Review of characteristics of mercury speciation and mobility from areas of mercury mining in semi-arid environments

Review Paper


The speciation of mercury—including most phase minerals, secondary phases, gaseous and aqueous species—is very important for evaluating the environmental impact and mobilization of this contaminant. Mining activities produce mercury mine waste, which includes several types of material (mainly mine waste and calcines) with varying mercury content and speciation depending on the ore deposit and processing technology. The main phase minerals are cinnabar, metacinnabar, metallic Hg0, corderoite, livingstonite, calomel and schuetteite. The aqueous mobilization of mercury is controlled by complex formation, pH-Eh conditions, the primary phase mineral of mercury, and organic-matter and iron oxyhydroxide content. The possibility of colloidal transport of mercury from mine waste is influenced by the atmospheric emission of metallic Hg0 and the leaching of waste by episodic high-intensity precipitations. In these climatic conditions, mercury can be mobilized to pore water, surface water or groundwater by the dissolution of metallic Hg0 and cinnabar in acidic conditions, and by the colloidal transport. The presence of Hg-soluble phases (chlorides and oxychlorides) may enhance the mobilization of mercury. In the semi-arid conditions of the Valle del Azogue (SE Spain) the atmospheric emissions of the Hg0 present in calcines and mine waste may be significant and the dissolution of Hg0 and metal-sulfate salts during episodic runoff events may explain the mobilization of Hg, Fe, Pb, Zn and other heavy metals.


Mercury species Cinnabar Mine waste Solubility Mobilization 



This work was supported by Spanish Ministry of Science and Technology (projects REN2003-09247-C04-03 and ENE2006-13267-C05-03, under the name ‘Desarrollo de un sistema piloto de desorción térmica de suelos contaminados con mercurio’) in collaboration with the Center for Energy, Environment and Technology Research (CIEMAT).


  1. Al TA, Leybourne MI, Maprani AC, MacQuarrie KT, Dalziel JA, Fox D et al (2006) Effects of acid-sulfate weathering and cyanide-containing gold tailings on the transport and fate of mercury and other metals in Gorran Creek: Murray Brook mine, New Brunswick, Canada. Appl Geochem 21:1969–1985. doi: 10.1016/j.apgeochem.2006.08.013 CrossRefGoogle Scholar
  2. Andrews JC (2006) Mercury speciation in the environment using X-ray absorption spectroscopy. Struct Bonding 120:1–35. doi: 10.1007/430_011 CrossRefGoogle Scholar
  3. Alpers CN, Nordstrom KD (1999) Geochemical modeling of water–rock interactions in mining environments. In: Plumlee GS, Logson MJ (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques, and health issues, pp 289–323. Society of Economic Geologists, Inc., Reviews in Economic Geology, vol 6AGoogle Scholar
  4. Barnett MO, Turner RR, Singer PC (2001) Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen. Appl Geochem 16:1499–1512. doi: 10.1016/S0883-2927(01)00026-9 CrossRefGoogle Scholar
  5. Becker GF (1888) Geology of the Quicksilver deposits of the Pacific Slope with Atlas. US Geological Survey Library, Document 23442, Spanish localities, pp 27–32Google Scholar
  6. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957. doi: 10.1021/es9808200 CrossRefGoogle Scholar
  7. Bernaus A, Gaona X, Esbrí JM, Higueras P, Falkenberg G, Valiente M (2006) Microprobe techniques for speciation analysis and geochemical characterization of mine environments: the Mercury District of Almadén in Spain. Environ Sci Technol 40:4090–4095. doi: 10.1021/es052392l CrossRefGoogle Scholar
  8. Biester H, Schulz C (1997) Determination of mercury phases in contaminated soils-Hg-pyrolysis versus sequential extractions. Environ Sci Technol 31:233–239. doi: 10.1021/es960369h CrossRefGoogle Scholar
  9. Biester H, Hess A, Müller G (1997) Investigations on different mercury-phases in soils of a Hg-mining area by a temperature-controlled-pyrolysis technique. In: Reuther R (ed) Geochemical approaches for the environmental engineering of metals. Springer, Heidelberg, pp 33–43Google Scholar
  10. Biester H, Gosar M, Müller G (1999) Mercury speciation in tailings of the Idrija Mercury Mine. J Geochem Explor 65:195–204. doi: 10.1016/S0375-6742(99)00027-8 CrossRefGoogle Scholar
  11. Biester H, Gosar M, Covelli S (2000) Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija Mercury Mine, Slovenia. Environ Sci Technol 34:3330–3336. doi: 10.1021/es991334v CrossRefGoogle Scholar
  12. Biester H, Müller G, Schöler HI (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203. doi: 10.1016/S0048-9697(01)00885-3 CrossRefGoogle Scholar
  13. Bigham JM, Nordstrom DK (2000) Iron and aluminium hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals—Crystallography, geochemistry, and environmental significance, pp 351–403. Mineralogical Society of America, Reviews in Mineralogy & Geochemistry, vol 40Google Scholar
  14. Blázquez JM (1978) Economía de la Hispania Romana. Ediciones Nájera, BilbaoGoogle Scholar
  15. Churchill R, Clinkenbeard J (2003) An assessment of ecological and human health impacts of mercury in the Bay-delta Watershed. California Dept. of Conservation, California Geological Survey, Task 5C1Google Scholar
  16. Churchill RC, Meafhrel CE, Suter PJ (2004) A retrospective assessment of gold mining in the Reedy Creek sub-catchment, northeast Victoria, Australia: residual mercury contamination 100 years later. Environ Pollut 132(2):355–363. doi: 10.1016/j.envpol.2004.03.001 CrossRefGoogle Scholar
  17. Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34(4):369–403. doi: 10.3109/10408369708998098 CrossRefGoogle Scholar
  18. Craw D, Chappell D, Reay A (2000) Environmental mercury and arsenic sources in fossil hydrothermal systems, Northland, New Zealand. Environ Geol 39(8):875–887. doi: 10.1007/s002549900068 CrossRefGoogle Scholar
  19. Davis A, Bloom NS, Que Hee SS (1997) The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk Anal 17(5):557–569. doi: 10.1111/j.1539-6924.1997.tb00897.x CrossRefGoogle Scholar
  20. Dini A, Benvenuti M, Costagliola P, Lattanzi P (2001) Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy). Ore Geol Rev 18:149–167. doi: 10.1016/S0169-1368(01)00026-9 CrossRefGoogle Scholar
  21. Engle MA, Gustin MS (2002) Scaling at atmospheric mercury emissions from three naturally enriched areas: flowery Peak, Nevada, Peavine Peak, Nevada; and Long Valley Caldera, California. Sci Total Environ 290:91–104. doi: 10.1016/S0048-9697(01)01068-3 CrossRefGoogle Scholar
  22. Engle MA, Gustin MS, Zhang H (2001) Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. Atmos Environ 35:3987–3997. doi: 10.1016/S1352-2310(01)00184-4 CrossRefGoogle Scholar
  23. EPA (2001) Characterization and Eh/pH-based leaching tests of mercury containing mining wastes from the Sulfur Bank Mercury Mine, Lake County, California. EPA/600/R-02/032Google Scholar
  24. Fairbridge RW (1972) The encyclopedia of geochemistry, environmental sciences. Encyclopedia of earth sciences series, vol IV. A. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  25. Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2005) Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias, Spain. Environ Pollut 142:217–226CrossRefGoogle Scholar
  26. Fitzgerald WF, Lamborg CH (2005) Geochemistry of mercury in the environment. In: Lollar BS (ed) Environmental geochemistry, treatise on geochemistry, vol 9. Elsevier-Pergamon, Oxford, pp 107–148Google Scholar
  27. Glew DN, Hames DA (1971) Aqueous non electrolyte solutions. Part X. Mercury solubility in water. Can J Chem 49:3114. doi: 10.1139/v71-520 CrossRefGoogle Scholar
  28. Gosar H, Pirc S, Bidvoc M (1997) Mercury in the Idrija river sediments as a reflection of mining and smelting activities of the Idrija mercury mine. J Geochem Explor 58:125–131. doi: 10.1016/S0375-6742(96)00064-7 CrossRefGoogle Scholar
  29. Gosar M, Sajn R, Biester H (2006) Binding of mercury in soils and attic dust in the Idrija a mercury mine area (Slovenia). Sci Total Environ 369:150–162. doi: 10.1016/j.scitotenv.2006.05.006 CrossRefGoogle Scholar
  30. Grassi S, Netti R (2000) Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany-Italy). J Hydrol (Amst) 237:198–211. doi: 10.1016/S0022-1694(00)00307-3 CrossRefGoogle Scholar
  31. Gray JE (2003) Leaching, transport, and methylation of mercury in and around abandoned mercury mines in the Humboldt River Basin and surrounding areas, Nevada. US Geol Surv Bull, 2210-CGoogle Scholar
  32. Gray JE, Theodorakos PM, Bailey EA, Turner RR (2000) Distribution, speciation and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in SW Alaska, USA. Sci Total Environ 260:21–33. doi: 10.1016/S0048-9697(00)00539-8 CrossRefGoogle Scholar
  33. Gray JE, Crock JG, Fey DL (2002) Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl Geochem 17:1069–1079. doi: 10.1016/S0883-2927(02)00004-5 CrossRefGoogle Scholar
  34. Gray JE, Hines ME, Higueras PL, Adatto J, Lasorsa B (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments and surface waters at the Almadén Mining District, Spain. Environ Sci Technol 38:4285–4292. doi: 10.1021/es040359d CrossRefGoogle Scholar
  35. Gray JE, Hines ME, Biester H (2006) Mercury methylation influenced by areas of past mercury mining in the Terlingua disctrict, southwest Texas, USA. Appl Geochem 21:1940–1954. doi: 10.1016/j.apgeochem.2006.08.016 CrossRefGoogle Scholar
  36. Gupta S, Barlow MH, Donaldson S (2004) Mercury exposure and human health effects: a Canadian perspective. In: Parsons MB, Percival JB (eds) Mercury, sources, measurements, cycles and effects, pp 259–286. Min. Ass. of Canada, Short Course Series, vol 34Google Scholar
  37. Gustin MS (2003) Are mercury emissions from geologic sources significant? A status report. Sci Total Environ 304:153–167. doi: 10.1016/S0048-9697(02)00565-X CrossRefGoogle Scholar
  38. Gustin MS, Biester H, Kim CS (2002) Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmos Environ 36:3241–3254. doi: 10.1016/S1352-2310(02)00329-1 CrossRefGoogle Scholar
  39. Gustin MS, Coolbaugh MF, Engle MA, Fitzgerald BC, Keislar RE, Lindberg SE et al (2003) Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environ Geol 43:339–351Google Scholar
  40. Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J Geochem Explor 80:95–104. doi: 10.1016/S0375-6742(03)00185-7 CrossRefGoogle Scholar
  41. Higueras P, Oyarzun R, Oyarzun J, Maturana H, Lillo J, Morata D (2004) Environmental assessment of copper-gold-mercury mining in the Andacollo and Punitaqui districts, northern Chile. Appl Geochem 19:1855–1864. doi: 10.1016/j.apgeochem.2004.04.001 CrossRefGoogle Scholar
  42. Higueras P, Oyarzun R, Lillo J, Sánchez-Hernández JC, Molina JA, Esbri JM et al (2006) The Almadén district (Spain: Anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356:112–124. doi: 10.1016/j.scitotenv.2005.04.042 CrossRefGoogle Scholar
  43. Hines ME, Faganeli J, Adatto J, Horvat M (2006) Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenia. Appl Geochem 21:1924–1939. doi: 10.1016/j.apgeochem.2006.08.008 CrossRefGoogle Scholar
  44. Jurjovec J, Ptacek CJ, Blowes DW (2003) Acid neutralization mechanisms and metal release in mine tailings. A laboratory column experiment. Geochim Cosmochim Acta 66(9):1511–1523. doi: 10.1016/S0016-7037(01)00874-2 CrossRefGoogle Scholar
  45. Kim CS (2005) Speciation of mercury using synchrotron radiation. In: Parsons MB, Percival JB (eds) Mercury, sources, measurements, cycles and effects, pp 95–122. Min. Ass. of Canada, Short Course Series, vol 34Google Scholar
  46. Kim CS, Brown GE, Rytuba JJ (2000) Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy. Sci Total Environ 260:157–168. doi: 10.1016/S0048-9697(00)00640-9 CrossRefGoogle Scholar
  47. Kim CS, Rytuba JJ, Brown GE (2004) Geological and anthropogenic factors influencing mercury speciation in mine wastes: an EXAFS spectroscopy study. Appl Geochem 19:379–393. doi: 10.1016/S0883-2927(03)00147-1 CrossRefGoogle Scholar
  48. Kothny EL (1973) The three-phase equilibrium of mercury in Nature. In: Kothny EL (ed) Trace elements in the environment. Am. Chem. Soc., Washington, DC, pp 48–80Google Scholar
  49. Lechler PJ (1999) Modern mercury contamination from historic amalgamation milling of silver-gold ores in the Carson River, Nevada and Jordan Creek, Idaho: importance of speciation analysis in understanding the source, mobility and fate of polluted materials. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W (eds) Mercury contaminated sites. Springer, Heidelberg, pp 337–355Google Scholar
  50. Loredo J, Pereira A, Ordóñez A (2003) Untreated abandoned mercury mining works in a scenic area of Asturias (Spain). Environ Int 29:481–491. doi: 10.1016/S0160-4120(03)00007-2 CrossRefGoogle Scholar
  51. Loredo J, Ordóñez A, Álvarez R (2006) Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). J Hazard Mater A136:455–467. doi: 10.1016/j.jhazmat.2006.01.048 CrossRefGoogle Scholar
  52. Loux NT (1998) An assessment of mercury-species-dependent binding with natural organic carbon. Chem Spec Bioavail 10(4):127–136CrossRefGoogle Scholar
  53. Lowry GU, Shaw S, Kim CS, Rytuba JJ, Brown GE (2004) Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank Mercury Mine Tailings. Environ Sci Technol 38:5101–5111. doi: 10.1021/es034636c CrossRefGoogle Scholar
  54. Lu J, Grégoire DC (2005) Speciation of inorganic mercury associated with solid matrices by thermal desorption coupled with ICP-MS. In: Parsons MB, Percival JB (eds) Mercury, sources, measurements, cycles and effects, pp 79–93. Min. Ass. of Canada, Short Course Series, vol 34Google Scholar
  55. Martínez J, Navarro A, Lunar R (1997) First reference of pyrite framboids in a Hg-Sb mineralization: the Valle del Azogue mineral deposit (SE Spain). Neues Jahrb Miner Monatsh 4:175–184Google Scholar
  56. Martínez J, Navarro A, Lunar R, García-Guinea J (1998) Mercury pollution in a large marine basin: a natural venting system in the south-west Mediterranean margin. Nat Resour 34(3):9–15Google Scholar
  57. Massman J, Farrier DF (1992) Effects of atmospheric pressure on gas transport in the Vadose zone. Water Resour Res 28:777–791. doi: 10.1029/91WR02766 CrossRefGoogle Scholar
  58. McLean JE, Bledsoe BE (1992) Behavior of metals in soils. Ground Water Issue, EPA/540/S-92/018Google Scholar
  59. Mendoza JL, Navarro A, Cuitiño L (2006) Nueva interpretación metalogenética del yacimiento de mercurio del Valle del Azogue (Almería), España. XI Congreso Geológico Chileno. Actas, vol 2, pp 307–308Google Scholar
  60. MHSPE (2000) Circular on target values and intervention values for soil remediation. Ministry of Housing, Spatial Planning and Environment. Netherlands Government, The HagueGoogle Scholar
  61. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566. doi: 10.1146/annurev.ecolsys.29.1.543 CrossRefGoogle Scholar
  62. Navarro A, Martínez J, Font X, Viladevall M (2000) Modelling of modern mercury vapor transport in an ancient hydrothermal system: environmental and geochemical implications. Appl Geochem 15(3):281–294. doi: 10.1016/S0883-2927(99)00046-3 CrossRefGoogle Scholar
  63. Navarro A, Collado D, Carbonell M, Sánchez JA (2004) Impact of mining activities in a semi-arid environment: Sierra Almagrera district, SE Spain. Environ Geochem Health 26:383–393. doi: 10.1007/s10653-005-5361-0 CrossRefGoogle Scholar
  64. Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49:1089–1101. doi: 10.1007/s00254-005-0152-6 CrossRefGoogle Scholar
  65. Parkhurst D, Appelo C (1999) User’s guide to PHREEQC (Version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 99-4259Google Scholar
  66. Puigdomenech I (2004) Make equilibrium using sophisticated algorithms (MEDUSA) program, Inorganic Chemistry Department. Royal Institute of Technology, 100 44, Stockholm, Sweden.
  67. Qiu G, Feng X, Wang S, Shang L (2005) Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl Geochem 20:627–638. doi: 10.1016/j.apgeochem.2004.09.006 CrossRefGoogle Scholar
  68. Ravichandran M, Aiken GR, Reddy MM, Ryan JN (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter from the Florida Everglades. Environ Sci Technol 32:3305–3311. doi: 10.1021/es9804058 CrossRefGoogle Scholar
  69. Ravichandran M, Aiken GR, Reddy MM, Ryan JN (2003) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter from the Florida Everglades. USGS WRD Web PageGoogle Scholar
  70. Rytuba JJ (2000) Mercury mine drainage and processes that control its environmental impact. Sci Total Environ 260:57–71. doi: 10.1016/S0048-9697(00)00541-6 CrossRefGoogle Scholar
  71. Rytuba JJ (2002) Mercury geoenvironmental models. In: Seal RR, Foley NK (eds) Progress on geoenvironmental models for selected mineral deposit types, pp 161–175. US Geological Survey, Open-File Report 02-195Google Scholar
  72. Rytuba JJ (2003) Mercury from mineral deposits and potential environmental impact. Environ Geol 43:326–338Google Scholar
  73. Rytuba JJ (2005) Geogenic and mining sources of mercury to the environment. In: Parsons MB, Percival JB (eds) Mercury, sources, measurements, cycles and effects, pp 21–56. Min. Ass. of Canada, Short Course Series, vol 34Google Scholar
  74. Rytuba JJ, Kotlyar BB, Wilkerson G, Olson J (2001) Geochemistry of selected mercury mine-tailings in the Parkfield Mercury District, California. USGS, Open-File Report 01-336, version 1.0Google Scholar
  75. Sanei H, Goodarzi F (2006) Relationship between organic matter and mercury in recent lake sediments. The physical-geochemical aspects. Appl Geochem 21:1900–1912. doi: 10.1016/j.apgeochem.2006.08.015 CrossRefGoogle Scholar
  76. Schwartz MO (1997) Mercury in zinc deposits: economic geology of a polluting element. Int Geol Rev 39:905–923CrossRefGoogle Scholar
  77. Shaw J, Lowry GU, Kim CS, Rytuba JJ, Brown GE (2001) The influence of colloidal phases on Hg-transport from mercury mine waste tailings: a laboratory case study of the New Idria and Sulphur Bank Mines, California, USA. In: Eleventh Annual V.M. Goldschmidt Conference, 3723 pdfGoogle Scholar
  78. Shaw SA, Al TA, MacQuarrie KTB (2006) Mercury mobility in unsaturated gold mine tailings, Murray Brook mine, New Brunswick, Canada. Appl Geochem 21:1986–1998. doi: 10.1016/j.apgeochem.2006.08.009 CrossRefGoogle Scholar
  79. Simunek J, Suarez DL (1993) Modeling of carbon dioxide transport and production in soil: 1. Model development. Water Resour Res 29:487–497. doi: 10.1029/92WR02225 CrossRefGoogle Scholar
  80. Sladek C, Gustin MS, Kim C, Biester H (2002) Assessment of three methods for determining mercury speciation in mine wastes. Geochem Explor Environ Anal 4:369–375. doi: 10.1144/1467-787302-036 CrossRefGoogle Scholar
  81. Varekamp JC, Buseck PR (1984) The speciation of mercury in hydrothermal systems, with applications to ore deposition. Geochim Cosmochim Acta 48:177–185. doi: 10.1016/0016-7037(84)90359-4 CrossRefGoogle Scholar
  82. Viladevall M, Font X, Navarro A (1999) Geochemical mercury survey in the Azogue Valley (Betic area, SE Spain). J Geochem Explor 66:27–35. doi: 10.1016/S0375-6742(99)00025-4 CrossRefGoogle Scholar
  83. Xin M, Gustin MS (2007) Gaseous elemental mercury exchange with low mercury containing soils: investigation of controlling factors. Appl Geochem 22:1451–1466. doi: 10.1016/j.apgeochem.2007.02.006 CrossRefGoogle Scholar
  84. Yao A, Qing C, Mu S, Reardon EJ (2006) Effects of humus on the environmental activity of mineral-bound Hg: influence on Hg volatility. Appl Geochem 21:446–454. doi: 10.1016/j.apgeochem.2005.10.003 CrossRefGoogle Scholar
  85. Yin Y, Allen H, Li Y, Huang CP, Sanders PI (1996) Adsorption of Mercury (II) by soil: effects of pH, chloride, and organic matter. J Environ Qual 25:837CrossRefGoogle Scholar
  86. Zhang G, Liu CQ, Wu P, Yang Y (2004) The geochemical characteristics of mine-waste calcines and runoff from the Wanshan mine, Guizhou, China. Appl Geochem 19:1735–1744. doi: 10.1016/j.apgeochem.2004.03.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Depto. Mec. de FluidosUniversitat Politècnica de Catalunya (UPC) ETSEIATTerrassaSpain

Personalised recommendations