Germanium: environmental occurrence, importance and speciation

  • Erwin Rosenberg
Review Paper


This review discusses the various aspects of the bio-geochemistry of germanium, and of its technological, economical and environmental importance. Despite the relatively low annual production and consumption of this semi-metal (ca. 80 metric tons/a) there are important technological applications of this element in the semiconductor, infrared optics and fibre optics/telecommunication industries. A small, but not insignificant fraction of this element is used for the production of pharmaceuticals and nutritional supplements, although its actual merits have not been fully demonstrated yet, while they are opposed to chronic toxicity of the element when being administrated at relatively high doses for an extended period of time. Neither the exact mechanism of action in the case of cancer treatment or the treatment of infectious diseases is known, nor the reason for the toxicity of inorganic species of this element. In plants, Ge can partially substitute for B in the case of boron deficiency, although deficiency symptoms are still seen with a lag period of ca. one to three weeks. In biogeochemical respect, germanium and silicon react very similar, as if Ge were a very heavy isotope of Si. Their molar ratio is typically in the order of 0.6 × 10−6, with significant deviations only where germanium is complexed and transported, e.g., by humic-rich waters. Germanium is a very conservative element in biogeochemical terms: It hardly shows involvement in any biogeochemical reaction cycles and is mainly present in the form of complexes or hydroxo-compounds of the tetravalent germanium. The only naturally occurring organogermanium compounds are mono- and dimethylgermanium which are believed to be formed by microbiological activity in continental zones containing Ge-rich minerals, and then are leached into rivers, and finally into the open sea. It becomes evident that, although very sophisticated technological uses of germanium exist, a better understanding of its biogeochemical importance, cycling and reactivity must still be developed.


Germanium Methylgermanium Dimethylgermanium Biogeochemical cycling Biomethylation Ge-132 Germanium sesquioxide Semiconductor industry Recycling Speciation 


  1. Adams JH, Thomas D (1994) Germanium and germanium compounds. In: Kirk-Othmer (ed) Encyclopedia of chemical tchnology, vol 12, 4th edn. Wiley, New York, pp 540–555Google Scholar
  2. Arnorsson S (1984) Germanium in Islandic geothermal systems. Geochim Cosmochim Acta 48:2482–2502. doi: 10.1016/0016-7037(84)90300-4 Google Scholar
  3. Arroyo F, Fernández-Pereira C (2008) Hydrometallurgical recovery of germanium from coal gasification fly ash solvent extraction method. Ind Eng Chem Res 47:3186–3191. doi: 10.1021/ie7016948 Google Scholar
  4. Asai K (1977) Organic germanium. A Medical Godsend, KogakushaGoogle Scholar
  5. Asai K (1980) Miracle cure organic Germanium. Japan publications (out of print). Accessed May 2008
  6. Asai K, Makabe K (1971, 1972) bis-Carboxyethyl germanium sesquioxide and process for preparing same. Japanese patent JP46-2498, 1971, and US Patent US3689516, 1972Google Scholar
  7. ASTM (1980) Infrared absorption analysis of impurities in single crystal semiconductor materials. ASTM standard F120–75, American Society for Materials Testing. Annual Book of ASTM Standards, PhiladelphiaGoogle Scholar
  8. Ayres RU, Holmberg J, Anders B (2001) Materials and the global environment: waste mining in the 21st century. MRS Bull Accessed June 2001
  9. Azam F (1974) Silicic acid uptake in diatoms studies with [68Ge] germanic acid as tracer. Planta 121:205–212. doi: 10.1007/BF00389321 Google Scholar
  10. Azam F, Hemmingsens BB, Volcani BE (1973) Germanium incoporation into the silica of diatom cell walls. Arch Mikrobiol 92:11–20. doi: 10.1007/BF00409507 Google Scholar
  11. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213. doi 10.1007/s10311-008-0159-9 Google Scholar
  12. Baukov YI, Tandura SN (2002) Hypervalent compounds of organic germanium, tin and lead derivatives. In: Rappoport Z (ed) Organic germanium, tin and lead compounds, vol 2. Wiley, New York, pp 963–1239Google Scholar
  13. Becker JS (2005) Recent developments in isotope analysis by advanced mass spectrometric techniques. J Anal At Spectrom 20:1173–1184. doi: 10.1039/b508895j Google Scholar
  14. Bernstein LR (1985) Germanium geochemistry and mineralogy. Geochim Cosmochim Acta 49:2409–2422. doi: 10.1016/0016-7037(85)90241-8 Google Scholar
  15. BgVV, Bundesamt für gesundheitlichen Verbraucherschutz und Veterinärmedizin (2000) BgVV warnt vor dem Verzehr von Germanium-132 Kapseln. Umweltmed Forsch Prax 5:294Google Scholar
  16. Blecker SW, King SL, Derry LA, Chadwick OA, Ippolito JA, Kelly EF (2007) The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochem 86:189–199. doi: 10.1007/s10533-007-9154-7 Google Scholar
  17. Bowen HJM (1996) Trace elements in biochemistry. Academic, LondonGoogle Scholar
  18. Braman RS, Tompkins MA (1978) Atomic emission spectrometric determination of antimony, germanium, and methylgermanium. Anal Chem 50:1088–1093. doi: 10.1021/ac50030a021 Google Scholar
  19. Brown RD Jr (2005) USGS mineral commodity profiles: germanium. Reston, VirginiaGoogle Scholar
  20. Brown JC, Jones WE (1972) Effect of germanium on utilization of boron in tomato (Lycopersicon esculentum Mill.). Plant Physiol 49:651–653Google Scholar
  21. Bruland KW (1983) Trace elements in sea water. In: Riley JP, Chester R (eds) Chemcal oceanography, vol 8. Academic, London, pp 180–182Google Scholar
  22. Célariès B, Gielen M, de Vos D, Rima G (2003) In vitro antitumour activity of some organogermanium radioprotectors. Appl Organomet Chem 17:191–193. doi: 10.1002/aoc.403 Google Scholar
  23. Challenger F (1945) Biological methylation. Chem Rev 36:315–361. doi: 10.1021/cr60115a003 Google Scholar
  24. Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–26. doi: 10.1021/cr010210+ Google Scholar
  25. Chen R, Liu L, Zhang Z (1995) Synthesis of pentacoordinated germanium compounds containing a phosphonyl group. Heteroatom Chem 6:503–506. doi: 10.1002/hc.520060603 Google Scholar
  26. Claeys C, Simoen E (2007) Germanium-based technologies. From material to devices. Elsevier, AmsterdamGoogle Scholar
  27. Criaud A, Fouillac AM (1986) Etude des eaux thermominerales carbgazeuses du Massif Central Francais: II. Comportement de quelques metaux en trace, de l’arsenic, de l’antimoine et du germanium. Geochim Cosmochim Acta 50:1573–1582. (in French). doi: 10.1016/0016-7037(86)90120-1
  28. Czochralski J (1917) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z Phys Chem 92:219–221Google Scholar
  29. Dasch EJ (1996) Encyclopedia of earth sciences, vol I. Macmillan, New York, p 563Google Scholar
  30. DeArgollo R, Schilling J-G (1978) Ge-Si and Ga-Al fractionation in Hawaiian volcanic rocks. Geochim Cosmochim Acta 42:623–630. doi: 10.1016/0016-7037(78)90007-8 Google Scholar
  31. Depuydt B, Theuwis A, Romandi I (2006) Germanium: from the first application of Czochralski crystal growth to large diameter dislocation-free wafers. Mater Sci Semicond Process 9:437–443. doi: 10.1016/j.mssp.2006.08.002 Google Scholar
  32. Deutsche Forschungsgemeinschaft (2005) MAK- und BAT-Werte-Liste 2005. Wiley-VCH, WeinheimGoogle Scholar
  33. Dorr RT, van Hoff DD (1994) Cancer chemotherapy handbook, vol 2. Appleton and Lange, NorwalkGoogle Scholar
  34. Dudley HC, Wallace EJ (1952) Pharmacological studies of radiogermanium (Ge71). Arch Ind Hyg Occup Med 6:263–270Google Scholar
  35. El Wardani SA (1957) On the geochemistry of germanium. Geochim Cosmochim Acta 10:321–322. doi: 10.1016/0016-7037(56)90020-5 Google Scholar
  36. Emmerling G, Schaller KH, Valentin H (1986) Actual knowledge on germanium compounds and feasibility of quantitative determination in occupational medicine and toxicology. Zbl Arbeitsmed 36:258–265Google Scholar
  37. European Commission (2005) Frequently asked questions on directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS) and directive 2002/96/EC on waste electrical and electronic equipment (WEEE). Available at Accessed May 2008
  38. Faure G (1998) Principles and applications of geochemistry, 2nd edn. Prentice Hall, New Jersey, p 928Google Scholar
  39. Fisher BR, Goering PL, Fowler PA (1991) Germanium. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 921–929Google Scholar
  40. Francotte J, Moreau J, Ottenburgs R, Levy C (1965) Briartite, Cu2(Fe, Zn)GeS4, a new mineral. Bull Soc Franc Miner Crist 88:432–437Google Scholar
  41. Froelich PN, Andreae MO (1981) The marine geochemistry of germanium: ekasilicon. Science 213:205–207. doi: 10.1126/science.213.4504.205 Google Scholar
  42. Froelich PN, Hambrick AS, Kaul LW, Byrd JT, Lecointe O (1985a) Geochemical behaviour of inorganic germanium in an unperturbated estuary. Geochim Cosmochim Acta 49:519–524. doi: 10.1016/0016-7037(85)90043-2 Google Scholar
  43. Froelich PN, Hambrick GA, Andreae MO, Mortlock RA, Edmond JM (1985b) The geochemistry of inorganic germanium in natural waters. J Geophys Res 90:1133–1141. doi: 10.1029/JC090iC01p01133 Google Scholar
  44. Froelich PN, Mortlock RA, Shemsh A (1989) Inorganic germanium and silica in the Indian Ocean: biological fractionation during (Ge/Si) opal formation. Global Biogeochem Cycle 3:79–88Google Scholar
  45. Froelich PN, Blanc V, Mortlock RA, Chillrud SN, Dunstan W, Udomkit A, Peng TH (1992) River fluxes of dissolved silica to the ocean were higher during the glacials: Ge/Si in diatoms, rivers, and oceans. Paleoceanography 7:739–768. doi: 10.1029/92PA02090 Google Scholar
  46. Galy A, Pomiès C, Day JA, Pokrovsky OS, Schott J (2003) High precision measurement of germanium isotope ratio variations by multiple collector—inductively coupled plasma mass spectrometry. J Anal At Spectrom 18:115–119. doi: 10.1039/b210233a Google Scholar
  47. Gerber GB (1988) Germanium. In: Seiler HG, Sigel H, Sigel A (eds) Handbook on toxicity of inorganic compounds. Marcel Dekker, New YorkGoogle Scholar
  48. Gerber GB, Léonard A (1997) Mutagenicity, carcinogenicity and teratogenicity of germanium compounds. Mutat Res 387:141–146. doi: 10.1016/S1383-5742(97)00034-3 Google Scholar
  49. Ginseng UP (2008) Ginseng & Germanium. Available at Accessed May 2008
  50. Goleva GA, Vorobyeva IN (1967) The migration of germanium in the ground waters of ore deposits. Geochem Int 4:809–817Google Scholar
  51. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon, OxfordGoogle Scholar
  52. Haller EE (2006) Germanium: from its discovery to SiGe devices. Mater Sci Semicond Process 9:408–422. doi: 10.1016/j.mssp.2006.08.063 Google Scholar
  53. Haller E, Hansen W, Luke P, Murray R, Jarrel B (1982) Hydrogen concentration and distribution in high-purity germanium crystals. IEEE Trans Nucl Sci NS 29:738–744. doi: 10.1109/TNS.1982.4335948 Google Scholar
  54. Hambrick GA, Froelich PN Jr, Andreae MO, Lewis BL (1984) Determination of methylgermanium species in natural waters by graphite furnace atomic absorption spectrometry with hydride generation. Anal Chem 56:421–424. doi: 10.1021/ac00267a027 Google Scholar
  55. Hansen W, Haller E, Luke P (1982) Carbon in high-purity germanium. IEEE Trans Nucl Sci NS 29:745–750. doi: 10.1109/TNS.1982.4335948 Google Scholar
  56. Haranczyk C (1975) Morozeviczite and polkovicite, typo-chemical minerals of Mesozoic mineralization of the Fore-Sudenten monocline. Rudy Metalle 20:288–293 (in Polish)Google Scholar
  57. Hernández-Expósito A, Chimenos JM, Fernández JM, Font O, Querol X, Coca P, García Peña F (2006) Ion flotation of germanium from fly ash aqueous leachates. Chem Eng J 118:69–75. doi:  10.1016/j.cej.2006.01.012 Google Scholar
  58. Hirner AV, Feldmann J, Krupp E, Grümping R, Goguel R, Cullen WR (1998) Metal(loid)organic compounds in geothermal gases and waters. Org Geochem 29:1765–1778. doi: 10.1016/S0146-6380(98)00153-3 Google Scholar
  59. Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium—a review. Ore Geol Rev 30:145–180. doi: 10.1016/j.oregeorev.2005.07.034 Google Scholar
  60. Hollemann AF, Wiberg E, Wiberg N (1995) Lehrbuch der anorganischen Chemie, 101st edn, de Gruyter, BerlinGoogle Scholar
  61. Housecroft CE, Sharpe AG (2006) Inorganic Chemistry. 3E, 3rd edn, Pearsons Education, Harlow, Essex; UK, Ch. 14Google Scholar
  62. Ignatovich L, Zarina D, Shestakova I, Germane S, Lukevics E (2002) Synthesis and biological activity of silyl- and germylsubstituted trifluoroacetylfurans. Met Based Drugs 8:211–214. doi: 10.1155/MBD.2001.211 Google Scholar
  63. Ikemoto K, Kobayashi M, Fukumoto T, Morimatsu M, Pollard RB, Suzuki F (1996) 2-Carboxyethylgermanium sesquioxide, a synthetic organogermanium compound, as an inducer of contrasuppressor T cells. Cell Molecul Life Sci 52:159–166. doi: 10.1007/BF01923363 CrossRefGoogle Scholar
  64. Ishii T, Matsunaga T, Iwai H, Satoh S, Taoshita J (2002) Germanium does not substitute for boron in cross-linking of Rhamnogalacturonan II in pumpkin cell walls. Plant Physiol 130:1967–1973. doi: 10.1104/pp009514 Google Scholar
  65. Jorgenson JD (2001) Germanium recycling in the United States in 2000, U.S. Geological Survey Circular 1196–V. Available at Accessed May 2008
  66. Kaars Sijpesteijn A, Rijkens F, Luijten JGA, Willemsens LC (1962) On the antifungal and antibacterial activity of some trisubstituted organogermanium, organotin and organolead compounds. Antonie Van Leeuwenhoek 28:346–356. doi: 10.1007/BF02538746 Google Scholar
  67. Kaplan BJ, Parish WW, Andrus GM, Simpson JSA, Field CJ (2004a) Germane facts. About germanium sesquioxide: I. Chemistry and anticancer properties. J Altern Complement Med N Y NY 10:337–344. doi: 10.1089/107555304323062329 Google Scholar
  68. Kaplan BJ, Andrus GM, Parish WW (2004b) Germane facts. About germanium sesquioxide: Scientific error and misrepresentation. J Altern Complement Med N Y NY 10:345–348. doi: 10.1089/10755530432 Google Scholar
  69. Karlov SS, Zaitseva GS (2001) Germatranes and their analogs: synthesis, structure and reactivity. Chem Heterocycl Compd 37:1325–1357. doi: 10.1023/A:1017942932503 Google Scholar
  70. Kluska M (2008) Some aspects of the analysis of biologically active organogermanium substances. Crit Rev Anal Chem 38:84–92. doi: 10.1080/10408340701804459 Google Scholar
  71. Koga A (1967) Germanium, molybdenum, copper and zinc in New Zealand thermal waters. N Z J Sci 10:428–446Google Scholar
  72. Kraynov SR (1967) Geochemistry of germanium in the thermal carbonate waters (illustrated by examples from the Pamirs and Greater Caucasus). Geochem Int 4:309–320Google Scholar
  73. Kresimon J, Grüter U, Hirner A (2001) HG/LT-GC/ICP-MS coupling for identification of metal(loid) species in human urine after fish consumption. Fresenius’ J Anal Chem 371:586–590. doi: 10.1007/s002160101087 Google Scholar
  74. Kühn R, Birett K (1980) Merkblätter Gefährliche Arbeitsstoffe, vol. 5, Blatt Nr.G06, Verlag Moderne Industrie, MünchenGoogle Scholar
  75. Kurtz AC, Derry LA, Chadwick OA (2002) Germanium-silicon fractionation in the weathering environment. Geochim Cosmochim Acta 66:1525–1537. doi: 10.1016/S0016-7037(01)00869-9 Google Scholar
  76. Landolt-Börnstein (2002) Group IV Elements, IV-IV and III-V Compounds. Part b—Electronic, Transport, Optical and Other Properties. Madelung O, Rössler U, Schulz M (eds) Springer, Heidelberg, vol 41A1b, pp 1–10Google Scholar
  77. Landon RE, Mogilnor AH (1933) Colusite, a new mineral of the sphalerite group. Am Mineral 18:528–533Google Scholar
  78. Laznicka P (1999) Quantitative relationships among giant deposits of metals. Econ Geol 94:455–473Google Scholar
  79. Lewis BL, Mayer HP (1993) Metal ions in biological systems. In: Sigel A (ed) Biological properties of metal alkyl derivatives. Marcel Dekker, Basel, pp 79–99Google Scholar
  80. Lewis BL, Andreae MO, Froelich PN (1988a) The biogeochemistry of methylgermanium spcies: a review. In: Craig PJ, Glocking F (eds) The biological alkylation of heavy metals. The Royal Society of Chemistry, London, pp 77–91Google Scholar
  81. Lewis BL, Andreae MO, Froelich PN, Mortlock RA (1988b) A review of the biogeochemistry of germanium in natural waters. Sci Total Environ 73:107–120. doi: 10.1016/0048-9697(88)90191-X Google Scholar
  82. Lewis BL, Andreae MO, Froelich PN (1989) Sources and sinks of methylgermanium in natural waters. Mar Chem 27:179–200. doi: 10.1016/0304-4203(89)90047-9 Google Scholar
  83. Lombaard AF, Günzel A, Innes A, Krüger TL (1986) Tsumeb lead–copper–zinc–silver deposit, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa, vol 2. Geol Soc South Africa, Johannesburg, pp 1761–1782Google Scholar
  84. Lucent Technologies (1997) Innovative germanium-recovery process from Bell Labs is economically and environmentally friendly. News release, Lucent Technologies, Atlanta, October 16, p 1Google Scholar
  85. Lück BE, Mann H, Melzer H, Dunemann L, Bergerow J (1999) Renal and other organ failure caused by germanium intoxication. Nephrol Dial Transplant 14:2464–2468Google Scholar
  86. Lukevics E, Ignatovich L (1992) Comparative study of the biological activity of organosilicon and organogermanium compounds. Appl Organomet Chem 6:113–126. doi: 10.1002/aoc.590060204 Google Scholar
  87. Lukevics E, Ignatovich L (2002) Biological activity of organogermanium compounds. In: Rappoport Z (ed) The chemistry of organic germanium, tin and lead compounds. Wiley, Chichester, pp 1653–1683Google Scholar
  88. Lukevics E, Ignatovich L (2005) 32Ge biological activity of organogermanium compounds. In: Gielen M, Tiekink ERT (eds) Metallotherapeutic drugs and metal-based diagnostic agents. Wiley, Chichester, pp 279–295Google Scholar
  89. Lukevics E, Germane S, Ignatovich L (1992) Neurotropic activity of organogermanium compounds. Appl Organomet Chem 6:543–564. doi: 10.1002/aoc.590060702 Google Scholar
  90. Market Prices (2003) Rare earths and specialty metals market prices. Internet source, August, 1 p. Accessed May 2008Google Scholar
  91. McIllrath WJ, Skok J (1966) Substitution of germanium for boron in plant growth. Plant Physiol 41:1209–1212Google Scholar
  92. McMahon M, Regan F, Hughes H (2007) The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy. Food Chem 97:411–417. doi: 10.1016/j.foodchem.2005.05.018 Google Scholar
  93. Mehard CW, Volcani BE (1975) Similarity in uptake and retention of trace amounts of 31Si and 68Ge in rat tissues and cell organelles. Bioinorg Chem 5:107–124. doi: 10.1016/S0006-3061(00)80055-1 Google Scholar
  94. Mehard CW, Sullivan CW, Azam F, Volcani BE (1974) Role of silicon in diatom metabolism: IV Subcellular localization of silicon and germanium in Nitzschia alba and Cylindrotheca fusiformis. Physiol Plant 30:265–272. doi: 10.1111/j.1399-3054.1974.tb03654.x Google Scholar
  95. Melcher F (2003) The Otavi mountain land in Namibia: Tsumeb, germanium and snowball earth. Mitt Österr Mineralog Ges 148:413–435Google Scholar
  96. Mendelejew D (1871) Die periodische Gesetzmäßigkeit der chemischen Elemente. Ann Chem Pharm Leipzig 871(Suppl VIII):133 Google Scholar
  97. Mironov VF, Berliner EM, Gar TK (1967) Reaction of trichlorogermane with acrylic acid and its derivatives. Zh Obshch Khim 37:962 (in Russian)Google Scholar
  98. Mironov VF, Berliner EM, Gar TK, Rybakov EA (1968) Reaction of trichlorogermane with unsaturated carboxylic acids. Zh Obshch Khim 38:2292–2300 (in Russian)Google Scholar
  99. Morita H, Shimomura S, Odagawa K, Saito S, Sakigawa C, Sato H (1986) Determination of germanium and some other elements in hair and toe nail from persons exposed and unexposed to germanium. Sci Total Environ 58:237–242. doi: 10.1016/0048-9697(86)90203-2 Google Scholar
  100. Mortlock RA, Froelich PN (1986) Hydrothermal germanium over the southern East Pacific Rise. Science 231:43–45. doi: 10.1126/science.231.4733.43 Google Scholar
  101. Mortlock RA, Froelich PN (1987) Continental weathering of germanium: Ge/Si in the global river discharge. Geochim Cosmochim Acta 51:2075–2082. doi: 10.1016/0016-7037(87)90257-2 Google Scholar
  102. Moskalyk RR (2004) Review of germanium processing worldwide. Miner Eng 17:393–402. doi: 10.1016/j.mineng.2003.11.014 Google Scholar
  103. MSDS (2005) Material safety data sheet germanium tetrachloride, Available at Accessed May 2008
  104. Murnane RJ, Stallard RF (1990) Germanium and silicon in rivers of the Orinoco drainage basin. Nature 344:749–752. doi: 10.1038/344749a0 Google Scholar
  105. Nagata N, Yoneyama T, Yanagida K, Ushio K, Yanagihara S, Matsubara O, Eishi Y (1985) Accumulation of germanium in the tissues of a long-term user of germanium preparation died of acute renal failure. J Toxicol Sci 10:333–341Google Scholar
  106. Nikolic M, Nikolic N, Liang YC, Kirkby EA, Romheld V (2007) Germanium-68 as an adequate tracer for silicon transport in characterization of silicon uptake in different crop species. Plant Physiol 143:495–503. doi: 10.1104/pp106090845 Google Scholar
  107. Nuriyev AN, Lapshina NF, Dzhabarova ZA (1968) Germanium in oil, water and rocks of oil deposits. Geochem Int 5:911–915Google Scholar
  108. Omae I (1999) Applications of organometallic compounds. Wiley, chichester, pp 165–184Google Scholar
  109. Parish D (2005) Germanium sesquioxide, organic germanium, Bis(2-Carboxyethylgermanium)sesquioxide, Available at Accessed May 2008
  110. Penfield SL (1984) Canfieldite, a new germanium mineral. Am J Sci 46:107–113Google Scholar
  111. Pokrovski GS, Schott J (1998a) Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters. Geochim Cosmochim Acta 62:3413–3428. doi: 10.1016/S0016-7037(98)00249-X Google Scholar
  112. Pokrovski GS, Schott J (1998b) Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350°C: implications for the behaviour of germanium and the Ge/Si ratio in hydrothermal fluids. Geochim Cosmochim Acta 62:1631–1642. doi: 10.1016/S0016-7037(98)00081-7 Google Scholar
  113. Pokrovsky OS, Schott J (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem Geol 190:141–179. doi: 10.1016/S0009-2541(02)00115-8 Google Scholar
  114. Pokrovski GS, Martin F, Hazemann J-L, Schott J (2000) An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution. Chem Geol 163:151–165. doi: 10.1016/S0009-2541(99)00102-3 Google Scholar
  115. Pokrovsky OS, Pokrovski GS, Schott J, Galy A (2006) Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization. Geochim Cosmochim Acta 70:3325–3341. doi: 10.1016/j.gca.2006.04.012 Google Scholar
  116. Pufahl O (1922) Germanite, a germanium mineral and ore from Tsumeb, Southwest Africa. Metall Erz 19:324Google Scholar
  117. Putz H, Paar WH, Topa D, Makovický E, Roberts AC (2006) Catamarcait, Cu6GeWS8, a new species of germanium–tungsten-sulphide from Capillitas, Catamarca, Argentinia: description, paragenesis and crystal structure. Can Mineral 44:1481–1497. doi: 10.2113/gscanmin.44.6.1481 Google Scholar
  118. Reimann C, de Caritat P (1998) Chemical elements in the environment. Springer, Berlin, p 398Google Scholar
  119. Rinkevich B (1986) Does germanium interact with radular morphogenesis and biomineralization in the limpet Lottia gigantea? Comp Biochem Physiol C83:137–141Google Scholar
  120. Riviere P, Riviere-Baudet M, Satge J (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry. Pergamon Press, Oxford, vol 2, 399 ppGoogle Scholar
  121. Rochow EG (1947) Organic compounds of germanium. The direct synthesis from elementary germanium. J Am Chem Soc 69:1729–1731. doi: 10.1021/ja01199a046 Google Scholar
  122. Roels HA, Buchet J-P (2001) Determination of germanium in urine and its usefulness for biomonitoring of inhalation exposure to inorganic germanium in the occupational setting. J Environ Monit 3:67–73. doi: 10.1039/b007132n Google Scholar
  123. Rosenberg E (2007) Environmental speciation of germanium. Ecol Chem Eng 14:707–732Google Scholar
  124. Rosenfeld G, Wallace EJ (1953) Studies of the acute and chronic toxicity of germanium. AMA Arch Ind Health 8:466–479Google Scholar
  125. Rouxel O, Galy A, Elderfield H (2006) Germanium isotopic variations in igneous rocks and marine sediments. Geochim Cosmochim Acta 70:3387–3400. doi: 10.1016/j.gca.2006.04.025 Google Scholar
  126. Santosa SJ, Wada S, Mokudai H, Tanaka S (1997) The contrasting behaviour of arsenic and germanium species in seawater. Appl Organomet Chem 11:403–414. doi:10.1002/(SICI)1099-0739(199705)11:5<403::AID-AOC596>3.0.CO;2-4Google Scholar
  127. Schauss AG (1991) Nephrotoxicity in humans by the ultratrace element germanium. Ren Fail 13:1–4. doi: 10.3109/08860229109022139 Google Scholar
  128. Schroeder HA, Balassa JJ (1967a) Arsenic, germanium, tin and vanadium in mice: effects on growth, survival and tissue levels. J Nutr 92:245–252Google Scholar
  129. Schroeder HA, Balassa JJ (1967b) Abnormal trace metal in man: germanium. J Chronic Dis 20:221–224Google Scholar
  130. Scoyer J, Guislain H, Wolf HU (2005) Germanium and germanium compounds. In: Ullmann’s encyclopedia of industrial chemistry. 5th edn, Wiley-VCH, Weinheim, (Electronic edition)Google Scholar
  131. Scribner AM, Kurtz AC, Chadwick OA (2006) Germanium sequestration by soil: targeting the roles of secondary clays and Fe-oxyhydroxides. Earth Planet Sci Lett 243:760–770. doi: 10.1016/j.epsl.2006.01.051 Google Scholar
  132. Selina AA, Karlov SS, Zaitseva GS (2006) Metallocanes of group 14 elements. 1. derivatives of silicon and germanium. (Review). Chem Heterocycl Compd 42:1518–1556. doi: 10.1007/s10593-006-0278-9
  133. Shangguan G, Xing F, Qu X, Mao J, Zhao D, Zhaob X, Ren J (2005) DNA binding specificity and cytotoxicity of novel antitumor agent Ge132 derivatives. Bioorg Med Chem Lett 15:2962–2965. doi: 10.1016/j.bmcl.2005.04.053 Google Scholar
  134. Simpson TL, Garrone R, Mazzorana M (1983) Interaction of germanium (Ge) with biosilicification in the freshwater sponge Ephydatia mülleri: evidence of localized membrane domains in the silicalemma. J Ultrastruct Res 85:159–174. doi: 10.1016/S0022-5320(83)90104-1 Google Scholar
  135. Skok J (1957) The substitution of complexing substances for boron in plant growth. Plant Physiol 32:308–312Google Scholar
  136. Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79. doi: 10.1016/0147-619X(92)90008-X Google Scholar
  137. Spectrum (2003) Chemical fact sheet for germanium. Spectrum Laboratories, Ft. Lauderdale, FL, p 4Google Scholar
  138. Spiridonov EM (2003) Maikainite Cu20(Fe, Cu)6Mo2Ge6S32 and ovamboite Cu20(Fe, Cu, Zn)6W2Ge6S32: new minerals in massive sulfide base metal ores. Dokl Earth Sci 393:1329–1332 (in Russian)Google Scholar
  139. Spiridonov EM, Kachalovskaya VM, Kovachev VV, Krapiva LY (1992) Germanocolusite Cu26V2(Ge, As)6S32—a new mineral. Vestnik Moskovskogo Universiteta, Ser. 4. Geologiya 6:50–54 (in Russian)Google Scholar
  140. Strunz H, Tennyson C (1967) Schaurteit, ein neues Germaniun-Mineral von Tsumeb/SW-Afrika und seine Paragenese. In: Festschrift Dr. Werner Schaurte. Bauer H, Schaurte W (eds) Neuss/Rhein (Germany), pp 33–47 (in German)Google Scholar
  141. Strunz H, Sohnge G, Geier BH (1958) Stottite, a new germanium mineral, and its paragenesis at Tsumeb. Neues Jahrb f Mineralog, Monatsh pp 85–96 (in German)Google Scholar
  142. Swennen B, Mallants A, Roels HA, Buchet JP, Bernard A, Lauwerys RR, Lison D (2000) Epidemiological survey of workers exposed to inorganic germanium compounds. Occup Environ Med 57:242–248. doi: 10.1136/oem.57.4.242 Google Scholar
  143. Takakusaki K, Kakimoto N, Takeuchi Y, Tomoda S (1983) Synthesis of germanium derivatives of uracil and 5-fluorouracil. Tetrahedron Lett 24:1707–1710. doi: 10.1016/S0040-4039(00)81750-5 Google Scholar
  144. Takeuchi Y, Nishikawa M, Tanaka K, Yamamoto G (2001) Dynamic behavior of pentacoordinate organogermanium carboxylic acids and their pyridinium salts. Heteroatom Chem 12:451–456. doi: 10.1002/hc.1067 Google Scholar
  145. Takeuchi Y, Nishikawa M, Yamamoto H (2004) High-resolution solid-state 73Ge NMR spectra of hexacoordinated germanium compounds. Magn Reson Chem 42:907–909. doi: 10.1002/mrc.1486 Google Scholar
  146. Tao S-H, Bolger PM (1997) Hazard assessment of germanium supplements. Regul Toxicol Pharmacol 25:211–219. doi: 10.1006/rtph.1997.1098 Google Scholar
  147. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312Google Scholar
  148. Thayer JS (1987) Germapharmaca: some recent studies on biologically active organogermanium compounds. Appl Organomet Chem 1:227–234. doi: 10.1002/aoc.590010303 Google Scholar
  149. Thayer JS (2002) Biological methylation of less-studied elements. Appl Organomet Chem 16:677–691. doi: 10.1002/aoc.375 Google Scholar
  150. Tsutui M, Kakimoto N, Axtell DD, Oikawa H, Asai K (1976) Crystal structure of carboxyethylgermanium sesquioxide. J Am Chem Soc 98:8287–8289. doi: 10.1021/ja00441a081 Google Scholar
  151. USGS (1992) Germanium: mineral commodity summaries. January 1992. US. Geological survey. Denver, USAGoogle Scholar
  152. USGS (2000) US geological survey and US department of the interior, Germanium recycling in the United States in 2000, US. Geological Survey Circular 1196–V, internet source, 15 ppGoogle Scholar
  153. USGS (2003) Germanium: mineral commodity summaries. January 2003. US. Geological Survey, Denver, CO, USAGoogle Scholar
  154. USGS (2007a), Germanium: mineral commodity statistics. In: Kelly TD, Matos GR (comps) Historical statistics for mineral and material commodities in the United States: US. Geological Survey Data Series 140. Available at Accessed May 2008
  155. USGS (2007b) Germanium: mineral commodity summaries. January 2007. U.S. Geological Survey, Denver, CO, USA, 68–69. Available at Accessed May 2008
  156. Vaes JF (1948) La reniérite (anciennement appelée “bornite orange”) un sulfure germanifère provenant de la Mine Prince-Léopold, Kipushi (Congo Belge). Ann (Bull) Soc Géol Belgique 72: 20–32 (in French)Google Scholar
  157. van Ass HMJM, Geittner P, Gossink RG, Kuppers D, Severin PJW (1976) Manufacture of glass fibres for optical communication. Philips Techn Rev 36:182–189Google Scholar
  158. Vetter K (2007) Recent developments in the fabrication and operation of germanium detectors. Ann Rev Nucl Part Sci 57:363–404. doi: 10.1146/annurev.nucl.56.080805.140525 Google Scholar
  159. Voronkov MG, Abzaeva KA (2002) Genesis and evolution in the chemistry of organogermanium, organotin and organolead compounds. In: Rappoport Z (ed) The chemistry of organic germanium, tin and lead compounds, vol 2. Wiley, Chichester, pp 1–130Google Scholar
  160. Webster SH (1946) Volatile hydrides of toxicological importance. J Ind Hyg Toxicol 28:167–182Google Scholar
  161. Weisbach A (1886) Argyrodit, ein neues Silbererz. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. II. Band. pp 67–71Google Scholar
  162. Winkler C (1886a) Germanium, Ge, ein neues, nichtmetallisches Element. Ber Dt Chem Ges 19:210–211. doi: 10.1002/cber.18860190156 Google Scholar
  163. Winkler C (1886b) Mittheilungen über das Germanium. J Prakt Chem 34:177–229. doi: 10.1002/prac.18860340122 Google Scholar
  164. Winkler C (1887) Über das Germanium, dessen Nachweis und Bestimmung. Fresenius Z Anal Chem 26:359–364. doi: 10.1007/BF01385208 Google Scholar
  165. Wolf K-H, Küster B, Herlinger H, Tschang C-J, Schollmeyer E (1978) Metallkatalysatoren in der Herstellung von Polyäthylenterephthalat. 2. Ermittlung von Parametern zur Beschreibung der katalytischen Aktivität von Metallverbindungen in Polykondensationsreaktionen. Angew Makromol Chem 68:23–37. doi: 10.1002/apmc.1978.050680103 Google Scholar
  166. Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102. doi: 10.1016/j.oregeorev.2003.06.002 Google Scholar
  167. Yang SJ, Rafla S (1983) Effect of spirogermanium on V79 Chinese hamster cells. Am J Clin Oncol 6:331–337. doi: 10.1097/00000421-198306000-00014 Google Scholar
  168. Yashiki Y, Miyajima S, Yamada A, Konagai M (2006) Deposition and characterization of μc-Ge1-xCx thin films grown by hot-wire chemical vapor deposition using organo-germane. Thin Solid Films 501:202–205. doi: 10.1016/j.tsf.2005.07.174 Google Scholar
  169. Ysart G, Miler P, Crews H, Robb P, Baxter M, De L’Argy C, Lofthouse S, Sargent C, Harrison N (1999) Dietary exposure estimates of 30 elements from the UK Total Diet Study. Food Addit Contam 16:391–403. doi: 10.1080/026520399283876 Google Scholar
  170. Zaijun L, Jian T, Huizhen L, Xia Z, Rui Y (2007) Determination of trace amounts of germanium in food and fruit by spectrophotometry with p-methybenzeneazosalicylflurone. J Food Compost Anal 20:1–6. doi: 10.1016/j.jfca.2006.04.009 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria

Personalised recommendations