CrossRefGoogle Scholar
  13. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae production: a critical review. Bioresour Technol 102:71–81CrossRefGoogle Scholar
  14. Chen L, Wei J, Wang W, Wang C (2013) Combination of microalgae cultivation with membrane processes for the treatment of municipal wastewater. Water Sci Technol 68:2374–2381CrossRefGoogle Scholar
  15. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329CrossRefGoogle Scholar
  16. Chiou YT, Hsieh ML, Yeh HH (2010) Effect of algal extracellular polymer substances on UF membrane fouling. Desalination 250:648–652CrossRefGoogle Scholar
  17. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  18. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1818–1819Google Scholar
  19. Cogne G, Cornet JF, Gros JB (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21:741–750CrossRefGoogle Scholar
  20. Cooper S, Battat A, Marsot P, Sylvestre M (1983) Production of antibacterial activities by two Bacillariophycea grown in dialysis culture. Can J Microbiol 29:338–341CrossRefGoogle Scholar
  21. Danquah MK, Ang L, Gladman B, Moheimani N, Forde GM (2009a) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151:73–78CrossRefGoogle Scholar
  22. Danquah MK, Ang L, Uduman N, Moheimani N, Forde GM (2009b) Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol 84:1078–1083CrossRefGoogle Scholar
  23. DeBaerdemaeker T, Lemmens B, Dotremont C, Fret J, Roef L, Goiris K, Diels L (2013) Benchmark study on algae harvesting with backwashable submerged flat panel membranes. Bioresour Technol 129:582–591CrossRefGoogle Scholar
  24. Dor I (1975) High density, dialysis culture of algae on sewage. Water Res 9:251–254CrossRefGoogle Scholar
  25. Eteshola E, Gottlieb M, Aras S (1996) Dilute solution viscosity of red microalga exopolysaccharides. Chem Eng Sci 51:1487–1494CrossRefGoogle Scholar
  26. Fan LH, Zhang YT, Cheng LH, Zhang L, Tang DS, Chen HL (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem Eng Technol 30:1094–1099CrossRefGoogle Scholar
  27. Fan LH, Zhang YT, Cheng LH, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325:336–345CrossRefGoogle Scholar
  28. Futselaar H, Borgerink R, Schonewille H, Rosberg R (2009) AirLift MBR for municipal wastewater treatment: out of the box performance. Desalin Water Treat 5:54–58CrossRefGoogle Scholar
  29. Ghernaout B, Ghernaout D, Saiba A (2010) Algae and cyanotoxins removal by coagulation/flocculation: a review. Desalin Water Treat 20:133–143CrossRefGoogle Scholar
  30. Hanson RL (1991) Evapotranspiration and droughts. In: Paulson RW, Chase EB, Roberts RS, Moody DW (eds) National water summary 1988–1989–hydrologic events and floods and droughts, vol 2375. U.S. Geological Survey Water-Supply Paper, pp 99–104Google Scholar
  31. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047CrossRefGoogle Scholar
  32. Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae, and diatoms. Water Res 42:3435–3445CrossRefGoogle Scholar
  33. Her N, Amy G, Park HR, Song M (2004) Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res 38:1427–1438CrossRefGoogle Scholar
  34. Hoover L, Phillip WA, Tiraferri A, Yip NY, Elimelech M (2011) Forward with osmosis: emerging applications for greater sustainability. Environ Sci Technol 45:9824–9830CrossRefGoogle Scholar
  35. Huang Y, Li L, Liu J, Lin W (2013) Botanical pesticides as potential rotifer-control agents in microalgal mass culture. Algal Res (in press). doi: 10.1016/j.algal.2013.08.001
  36. Hung MT, Liu JC (2006) Microfiltration for separation of green algae from water. Colloids Surf B 51:157–164CrossRefGoogle Scholar
  37. Hwang T, Park SJ, Oh YK, Rashid N, Han JI (2013) Harvesting of Chlorella sp. KR-1 using a cross flow membrane filtration system equipped with an anti-fouling membrane. Bioresour Technol 139:379–382CrossRefGoogle Scholar
  38. Jensen A (1993) Present and future needs for algae and algal products. Hydrobiologia 260/261:15–23Google Scholar
  39. Jensen A, Rystad B, Skoglund L (1972) The use of dialysis culture in phytoplankton studies. J Exp Mar Biol Ecol 8:241–248CrossRefGoogle Scholar
  40. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049CrossRefGoogle Scholar
  41. Markov SA (1999) Bioreactors for hydrogen production: BioHydrogen. In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, San Pietro A (eds). Springer, US, pp 383–390. doi: 10.1007/978-0-585-35132-2_47
  42. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232CrossRefGoogle Scholar
  43. Meng S, Liu Y (2013) Alginate block fractions and their effects on membrane fouling. Water Res 47:6618–6627CrossRefGoogle Scholar
  44. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496Google Scholar
  45. Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  46. Morineau-Thomas O, Jaouen P, Legentilhomme P (2002) The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae (Chlorella sp. and Porphyridium purpureum): advantages of a swirling decay flow Bioprocess. Biosyst Eng 25:35–42CrossRefGoogle Scholar
  47. Percival E, Foyle R (1979) The extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum. Carbohydr Res 72:165–176CrossRefGoogle Scholar
  48. Petrusevski B, Bolier G, Van Breemen AN, Alaerts GJ (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424CrossRefGoogle Scholar
  49. Pires JCM, Alvim Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev 16:3043–3053CrossRefGoogle Scholar
  50. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25CrossRefGoogle Scholar
  51. Powers CD, Rowland RG, Wurster CF (1976) Dialysis membrane chambers as a device for evaluating impacts of pollutants on plankton under natural conditions. Water Res 10:991–994CrossRefGoogle Scholar
  52. Prieto AL (2011) Sequential anaerobic and algal membrane bioreactor (A2MBR) system for sustainable sanitation and resource recovery from domestic wastewater. Dissertation, University of South FloridaGoogle Scholar
  53. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  54. Qu F, Liang H, Wang Z, Wang H, Yu H, Li G (2014) Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Mycrosystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms. Water Res 46:1490–1500CrossRefGoogle Scholar
  55. Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88CrossRefGoogle Scholar
  56. Rossi N, Jaouen P, Legentilhomme P, Petit I (2004) Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes Trans IChemE. Part C Food Bioprod Process 82:244–250CrossRefGoogle Scholar
  57. Rossi N, Derouiniot M, Jaouen P, Legentilhomme P, Petit I (2008) Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresour Technol 99:6162–6167CrossRefGoogle Scholar
  58. Rossignol N, Vandanjon L, Jaouen P, Quemeneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquac Eng 20:191–208CrossRefGoogle Scholar
  59. Rossignol N, Jaouen P, Robert JM, Quemeneur F (2000a) Production of exocellular pigment by the marine diatom Haslea ostrearia Simonsen in a photobioreactor equipped with immersed ultrafiltration membranes. Bioresour Technol 73:197–200CrossRefGoogle Scholar
  60. Rossignol N, Lebeau T, Jaouen P, Robert JM (2000b) Comparison of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by a marine diatom. Bioprocess Eng 23:495–501CrossRefGoogle Scholar
  61. Ruiz-Martinez A, Garcia MN, Romero I, Seco A, Ferrer J (2012) Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour Technol 126:247–253CrossRefGoogle Scholar
  62. Schultz JS, Gerhardt P (1969) Dialysis culture of microorganisms: design, theory, and results. Bacteriol Rev 32:1–47Google Scholar
  63. Seubert E et al (2012) Algal toxins and reverse osmosis desalination operations: laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin, and okadaic acid. Water Res 46:6563–6573CrossRefGoogle Scholar
  64. Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review vol SERI/STR-231-2396. A subcontract report for the U.S. Department of Energy, Solar Energy Research Institute, SERI/STR-231-2396., Golden, COGoogle Scholar
  65. Singh G, Thomas PB (2012) Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour Technol 117:80–85CrossRefGoogle Scholar
  66. Skipnes O, Eide I, Jensen A (1980) Cage culture turbidostat: a device for rapid determination of algal growth rate. Appl Environ Microbiol 40:318–325Google Scholar
  67. Spolaore P, Joannis-Cassin C, Duran E, Isambert A (2006) Review: commercial applications of microalgae. J Biosci Bioeng 101(2):87–96Google Scholar
  68. Sun X, Wang C, Tong Y, Wang W, Wei J (2013) A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Res 2:437–444CrossRefGoogle Scholar
  69. Teplyakov VV, Gassanova LG, Sostina EG, Slepova EV, Modigell M (2002) Lab-scale bioreactor integrated with active membrane system for hydrogen production: experience and prospects. Int J Hydrog Energy 27:1149–1155CrossRefGoogle Scholar
  70. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701CrossRefGoogle Scholar
  71. Van Nevel S, Hennebel T, De Beuf K, Du Laing G, Verstraete W, Boon N (2012) Transparent exopolymer particle removal in different drinking water production centers. Water Res 46:3603–3611CrossRefGoogle Scholar
  72. Vincent WF, Silvester WB (1979) Growth of blue-green algae in the Manukau (New Zealand) oxidation ponds-II. Experimental studies on algal interaction. Water Res 13:717–723CrossRefGoogle Scholar
  73. Wicaksana F, Fane AG, Pongpairoj P, Field R (2012) Microfiltration of algae (chlorella sorokiniana): critical flux, fouling, and transmission. J Membr Sci 387–388:83–92CrossRefGoogle Scholar
  74. Wiley P et al (2013) Microalgae cultivation using offshore membrane enclosures for growing algae (OMEGA). J Sustain Bioenerg Syst 3:18–32. doi: 10.4236/jsbs.2013.31003 CrossRefGoogle Scholar
  75. Xu M, Bernards M, Hu Z (2014) Algae-facilitated chemical phosphorous removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresour Technol 153:383–387CrossRefGoogle Scholar
  76. Zhang X, Hu Q, Sommerfield M, Puruhito E, Chen Y (2010) Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol 101:5297–5304CrossRefGoogle Scholar
  77. Zhang W, Zhang W, Zhang X, Amendola P, Hu Q, Chen Y (2013a) Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting. Algal Res 2:223–229CrossRefGoogle Scholar
  78. Zhang X, Fan L, Roddick FA (2013b) Influence of the characteristics of soluble algal organic matter released from Microcystis aeruginosa on the fouling of a ceramic microfiltration membrane. J Membr Sci 425–426:23–29CrossRefGoogle Scholar
  79. Zhao S, Zou L, Tang CY, Mulcahy D (2012) Recent developments in forward osmosis: opportunities and challenges. J Membr Sci 396:1–21CrossRefGoogle Scholar
  80. Zhen-Feng S, Xin L, Hong-Ying H, Yin-Hu W, Tsutomu N (2011) Culture of Scenedesmus sp. LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresour Technol 102:7627–7632CrossRefGoogle Scholar
  81. Zhou S, Wang YN, Wicaksana F, Aung T, Wong PCY, Fane AG, Tang CY (2013) Direct microscopic observation of forward osmosis membrane fouling by microalgae: critical flux and the role of operational conditions. J Membr Sci 436:174–185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations