Reviews in Environmental Science and Bio/Technology

, Volume 12, Issue 3, pp 257–284 | Cite as

Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review

  • Obuli P. Karthikeyan
  • C. Visvanathan


Dry anaerobic bio-conversion (D-AnBioC) of high-solid organic substrates (OS) is considered as a sustainable option for waste management practices in different parts of the world. The basic technology is well implemented, but the improvements are still under way in terms of optimization and pre- and post-treatments of the feed and end-products, respectively. The purpose of this review is mainly to: (1) provide existing knowledge and research advances in D-AnBioC systems to treat high-solid OS; (2) identify major issues involved in bioreactor designing; (3) present factors influencing the bio-conversion efficiency; (4) discuss the microbiology of system operation; (5) provide examples of existing commercial-scale plants; (6) discuss energy and economics requirements. From the detailed literature review, it is clear that the characteristics of OS are the major factors governing the overall process and economics. It shows that not all OS are profitably recycled using D-AnBioC systems. Compared to single-stage continuous systems, batch systems under a multi-stage configuration appears to be economically feasible, however, it must be noted that the available data sets are still inconclusive. Also, limited information is available on green house gas mitigation and restoration of nutrients from the digested residue during post-treatment schemes. A summary at the end presents important research gaps of D-AnBioC system to direct future research.


Dry anaerobic system High-solid organic substrates Pre-treatment Toxicity effects Bio-energy recovery Commercial bio-reactor 


  1. Abbasi T, Tauseef SM, Abbasi SA (2012) Anaerobic digestion for global warming control and energy generation—an overview. Renew Sustain Energy Rev 16:3228–3242CrossRefGoogle Scholar
  2. Ahn HK, Smith MC (2008) Biogas production potential from switch grass-animal manure mixture using dry anaerobic digestion. In: Proceedings of American Society of agricultural and biological engineers annual international meeting, June 29 to July 02, 2008, Providence, Rhode Island, 12, pp 7317–7326Google Scholar
  3. Ahn HK, Smith MC, Kondrad SL, White JW (2010) Evaluation of biogas production potential by dry anaerobic digestion of switchgrass-animal manure mixtures. Appl Biochem Biotechnol 160:965–975CrossRefGoogle Scholar
  4. Angelidaki I, Chen X, Cui J, Kaparaju P, Ellegaard L (2006) Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor. Water Res 40(14):2621–2628CrossRefGoogle Scholar
  5. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781CrossRefGoogle Scholar
  6. Appels L, Lauwers J, Degreve J, Helsen L, Lievens B, Willems K, Impe JV, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301CrossRefGoogle Scholar
  7. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52:858–875CrossRefGoogle Scholar
  8. Banks CJ, Chesshire M, Stringfellow A (2008) A pilot-scale comparison of mesophilic and thermophilic digestion of source segregated domestic food waste. Water Sci Technol 58:1475–1481CrossRefGoogle Scholar
  9. Banks JC, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135CrossRefGoogle Scholar
  10. Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment: a review. Bioresour Technol 100(22):5444–5453CrossRefGoogle Scholar
  11. Bernet GD, Buffière P, Latrille E, Steyer JP, Escudié R (2011) Water distribution in biowastes and digestates of dry anaerobic digestion technology. Chem Eng J 172(2–3):924–928CrossRefGoogle Scholar
  12. Binner E, Zach A, Lechner P (1999) Test methods describing the biological reactivity of pretreated residual wastes. In: Proceedings Sardinia 1999, seventh international waste management and landfill symposium, S. Margherita di Pula, Cagliari, ItalyGoogle Scholar
  13. Bolzonella D, Battistoni P, Mata-Alvarez J, Cecchi F (2003) Anaerobic digestion of organic solid wastes: process behaviour in transient conditions. Water Sci Technol 48(4):1–8Google Scholar
  14. Bouallagui H, Touhami Y, Cheikh RB, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995CrossRefGoogle Scholar
  15. Bouallagui H, Lahdheb H, Romdan E, Rachdi B, Hamdi M (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manage 90:1844–1849CrossRefGoogle Scholar
  16. Braun R, Drosg B, Bochmann G, Weib S, Kirchmayr R (2010) Chapter 2. Recent developments in bio-energy recovery through fermentation. In: Insam H et al (eds) Microbes at work. Springer, Berlin, Heidelberg, pp 35–58. doi: 10.1007/978-3-642-04043-6_2)
  17. Buendia IM, Fernandez FJ, Villasnor J, Rodriguez L (2009) Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresour Technol 100:1903–1909CrossRefGoogle Scholar
  18. Bujoczek G, Oleszkiewicz J, Sparling R, Cenkowski S (2000) High solid anaerobic digestion of chicken manure. J Agric Eng Res 76:51–60CrossRefGoogle Scholar
  19. Chachkhiani M, Debert P, Abzianidze T, Partskhaladze G, Tsiklauri L, Dudauri T, Godon JJ (2004) 16s r DNA characterization of bacterial and archaeal communities during start-up of anaerobic thremophilic digestion of cattle manure. Bioresour Technol 93(3):227–232CrossRefGoogle Scholar
  20. Charles W, Walker L, Cord-Ruwisch R (2009) Effect of pre-aeration and inoculums on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour Technol 100:2329–2335CrossRefGoogle Scholar
  21. Chaudhary BK, Karthikeyan OP, Visvanathan C (2009) Dry thermophilic anaerobic digestion of municipal solid waste for energy recovery—a decentralized approach. International conference on solid waste management (IconSWM), Kolkata, India, 4–9 Nov 2009Google Scholar
  22. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRefGoogle Scholar
  23. Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biological pre-treatment of lignocellulosics: potential, progress and challenges. Biofuels 1(1):177–199CrossRefGoogle Scholar
  24. Cho JK, Park SC, Chang HN (1995) Biochemical methane potential and solid state anaerobic-digestion of Korean food wastes. Bioresour Technol 52(3):245–253CrossRefGoogle Scholar
  25. Chynoweth DP, Bosch G, Earle JFK, Legrand R, Liu K (1991) A novel process for anaerobic composting of municipal solid waste. Appl Biochem Biotechnol 28–29:421–432CrossRefGoogle Scholar
  26. Cossu R, Raga R (2008) Test methods for assessing the biological stability of biodegradable waste. Waste Manag 28(2):381–388CrossRefGoogle Scholar
  27. Cui Z, Shi J, Li Y (2011) Solid-state anaerobic digestion of spent wheat straw from horse stalls. Bioresour Technol 102:9432–9437CrossRefGoogle Scholar
  28. De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41(3):283–290Google Scholar
  29. De Gioannis G, Diaz LF, Muntoni A, Pisanu A (2008) Two-phase anaerobic digestion within a solid waste/wastewater integrated management system. Waste Manag 28(10):1801–1808CrossRefGoogle Scholar
  30. De la Rubia MA, Walker M, Heaven S, Banks CJ, Borja R (2010) Preliminary trials of in situ ammonia stripping from source segregated domestic food waste digestate using biogas: effect of temperature and flow rate. Bioresour Technol 101:9486–9492CrossRefGoogle Scholar
  31. De Sousa L, Chundawat SP, Balan V, Dale BE (2009) ’Cradle-to-grave’ assessment of existing lignocelluloses pre-treatment technologies. Curr Opin Biotechnol 20(3):339–347CrossRefGoogle Scholar
  32. Dong L, Zhenhong Y, Yongming S (2010) Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour Technol 101:2722–2782CrossRefGoogle Scholar
  33. Duan N, Dong B, Wu B, Dai X (2012) High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresour Technol 104:150–156CrossRefGoogle Scholar
  34. Fdez-Guelfo LA, Alvarez-Gallego C, Marquez S, Garcia LIR (2010) Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum. Bioresour Technol 101:9031–9039CrossRefGoogle Scholar
  35. Fdez-Guelfo LA., Alvarez-Gallego C, Sales Marquez D, Romero Garcia LI (2011) Dry-thermophilic anaerobic digestion of simulated organic fraction of municipal solid waste: process modeling. Bioresour Technol 102(2):606–611Google Scholar
  36. Fernandez J, Perez M, Romero LI (2008) Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour Technol 99(14):6075–6080CrossRefGoogle Scholar
  37. Forster-Carneiro T, Perez M, Romero LI (2007a) Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes. Bioresour Technol 98(17):3354–3366CrossRefGoogle Scholar
  38. Forster-Carneiro T, Perez M, Romero L, Sales D (2007b) Dry thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources. Bioresour Technol 98(17):3195–3203CrossRefGoogle Scholar
  39. Forster-Carneiro T, Perez M, Romero LI (2008a) Influence of total solid and inoculums contents on performance of anaerobic reactors treating food waste. Bioresour Technol 99(15):6974–7002CrossRefGoogle Scholar
  40. Forster-Carneiro T, Perez M, Romero LI (2008b) Anaerobic digestion of municipal solid wastes: dry thermophilic performance. Bioresour Technol 99:8180–8184CrossRefGoogle Scholar
  41. Fricke K, Santen H, Wallmann R, Huttner A, Dichtl N (2007) Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manag 27:30–43CrossRefGoogle Scholar
  42. Gallert C, Winter J (1997) Mesophilic and thermophilic anaerobic digestion of source-sorted organic waste: effect of ammonia on glucose degradation and methane production. Appl Microbiol Biotechnol 48:405–410CrossRefGoogle Scholar
  43. Gerardi MH (2003) The microbiology of anaerobic digesters. In: Gerardi (ed) Wastewater microbiology series. John Wiley & Sons. Inc., Hoboken, NJ. ISBN 0-471-20693-8Google Scholar
  44. Ghanimeh S, Fadel ME, Saikaly P (2012) Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour Technol. doi: 10.1016/j.biortech.2012.02.125 Google Scholar
  45. Ghosh P, Singh A (1993) Physico-chemical and biological treatment for enzymatic/microbial conversion of lignocellulosic biomass. Adv Appl Microbiol 39:295–333CrossRefGoogle Scholar
  46. Gleadow RM, Woodrow IE (2002) Defense chemistry of cyanogenic Eucalyptus cladocalyx seeding is affected by water supply. Tree Physiol 22:939–945CrossRefGoogle Scholar
  47. Gonzalez LM, Castro R, Pereira MA, Alves MM, Font X, Vicent T (2011) Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from sewage treatment plant: reactor performance and microbial community monitoring. Bioresour Technol 102(7):4734–4741CrossRefGoogle Scholar
  48. Guendouz J, Buffiere P, Cacho J, Carrere M, Delgenes JP (2010) Dry anaerobic digestion in batch mode: design and operation of a laboratory scale completely mixed reactor. Waste Manag 30:1768–1771CrossRefGoogle Scholar
  49. Guendouz AA, Brockmann D, Trably E, Dumas C, Delgenes JP, Steyer JP, Escudie R (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:55–61CrossRefGoogle Scholar
  50. Gunaseelan N (2004) Biochemical methane potential of fruits and vegetable solid waste feestocks. Biomass Bioenergy 26:389–399CrossRefGoogle Scholar
  51. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12CrossRefGoogle Scholar
  52. Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pre-treatment processes for lignocellulosic biomass. A review report published by Wageningen UR Food & Biobased Research, NL-6700 AAGoogle Scholar
  53. Hartmann H, Ahring BK (2005) A novel process configuration for anaerobic digestion of source-sorted household waste using hyper-thermophilic post- treatment. Biotechnol Bioenergy 90:830–837CrossRefGoogle Scholar
  54. He YF, Pang YZ, Liu YP, Li XJ, Wang KS (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22(4):2775–2781CrossRefGoogle Scholar
  55. Hegde G, Pullammanappallil P (2007) Comparison of thermophilic and mesophilic one-stage, batch, high-solid anaerobic digestion. Environ Technol 28:361–369CrossRefGoogle Scholar
  56. Hu HZ, Yu HQ (2006) Anaerobic digestion of cattail by rumen cultures. Waste Manag 26:1222–1228CrossRefGoogle Scholar
  57. International Energy Agency (IEA) (2010). Projected costs of generating electricity. IEA/OECD, Paris. Google Scholar
  58. Illmer P, Gstraunthaler G (2009) Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance. Waste Manag 29(1):162–167CrossRefGoogle Scholar
  59. Isroi, Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6(4):5224–5259Google Scholar
  60. Jackowiak D, Frigon JC, Ribeiro T, Pauss A, Guiot S (2011) Enhancing solubilization and methane production of switch grass by microwave pretreatment. Bioresour Technol 102(3):3535–3540CrossRefGoogle Scholar
  61. Jha AK, Li J, Nies L, Zhang L (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol 10(65):14242–14253Google Scholar
  62. Jin P, Bhattacharya SK, Williama CJ, Zhang H (1998) Effects of sulfide addition on copper inhibition in methanogenic systems. Water Res 32:977–988CrossRefGoogle Scholar
  63. Jokela JPY, Rintala JA (2003) Anaerobic solubilisation of nitrogen from municipal solid waste (MSW). Rev Environ Sci Biotechnol 2:67–77CrossRefGoogle Scholar
  64. Kalia AK, Singh SP (1998) Horse dung as a partial substitute for cattle dung for operating family-size biogas plants in a hilly region. Bioresour Technol 64:63–66CrossRefGoogle Scholar
  65. Karagiannidis A, Perkoulidis G (2009) A multi-criteria ranking of different technologies for the anaerobic digestion recovery of the organic fraction of municipal solid wastes. Bioresour Technol 100(8):2355–2360CrossRefGoogle Scholar
  66. Karim K, Hoffmann R, Klasson KT, Al-Dahhan MH (2005) Anaerobic digestion of animal waste: effect of mode of mixing. Water Resour 39:3397–3606Google Scholar
  67. Kayhanian M (1995) Biodegradability of the organic fraction of municipal solid waste in a high-solids anaerobic digester. Waste Manage Res 13(2):123–136Google Scholar
  68. Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–365CrossRefGoogle Scholar
  69. Kayhanian M, Tchobanoglous G (1993) Innovative two-stage process for the recovery of energy and compost from the organic fraction of municipal solid wastes. Water Sci Technol 27:121–132CrossRefGoogle Scholar
  70. Khalid A, Ashad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744CrossRefGoogle Scholar
  71. Khanal SK (2008) Anaerobic biotechnology for bioenergy production: principles and applications. Blackwell Pb. Co. ISBN: 978-0-813-82346-1Google Scholar
  72. Kim S, Holtzapple MT (2005) Lime pre-treatment and enzymatic hydrolysis of corn stover. Bioresour Technol 93:1994–2006CrossRefGoogle Scholar
  73. Kim DH, Oh SE (2011) Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions. Waste Manag 31:1943–1948CrossRefGoogle Scholar
  74. Komilis DP, Ham RK (2003) The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Manag 23:419–423CrossRefGoogle Scholar
  75. Kraft E (2004) Trockenfermentation—Brucke Zwischen Abfallbehandlung und Landwirtscharft?. In: Fachagentur Nachwaschsende Rohstoffe e.V. (FNR) (ed) Gulzower Fachgesprache 23. Gulzower Fachgesprach “Tockenfermentation”, Gulzow, 4/5, Feb 2004. Gulzow: FNR., pp 81–95Google Scholar
  76. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391CrossRefGoogle Scholar
  77. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pre-treatment of lignocellulosic biomass for efficient hydrolysis and bio-fuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  78. Kusch S, Oechsner H, Jungbluth T (2008) Biogas production with horse dung in solid-phase digestion systems. Bioresour Technol 99:1280–1292CrossRefGoogle Scholar
  79. Kusch S, Schafer W, Kranert M (2011) Chapter 7-Dry digestion of organic residues. In: Mr. Sunil Kumar (ed) Integrated Waste Management, 1, pp 115–134. ISBN: 978-953-307-469-6, InTech, Available from:
  80. Kusch S, Oechsner H, Jungbluth T (2012) Effect of various leachate recirculation strategies on batch anaerobic digestion of solid substrates. Int J Environ Waste Manag 9(1/2):69–88Google Scholar
  81. Lahav O, Morgan B (2004) Titration methodologies for monitoring of anaerobic digestion in developing countries—a review. J Chem Technol Biotechnol 79:1331–1341CrossRefGoogle Scholar
  82. Lal R (2008) Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag 28:747–758CrossRefGoogle Scholar
  83. Lay JJ, Li YU, Noike T (1997) Inlfuences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31(6):1518–1524CrossRefGoogle Scholar
  84. Leclerc M, Delgenes JP, Godon JJ (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6(8):809–819CrossRefGoogle Scholar
  85. Lee SH, Kang HJ, Lee YH, Lee TJ, Han K, Choi Y, Park HD (2012) Monitoring of bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit. doi: 10.1039/c2em10958a Google Scholar
  86. Lehtomaki A, Huttunen S, Lehtinen TM, Rintala RA (2008) Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour Technol 99(8):3267–3278CrossRefGoogle Scholar
  87. Lei Y, Liu S, Li J, Sun R (2010) Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnol Adv 28(5):609–612CrossRefGoogle Scholar
  88. Lerm S, Kleybocker A, Miethling-Graff R, Alawi M, Kasina M, Liebrich M, Wurdemann H (2012) Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manag 32(3):389–399CrossRefGoogle Scholar
  89. Li HL, Yan W (2011) Influence of total solid and stirring frequency on performance of dry anaerobic digestion treating cattle manure. Appl Mech Mater 79:48–52CrossRefGoogle Scholar
  90. Li J, Jha AK, He J, Ban Q, Chang S, Wang P (2011a) Assessment of the effects of dry anaerobic co-digestion of cow dung with waste water sludge on biogas yield and biodegradability. Int J Phys Sci 6(15):3679–3688Google Scholar
  91. Li Y, Park SY, Zhu J (2011b) Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 15:821–826CrossRefGoogle Scholar
  92. Liang Y, Zheng Z, Hua R, Luo X (2011) A preliminary study of simultaneous lime treatment and dry digestion of smooth cord grass for biogas production. Chem Eng J 174:175–181CrossRefGoogle Scholar
  93. Liew LN, Shi J, Li Y (2011) Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol 102(19):8828–8834CrossRefGoogle Scholar
  94. Lin YQ, Wang DH, Wu ShQ, Wang ChM (2009) Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Hazard Mater 170:366–373CrossRefGoogle Scholar
  95. Linke B, Heiermann M, Mumme J (2006) Results of monitoring the pilot plants Pirow and Clausnitz. In: Rohstoffe FN (ed) Solid-state digestion–state of the art and further R&D requirements, vol 24. Gülzower Fachgespräche, pp 112–130Google Scholar
  96. Liu ZG, Zhu HG, Wang B, Zhang Y (2009) Effect of ratios of manure to crop on dry anaerobic digestion for biogas production. J Chin Soc Agric Eng 25(4):196–200Google Scholar
  97. Lusk P, Wheeler P, Rivard C (1996) Deploying anaerobic digesters: current status and future possibilities. National Renewable Energy Laboratory, National Technical Infonnation Service (NIST), Technical ReportGoogle Scholar
  98. Lv W, Schanbacher FL, Yu Z (2010) Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresour Technol 101:9409–9414CrossRefGoogle Scholar
  99. Maritza MC, Zohrab S, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288–8293CrossRefGoogle Scholar
  100. Mattheeuws B (2011) State of the art of anaerobic digestion of municipal solid waste in Europe. International conference on solid waste 2011 moving towards sustainable resource management, 2–6 May 2011, Hong KongGoogle Scholar
  101. Mishima D, Tateda M, Ike M, Fujita M (2006) Comparative study on chemical pre-treatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97:2166–2172CrossRefGoogle Scholar
  102. Montero B, Garcia-Morales JL, Sales D, Solera R (2008) Evolution of microorganisms in thermophilic dry anaerobic digestion. Bioresour Technol 99:3233–3243Google Scholar
  103. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pre-treatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  104. Mtui GYS (2009) Recent advances in pre-treatment of lignocellulosic wastes and production of value added products. African J Biotech 8(8):1398–1415Google Scholar
  105. Mumme J, Linke B, Tolle R (2010) Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 101:592–599CrossRefGoogle Scholar
  106. Mussoline W, Esposito G, Lens P, Garuti G, Giordano A (2012) Design considerations for a farm-scale biogas plant based on pilot-scale anaerobic digesters loaded with rice straw and piggery wastewater. Biomass Bioenergy (article in press:
  107. Muthangya M, Mshandete AM, Kivaisi AK (2009) Enhancement of anaerobic digestion of sisal leaf decertification residues by biological pre-treament. J Agric Biol Sci 4(4):66–73Google Scholar
  108. Nakakubo R, Møller HB, Nielsen AM, Matsuda J (2008) Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ Eng Sci 25:1487–1496CrossRefGoogle Scholar
  109. Naomichi N, Yutaka N (2007) Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng 103(2):105–112CrossRefGoogle Scholar
  110. Nayono SE, Gallert C, Winter J (2009) Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Sci Technol 59(6):1169–1178CrossRefGoogle Scholar
  111. Neves L, Goncalo E, Oliveira R, Alves MM (2008) Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Manag 28:965–972CrossRefGoogle Scholar
  112. Nges IA, Bjorn A, Bjornsson L (2012) Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage. Bioresour Technol. doi:10.1016/j.biortech.2012.05.096
  113. Nizami AS, Murphy JD (2010) What type of digester configurations should be employed to produce biomethane from grass silage? Renew Sustain Energy Rev 14(6):1558–1568CrossRefGoogle Scholar
  114. Nizami AS, Murphy JD (2011) Optimizing the operation of a two-phase anaerobic digestion system digesting grass silage. Environ Sci Technol 45:7561–7569CrossRefGoogle Scholar
  115. Owens JM, Chynoweth DP (1993) Biochemical methane potential of municipal solid waste (MSW) components. Waste Sci Technol 27(2):1–14Google Scholar
  116. Pang YP, Liu YP, Li XJ, Wang KS, Yuan HR (2008) Improving biodegradability and biogas production of corn stover though sodium hydroxide solid state pretreatment. Energy Fuels 22:2761–2766CrossRefGoogle Scholar
  117. Park MJ, Jo JH, Park D, Lee DS, Park JM (2010) Comprehensive study on two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost effective molasses. Int J Hydrogen Energy 35:6194–6202CrossRefGoogle Scholar
  118. Pavan P, Battistoni P, Mata-Alvarez J, Cecchi F (2000) Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Sci Technol 41(3):75–81Google Scholar
  119. Polprasert C (2007) Organic waste recycling technology and management, 3rd edn. IWA Pb. Co. ISBN 184339121 XGoogle Scholar
  120. Preethu DC, Bhanu Prakash BNUH, Srinivasamurthy CA, Vasanthi BG (2007) Maturity indices and index to evaluate the quality of compost of coffee waste blended with other organic waste. In: Proceeding of international conference on sustainable solid waste management, Chennai, India, pp 270–275Google Scholar
  121. Raven RPJM, Gregersen KH (2007) Biogas plants in Denmark: successes and setbacks. Renewa Sustain Energy Rev 11:116–132CrossRefGoogle Scholar
  122. Rintala JA, Ahring BK (1994) Thermophilic anaerobic digestion of source-sorted household solid waste: the effects of enzyme additions. Appl Microbiol Biotechnol 40(6):916–919CrossRefGoogle Scholar
  123. Rodriguez C, Hiligsmann S, Ongena M, Thonart P, Charlier R (2005) Development of an enzymatic assay for the determination of cellulose bioavailability in municipal solid waste. Biodegradation 16(5):415–422CrossRefGoogle Scholar
  124. Romano RT, Zhang R, Teter S, McGarvey JA (2009) The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat grass. Bioresour Technol 100(20):4564–4571CrossRefGoogle Scholar
  125. Rulkens W (2008) Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels 22(9–15):9CrossRefGoogle Scholar
  126. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  127. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefGoogle Scholar
  128. Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:167–178CrossRefGoogle Scholar
  129. Sharma VK, Testa C, Lastella G, Cornacchia G, Comparato MP (2000) Inclined plug flow reactor for anaerobic digestion of semi-solid waste. Appl Energy 65:173–185CrossRefGoogle Scholar
  130. Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvements on anaerobic digestion of waste biomass. Biotechnol Lett 23(18):1463–1466CrossRefGoogle Scholar
  131. Straka F, Jenicek P, Zabranska J, Dohanyos M, Kuncarova M (2007) Anaerobic fermentation of biomass and wastes with respect to sulfur and nitrogen contents in treated materials. In: Proceeding of 11th international waste management and landfill symposium, Cagliari, Italy, 1–5 Oct 2007Google Scholar
  132. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  133. Supaphol S, Jenkins SN, Intomo P, Waite IS, O’Donnell AG (2011) Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresour Technol 102(5):4021–4027CrossRefGoogle Scholar
  134. Ten Brummeler E (2000) Full scale experience with the BIOCEL process. Water Sci Technol 41:299–304Google Scholar
  135. Tumutegyereize P, Muranga FI, Kawongolo E, Nabugoomu F (2011) Optimization of biogas production from banana peels: effect of particle size on methane yield. Afr J Biotechnol 10(79):18243–18251CrossRefGoogle Scholar
  136. Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B (2000) Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng ASCE 126:1076–1081CrossRefGoogle Scholar
  137. Visvanathan C (2009) Chapter 4—Bioenergy production from organic fraction of municipal solid waste (OFMSW) through dry anaerobic digestion. In: Khanal et al (ed) Bioenergy and biofuels from biowastes and biomass. ASCE, pp 71–87Google Scholar
  138. Wagland ST, Tyrrel SF, Godley AR, Smith R (2009) Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Manag 29(3):1218–1226CrossRefGoogle Scholar
  139. Walker L, Charles W, Cord-Ruwisch R (2006) Performance of a laboratory-scale DiCOM reactor—a novel hybrid aerobic/anaerobic municipal solid waste treatment process. In: Kraft E et al (eds) Proceedings of the international conference ORBIT, 2006, biological waste management: from local to global, 13–15th Sept, Weimer, Germany, Part 3, pp 317–326Google Scholar
  140. Walker L, Charles W, Cord-Ruwisch R (2009) Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour Technol 100(16):3799–3807CrossRefGoogle Scholar
  141. Walker L, Cord-Ruwisch R, Sciberras S (2012) Performance of a commercial-scale DiCOM™ demonstration facility treating mixed municipal solid waste in comparison with laboratory-scale data. Bioresour Technol. doi: 10.1016/j.biortech.2011.12.079 Google Scholar
  142. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940CrossRefGoogle Scholar
  143. Weiland P (2006) State of the art of solid-state digestion–recent developments. In: Rohstoffe FN (ed) Solid-state digestion–state of the art and further R&D requirements, vol 24. Gulzower Fachgespräche, pp 22–38Google Scholar
  144. Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 35(5):1613–1622CrossRefGoogle Scholar
  145. Xu SY, Lam HP, Karthikeyan OP, Wong JWC (2011) Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: effect of pH and bulking agent. Bioresour Technol 102(4):3702–3708CrossRefGoogle Scholar
  146. Xu SY, Karthikeyan OP, Selvam A, Wong JWC (2012) Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bioresour Technol. doi: 10.1016/j.biortech.2011.12.059 Google Scholar
  147. Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y (2011) Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. J Biosci Bioeng 111(3):312–319CrossRefGoogle Scholar
  148. Yadvika Santosh, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques- a review. Bioresour Technol 95:1–10CrossRefGoogle Scholar
  149. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158CrossRefGoogle Scholar
  150. Zeshan, Karthikeyan OP, Visvanathan C (2012) Effect of C/N rate and ammonia-N accumulation in a pilot scale thermophilic dry anaerobic digester. Bioresour Technol 113:294–302Google Scholar
  151. Zhang R, Zhang Z (1999) Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresour Technol 68:235–245CrossRefGoogle Scholar
  152. Zhang Y, Banks CJ, Heaven S (2012) Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol
  153. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101:7523–7528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering, Minerals, Metals and Materials Technology Centre (M3TC)National University of SingaporeSingaporeSingapore
  2. 2.Environmental Engineering and Management, School of Environment, Resources and DevelopmentAsian Institute of TechnologyKlong Luang, BangkokThailand

Personalised recommendations