Advertisement

4(5)-Methylbenzotriazole: a review of the life-cycle of an emerging contaminant

  • Nicholas M. Dummer
Review paper

Abstract

4(5)-Methylbenzotriazole (MeBT), also known as tolyltriazole is a widely used compound that effectively prevents the corrosion of many metals in acidic and saline aqueous solutions. This review summarizes the current body of knowledge related to MeBT including its uses, corrosion inhibition capabilities, chemical and toxicological properties, occurrence in the environment, and treatment and removal from water supplies. Key conclusions include: poor biodegradability of the 5-MeBT isomer and the recalcitrance of the 4-MeBT isomer leading to persistence in the environment, poor removal efficiencies in conventional water treatment facilities, and the generally unknown chronic effects of MeBT. The aim of this paper is to bring to light the relevant facts about MeBT in a concise manner so that we may make more informed decisions regarding its use and of the potential long-term environmental effects that it may cause.

Keywords

Methylbenzotriazole Triazole Tolyltriazole MeBT TTri Benzotriazole 

References

  1. Abu-Dalo M (2003) Electrochemical characterization of benzotriazole derivatives and their behavior in industrial waste treatment. Dissertation, Department of Civil, Environmental and Architectural Engineering, University of ColoradoGoogle Scholar
  2. Ashour EA, Hegazy HS (2003) Inhibitive effect of benzotriazole on the stress corrosion cracking of type 316 stainless steel in chloride and thiosulfate containing solutions. Anti Corros Methods Mater 50:291–295. doi: 10.1108/00035590310482532 CrossRefGoogle Scholar
  3. Bereket G, Pinarbasi A (2004) Electrochemical thermodynamic and kinetic studies of the behavior of aluminum in hydrochloric acid containing various benzotriazole derivatives. Corros Eng Sci Technol 39(4):308. doi: 10.1179/174327804X13136 CrossRefGoogle Scholar
  4. Breedveld GD, Roseth R, Sparrevik M, Harnik T, Hem L (2003) Persistence of the de-icing additive benzotriazole at an abandoned airport. Water Air Soil Pollut Focus 3:91–101. doi: 10.1023/A:1023961213839 CrossRefGoogle Scholar
  5. Cancilla D, Martinez J, VanAggelen GC (1998) Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport. Environ Sci Technol 32:3834–3835CrossRefGoogle Scholar
  6. Cancilla D, Baird JC, Geis SW, Corsi SR (2003) Studies of the environmental fate and effect of aircraft deicing fluids: detection of 5-methyl-1h-benzotriazole in the fatthead minnow (Pimephales promelas). Environ Toxicol Chem 22:134–140. doi: 10.1002/etc.5620220117 CrossRefGoogle Scholar
  7. Castro S, Davis LC, Erickson LE (2001) Phytodegradation kinetics of methyl benzotriazole. In: Conference on environmental research proceedings, Manhattan, KansasGoogle Scholar
  8. Chadwick D, Hashemi T (1978) Adsorbed corrosion inhibitors studied by electron spectroscopy: benzotriazoles on copper and copper alloys. Corros Sci 18:39–51. doi: 10.1016/S0010-938X(78)80074-2 CrossRefGoogle Scholar
  9. Cornell J (2001) The environmental impact of 4(5)-methylbenzotriazole from aircraft deicing operations. Dissertation, Department of Civil, Environmental and Architectural Engineering, University of ColoradoGoogle Scholar
  10. Cornell J, Pillard D, Hernandez M (1998) Chemical components of aircraft deicer fluid; how they affect propylene glycol degradation rates and deicing waste stream toxicity. In: WEFTEC proceedings, Orlando, FloridaGoogle Scholar
  11. Cornell J, Pillard D, Hernandez M (2000) Comparative measures of the toxicity of component chemicals in aircraft deicing fluids. Environ Toxicol Chem 19(4):1465–1472. doi: 10.1002/etc.5620190601 CrossRefGoogle Scholar
  12. Davis L, Santodanato J, Howard P, Saxena J (1977) Investigation of selected potential environmental contaminants: benzotriazoles. USEPA report, Washington, DCGoogle Scholar
  13. DeMonbrun JR, Schmitt CR, Schreyer JM (1980) Patent no. 4,237,090. United States of AmericaGoogle Scholar
  14. Downs WR (1968) Chemically induced ignition in aircraft and spacecraft electrical circuitry by glycol/water solutions. NASA technical note TN D-4327Google Scholar
  15. Environment Protection and Heritage Council, National Heather and Medical Research Council, Natural Resource Management Ministerial Council (2008) Australian guidelines for water recycling: augmentation of drinking water supplies. Australian Environment Protection and Heritage CouncilGoogle Scholar
  16. Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MET, Zaugg SD, Barber LB, Thurman ME (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) Untreated drinking water sources. Sci Total Environ 402:201–216. doi: 10.1016/j.scitotenv.2008.02.021 CrossRefGoogle Scholar
  17. Frignani A, Tommesani L, Brunoro G, Monticelli C, Fogagnolo M (1999) Influence of the alkyl chain on the protective effects of 1, 2, 3-benzotriazole towards copper corrosion. Part I: inhibition of the anodic and cathodic reactions. Corros Sci 41:1205–1215. doi: 10.1016/S0010-938X(98)00191-7 CrossRefGoogle Scholar
  18. Gerengi H, Kazimeirz D, Pawel S, Gozen B, Ryl J (2010) Investigation effect of benzotriazole on the corrosion of brass-MM55 alloy in artificial seawater by dynamic EIS. J Solid State Electrochem 14:897–902. doi: 10.1007/s10008-009-0923-1 CrossRefGoogle Scholar
  19. Giger W, Schaffner C, Kohler HE (2006) Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ Sci Technol 40:7186–7192. doi: 10.1021/es061565j CrossRefGoogle Scholar
  20. Gomma (1998) Influence of copper cation on inhibition of corrosion for steel in presence of benzotriazole in sulfuric acid. Mater Chem Phys 55:131–138. doi: 10.1016/S0254-0584(98)00084-4 CrossRefGoogle Scholar
  21. Gruden C, Hernandez M (2002) Anaerobic digestion of aircraft deicing fluid wastes: interactions and toxicity of corrosion inhibitors and surfactants. Water Environ Res 74:149–158CrossRefGoogle Scholar
  22. Gruden C, Dow S, Hernandez M (2001) Fate and toxicity of aircraft deicing fluid additives through anaerobic digestion. Water Environ Res 73:72–79. doi: 10.2175/106143001X138714 CrossRefGoogle Scholar
  23. Harris CA, Routledge EJ, Schaffner C, Brian JV, Giger W, Sumpter JP (2007) Benzotriazole is antiestrogenic in vitro but not in vivo. Environ Toxicol Chem 26:2367–2372. doi: 10.1897/06-587R.1 CrossRefGoogle Scholar
  24. Health Council of the Netherlands: Dutch Expert Committee on Occupational Standards (2000) 1, 2, 3-Benzotriazole. Health Council of the Netherlands, The HagueGoogle Scholar
  25. Hem LJ, Hartnik T, Roseth R, Gijs DB (2003) Photochemical degradation of benzotriazole. J Environ Sci Health 38:471–481. doi: 10.1081/ESE-120016907 CrossRefGoogle Scholar
  26. Huber MM, Gobel A, Joss A, Hermann N, Loffler D, Mcardell CS, Reid A, Siegrist H, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:4290–4299. doi: 10.1021/es048396s CrossRefGoogle Scholar
  27. Janna H, Scrimshaw MD, Williams RJ, Churchley J, Sumpter JP (2011) From dishwasher to tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment. Environ Sci Technol 45:3858–3864. doi: 10.1021/es103267g CrossRefGoogle Scholar
  28. Kiss A, Fries E (2009) Occurrence of benzotriazoles in the rivers of Main, Hengstbach and Hegbach (Germany). Environ Sci Pollut Res 16:702–710. doi: 10.1007/s11356-009-0179-4 CrossRefGoogle Scholar
  29. Kiss A, Fries E (2012) Seasonal source influence on river mass flows of benzotriazoles. J Environ Monit 14:697–703. doi: 10.1039/c2em10826g CrossRefGoogle Scholar
  30. Kolpin DW, Furlong ET, Meyer MET, Thuman ME, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  31. Korpics C (1974) Patent no. 3,791,855 & 3,803,049. United States of AmericaGoogle Scholar
  32. Liddel R (1959) Patent no. 2,877,188. United States of AmericaGoogle Scholar
  33. Liu Y, Ying G, Shareer A, Kookana RS (2011) Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Res 45:5005–5014. doi: 10.1016/j.watres.2011.07.001 CrossRefGoogle Scholar
  34. Lu F, Rao NM, Yang B, Hoots JE, Budrys RS (1994) Effect of halogenation on yellow metal corrosion—inhibition by triazoles. Corrosion 50:422–431. doi: 10.5006/1.3293520 CrossRefGoogle Scholar
  35. Matamoros V, Jover E, Bayona JM (2010) Occurrence and fate of benzothiazoles and benzotriazoles in constructed wetlands. Water Sci Technol 61:191–198. doi: 10.2166/wst.2010.797 CrossRefGoogle Scholar
  36. McNeill KS, Cancilla DA (2009) Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bull Environ Contam Toxicol 82:265–269. doi: 10.1007/s00128-008-9626-z CrossRefGoogle Scholar
  37. O’Brien IZ (2002) Biotransformation potential and uncoupling behavior of common benzotriazole-based corrosion inhibitors. Dissertation, Department of Civil, Environmental and Architectural Engineering, University of ColoradoGoogle Scholar
  38. O’Neal C (1976) Patent no. 3,985,503. United States of AmericaGoogle Scholar
  39. Pearson R (2000) Properties of methylbenzotriazole. PMC Specialties Group, Inc, Cincinnati, OHGoogle Scholar
  40. Pillard DA, Cornell JS, Dufresne DL, Hernandez MT (2001) Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Water Res 35:557–560CrossRefGoogle Scholar
  41. Rao NL (1996) Patent no. 5503775. United States of AmericaGoogle Scholar
  42. Ravichandran R, Nanjundan S, Rajendran N (2004) Effect of benzotriazole derivatives on the corrosion of brrass in NaCl solutions. Appl Surf Sci 236:241–250. doi: 10.1016/j.apsusc.2004.04.025 CrossRefGoogle Scholar
  43. Reemtsma T, Weis S, Mueller J, Petrovic M, Gonzales S, Barcelo D, Ventura F, Knepper TP (2006) Polar pollutant entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol 40:5451–5458CrossRefGoogle Scholar
  44. Reemtsma T, Miehe U, Duennbier U, Jekel M (2010) Polar pollutants in municipal wastewater and the water cycle: occurrence and removal of benzotriazoles. Water Res 44:596–604. doi: 10.1016/j.watres.2009.07.016 CrossRefGoogle Scholar
  45. Thomas S, Venkateswaran S, Kapoor S, Cunha RD, Mukherjee T (2004) Surface enhanced Raman scattering of benzotriazole: a molecular orientational study. Spectrochim Acta A 60:25–29CrossRefGoogle Scholar
  46. USEPA (1999) EPA Guidance Manual: Alternative Disinfectants and OxidantsGoogle Scholar
  47. USEPA (2000) Preliminary data summary: airport deicing operations. EPA Office of Water, Washington, DCGoogle Scholar
  48. USEPA (2009) Final contaminant candidate list 3 chemicals: screening to PCCL. USEPA Office of WaterGoogle Scholar
  49. USEPA (2012, March 22). High production volume information system (HPVIS). http://www.epa.gov/hpvis/. Accessed 15 Dec 2012
  50. van Leerdam JA, Hogeboom AC, van der Koi MME, de Voogt P (2009) Determination of polar 1H-benzotriazoles and benzothiazoles in water by solid-phase extraction and liquid chromatography. Int J Mass Spectrom 282:99–107. doi: 10.1016/j.ijms.2009.02.018 CrossRefGoogle Scholar
  51. Verheyen V, Cruickshank A, Wild K, Heaven MW, McGee R, Watkins M, Nash D (2009) Soluble, semivolatile phenol and nitrogen compounds in milk-processing wastewaters. J Dairy Sci 92:3483–3493. doi: 10.3168/jds.2009-2217 CrossRefGoogle Scholar
  52. Voutsa D, Harmann P, Schaffner C, Giger W (2006) Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ Sci Pollut Res 13:333–341CrossRefGoogle Scholar
  53. Weiss S, Jutta J, Reemtsma T (2006) Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ Sci Technol 40:7193–7199CrossRefGoogle Scholar
  54. Wells MJM, Fono LJ, Pellegrin M (2007) Emerging pollutants. Water Environ Res 79:2192–2209. doi: 10.2175/106143007X218719 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.BoulderUSA

Personalised recommendations