Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate

  • Dores G. Cirne
  • Frank P. van der Zee
  • Maria Fernandez-Polanco
  • Fernando Fernandez-Polanco
View Paper


Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process-level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.


Anaerobic treatment Biogas Control Inhibition Micro-aerobic Nitrate Sulphate Sulphide 



The authors thank the Spanish Ministry of Education and Science (project CTM 2005-02967/TECNO) for financial support and P. Wheeler, AEA Technology Environment, A. Wellinger, Nova Energie, O. Jönsson, The Swedish Gas Centre and T. Al Seadi, University of Southern Denmark, for their help with the implementation in practice of micro-aerobic conditions in anaerobic bioreactors.


  1. Akunna JC, Bizeau C, Moletta R (1992) Denitrification in anaerobic digesters: possibilities and influence of waste water COD/N-NOx ratio. Environ Technol 13(9):825–836Google Scholar
  2. Annachhatre AP, Suktrakoolvait S (2001) Biological sulphide oxidation in a fluidized bed reactor. Environ Technol 22(6):661–672Google Scholar
  3. Balderston WL, Payne WJ (1976) Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Appl Environ Microbiol 32(2):264–269Google Scholar
  4. Basu SK, Mino T (1993) Domestic waste-water treatment using microaerophilic upflow sludge bed reactor. Environ Technol 14(5):413–422Google Scholar
  5. Basu SK, Mino T, Oleszkiewicz JA (1995) Novel application of sulphur metabolism in domestic wastewater treatment. Can J Civ Eng 22:1217–1223CrossRefGoogle Scholar
  6. Bentzen G, Smith AT, Bennett D, Webster NJ, Reinholt F, Sletholt E, Hobson J (1995) Controlled dosing of nitrate for prevention of H2S in a sewer network and the effects on the subsequent treatment processes. Water Sci Technol 31(7):293–302CrossRefGoogle Scholar
  7. Brüser T, Lens PNL, Trüper HG (2000) The biological sulphur cycle. In: Lens PNL, Hulshoff Pol LW (eds) Environmental technologies to treat sulfur pollution – principles and engineering. IWA Publishing, London, pp 47–85Google Scholar
  8. Buisman CJN, Lettinga G (1990) Sulphide removal from anaerobic waste treatment of a paper mill. Water Res 24(3):313–319CrossRefGoogle Scholar
  9. Buisman CJN, Geraats BG, Ijspeert P, Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35:50–56CrossRefGoogle Scholar
  10. Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63CrossRefGoogle Scholar
  11. Cardoso RB, Sierra-Alvarez R, Rowlette P, Razo-Flores E, Gómez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6):1148–1157CrossRefGoogle Scholar
  12. Chen KC, Lin YF (1993) The relationship between denitrifying bacteria and methanogenic bacteria in a mixed culture system of acclimated sludges. Water Res 27(12):1749–1759CrossRefGoogle Scholar
  13. Chuang SH, Pai TY, Horng RY (2005) Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system. Environ Technol 26(9):993–1001Google Scholar
  14. Clancy PB, Venkataraman N, Lynd LR (1992) Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters. Water Sci Technol 25(7):51–60Google Scholar
  15. Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709Google Scholar
  16. Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99CrossRefGoogle Scholar
  17. Dewaters JE, Zander AK, Grimberg SJ (1999) The use of ferric salts for controlling sulfide odors in high-strength pulp and paper manufacturing wastes. Environ Eng Sci 16(6):441–450CrossRefGoogle Scholar
  18. Fox P, Venkatasubbiah V (1996) Couple anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366CrossRefGoogle Scholar
  19. Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thimicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40(12):2436–2446CrossRefGoogle Scholar
  20. Garuti A, Giordano A, Pirozzi F (2001) Full-scale ANANOX® system performance. Water SA 27(2):189–198Google Scholar
  21. Gommers PJF, Bijleveld W, Kuenen JG (1988) Simultaneous sulphide and acetate oxidation in a denitrifying fluidized bed reactor-I start-up and reactor performance. Water Res 22(9):1075–1083CrossRefGoogle Scholar
  22. González-Sanchéz A, Revah S (2007) The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium. Enzyme Microb Technol 40:292–298CrossRefGoogle Scholar
  23. Hagen CE, Hartung RW (1997) New chemical treatment method controls wastewater system odor. Pulp Pap 71(11):81–89Google Scholar
  24. Hanselmann KW (1991) Microbial energetics applied to waste repositories. Experientia 47:645–687CrossRefGoogle Scholar
  25. Hendriksen HV, Ahring BK (1996) Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor: operating performance. Water Res 30(6):1451–1458CrossRefGoogle Scholar
  26. Hossain F (2004) Activated sludge bulking: a review of causes and control strategies. J Instn Engrs (India) 85:1–6Google Scholar
  27. Hulshoff Pol LW, Lens PNL, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224CrossRefGoogle Scholar
  28. Im J-H, Woo H-J, Choi M-W, Han K-B, Kim C-W (2001) Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Res 35(10):2403–2410CrossRefGoogle Scholar
  29. Isa MH, Anderson GK (2005) Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochem 40(6):2079–2089CrossRefGoogle Scholar
  30. Jacksonmoss CA, Duncan JR (1990) Anaerobic-digestion at high sulphate concentrations. J Am Leather Chem As 85(10):376–382Google Scholar
  31. Janssen AJH, Sleyster R, van der Kaa C, Jochemsen A, Bontsema J, Lettinga G (1995) Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng 47:327–333CrossRefGoogle Scholar
  32. Janssen AJH, Meijer S, Bontsema J, Lettinga G (1998) Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotechnol Bioeng 60(2):147–155CrossRefGoogle Scholar
  33. Jin P, Bhattacharya SK, Williams CJ, Zhang C (1998) Effects of sulphide addition on copper inhibition in methanogenic systems. Water Res 32(4):977–988CrossRefGoogle Scholar
  34. Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2006a) DEAMOX – new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res 40(19):3637–3645CrossRefGoogle Scholar
  35. Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2006b) DEAMOX – new anaerobic process of nitrogen removal. Water Sci Technol 54(8):163–170CrossRefGoogle Scholar
  36. Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2007) Comparison of quasisteady-state performance of the DEAMOX process under intermittent and continuous feeding and different nitrogen loading rates. Biotechnol J 2:894–900CrossRefGoogle Scholar
  37. Kaspar HF, Tiedje JM, Firestone RB (1981) Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge. Can J Microbiol 27(9):878–885CrossRefGoogle Scholar
  38. Kato MT, Field JA, Lettinga G (1993) High tolerance of methanogens in granular sludge to oxygen. Biotechnol Bioeng 42(11):1360–1366CrossRefGoogle Scholar
  39. Khanal SK, Huang JC (2003a) Anaerobic treatment of high sulfate wastewater with oxygenation to control sulfide toxicity. J Environ Eng 129(12):1104–1111CrossRefGoogle Scholar
  40. Khanal SK, Huang JC (2003b) ORP-based oxigenation for sulfide control in anaerobic treatment of high sulfate wastewater. Water Res 37:2053–2062CrossRefGoogle Scholar
  41. Khanal SK, Huang JC (2006) Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Water Environ Res 78(4):397–308CrossRefGoogle Scholar
  42. Kleerebezem R, Mendez R (2002) Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Sci Technol 45(10):349–356Google Scholar
  43. Koster IW, Rinzema A, de Vegt AL, Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at different pH levels. Water Res 21(12):1561–1567CrossRefGoogle Scholar
  44. Krishnakumar B, Manilal VB (1999) Bacterial oxidation of sulphide under denitrifying conditions. Biotechnol Lett 21(5):437–440CrossRefGoogle Scholar
  45. Lau GN, Sharma KR, Chen GH, van Loosdrecht MCM (2006) Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage. Water Sci Technol 53(3):227–325CrossRefGoogle Scholar
  46. Lens PNL, Visser ANL, Janssen AJH, Hulshoff Pol LW, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28(1):41–88CrossRefGoogle Scholar
  47. Lens PNL, Sipma J, Hulshoff Pol LW, Lettinga G (2000) Effect of nitrate on acetate degradation in a sulfidogenic staged reactor. Water Res 34(1):31–42CrossRefGoogle Scholar
  48. Little BJ, Ray RI, Pope RK (2000) Corrosion and sulfur bacteria. In: Lens PNL, Hulshoff Pol LW (eds) Environmental technologies to treat sulfur pollution – principles and engineering, 1st edn. IWA Publishing, London, pp 491–513Google Scholar
  49. Mahmood Q, Zheng P, Cai J, Wu D, Hu B, Li J (2007) Anoxic sulphide biooxidation using nitrite as electron acceptor. J Hazard Mater (in press), corrected proofGoogle Scholar
  50. Mathioudakis VL, Vaiopoulou E, Aivasidis A (2006) Addition of nitrate for odor control in sewer networks: laboratory and field experiments. Global NEST J 8(1):37–42Google Scholar
  51. Noyola A, Morgan-Sagastume JM, López-Hernández JE (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Biotechnol 5(1):93–114CrossRefGoogle Scholar
  52. Núñez LA, Martínez B (2001) Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater. Water Sci Technol 44(4):271–277Google Scholar
  53. Ochi T, Kitagawa M, Tanaka S (1998) Controlling sulphide generation in force mains by air injection. Water Sci Technol 37(1):87–95CrossRefGoogle Scholar
  54. O’Reilly C, Colleran E (2005) Toxicity of nitrite toward mesophilic and thermophilic sulphate-reducing, methanogenic and syntrophic populations in anaerobic sludge. J Ind Microbiol Biotechnol 32(2):46–52CrossRefGoogle Scholar
  55. Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136CrossRefGoogle Scholar
  56. Peddie CC, Maviniv DS, Jenkins DJ (1990) Use of ORP for monitoring and control of aerobic sludge digestion. J Environ Eng 116(3):461–471CrossRefGoogle Scholar
  57. Percheron G, Michaud S, Bernet N, Moletta R (1998) Nitrate and nitrite reduction of a sulphide-rich environment. J Chem Technol Biotechnol 72:213–220CrossRefGoogle Scholar
  58. Pott BM, Mattiasson B (2004) Separation of heavy metals from water solutions at the laboratory scale. Biotechnol Lett 26(5):451–456CrossRefGoogle Scholar
  59. Reyes-Avila J, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38(14–15):3313–3321CrossRefGoogle Scholar
  60. Rinzema A (1988) Anaerobic treatment of wastewater with high concentrations of lipid or sulphate. PhD thesis, Wageningen Agricultural University, the NetherlandsGoogle Scholar
  61. Rittmann BE, McCarty PL (eds) (2000) Environmental biotechnology principles and application. McGraw-Hill Companies Inc., New York, pp 340–347Google Scholar
  62. Roy R, Conrad R (1999) Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil. FEMS Microbiol Ecol 28(1):49–61CrossRefGoogle Scholar
  63. Sierra-Alvarez R, Guerrero F, Rowlette P, Freeman S, Field JA (2005) Comparison of chemo-, hetero- and mixotrophic denitrification in laboratory-scale UASBs. Water Sci Technol 52(1–2):337–342Google Scholar
  64. Shin HS, Jung JY, Bae BU, Paik BC (1995) Phase-separated anaerobic toxicity assays for sulfate and sulfide. Water Environ Res 67:802–806CrossRefGoogle Scholar
  65. Smet E, Lens P, Van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol 28(1):89–117CrossRefGoogle Scholar
  66. Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35:1417–1423CrossRefGoogle Scholar
  67. Tai CS, Singh KS, Grant SR (2006) Combined removal of carbon and nitrogen in an integrated UASB-jet loop reactor bioreactor system. J Environ Eng 132(6):624–637CrossRefGoogle Scholar
  68. Tanimoto Y, Tasaki M, Okamura K, Yamaguchi M, Minami K (1989) Screening growth inhibitors of sulfate-reducing bacteria and their effects on methane fermentation. J Ferment Bioeng 68(5):353–359CrossRefGoogle Scholar
  69. Tilche A, Bortone G, Forner G, Indulti M, Stante L, Tesini O (1994) Combination of anaerobic digestion and denitrification in a hybrid upflow anaerobic filter integrated in a nutrient removal treatment plant. Water Sci Technol 30(12):405–414Google Scholar
  70. Tugtas AE, Pavlostathis SG (2007) Inhibitory effects of nitrogen oxides on a mixed methanogenic culture. Biotechnol Bioeng 96(3):444–455CrossRefGoogle Scholar
  71. Tursman JF, Cork DJ (1989) Influence of sulphate and sulfite-reducing bacteria on anaerobic digestion technology. In: Biological waste treatment. Alan R Liss Inc., New York, pp 273–281Google Scholar
  72. Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulphide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39(17):4101–4109CrossRefGoogle Scholar
  73. van der Zee FP, Villaverde S, Garcia PA, Fdz-Polanco F (2007) Sulfide removal by moderate oxygenation of anaerobic sludge environments. Bioresour Technol 98:518–524CrossRefGoogle Scholar
  74. Van Haandel AC, Monroy O, Celis B, Rustrian E, Cervantes FJ (2006) Principles and process design for industrial wastewater treatment systems. In: Cervantes FJ, Pavlostathis SG, van Haandel AC (eds) Advanced biological treatment processes for industrial wastewaters – principles and applications. IWA Publishing, London, pp 118–132Google Scholar
  75. Visser A, Hulshoff Pol LW, Lettinga G (1996) Competition of methanogenic and sulfidogenic bacteria. Water Sci Technol 33(3):99–110CrossRefGoogle Scholar
  76. Wang Z, Banks CJ (2006) Anaerobic digestion of a sulphate-rich high-strength landfill leachate: the effect of differential dosing with FeCl3. Waste Manag Res 24:289–293CrossRefGoogle Scholar
  77. Wellinger A, Lindeberg A (eds) (1999) Biogas upgrading and utilization. Task 24: energy from biological conversion of organic wastes. IEA Bioenergy, Winterthur, pp 1–19Google Scholar
  78. Yadav VK, Archer DB (1989) Sodium molybdate inhibits sulphate reduction in the anaerobic treatment of high-sulphate molasses wastewater. Appl Microbiol Biotechnol 31(1):103–106CrossRefGoogle Scholar
  79. Zhang D, Verstraete W (2001) The anaerobic treatment of nitrite containing wastewater using an expanded granular sludge bed (EGSB) reactor. Environ Technol 22(8):905–913Google Scholar
  80. Zhou W, Imai T, Ukita M, Li F, Yuasa A (2007) Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill. Chemosphere 66:924–929CrossRefGoogle Scholar
  81. Zitomer DH, Shrout JD (2000) High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidised beds. Water Environ Res 72(1):90–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Dores G. Cirne
    • 1
    • 2
  • Frank P. van der Zee
    • 3
  • Maria Fernandez-Polanco
    • 1
  • Fernando Fernandez-Polanco
    • 1
  1. 1.Department of Chemical Engineering and Environmental Technology, Faculty of SciencesUniversity of ValladolidValladolidSpain
  2. 2.Advanced Water Management CentreThe University of QueenslandBrisbaneAustralia
  3. 3.IBB-Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations