Anaerobic Treatment in Decentralised and Source-Separation-Based Sanitation Concepts

  • Katarzyna Kujawa-Roeleveld
  • Grietje Zeeman


Anaerobic digestion of wastewater should be a core technology employed in decentralised sanitation systems especially when their objective is also resource conservation and reuse. The most efficient system involves separate collection and anaerobic digestion of the most concentrated domestic wastewater streams: black or brown water and solid fraction of kitchen waste. Separate collection using minimal amount of transport water besides saving this resource allows to apply a targeted treatment. A relatively small volume of digested effluent can be directly reused for fertilisation or processed when a high quality product is required. Clean nutrient production requires advanced multi-step treatment but the quality of products is risk-free. The issue of organic micro-pollutants and their accumulation in the environment is recently often addressed. Anaerobic treatment of total domestic wastewater stream can be applied as well. Treated in this way wastewater can be discharged or used for irrigation or fertilisation. The post-treatment will be usually required and its rate of complexity depends on the anaerobic effluent quality and local requirements for final effluent quality. A variety of technological solutions for treatment of domestic wastewater streams and reuse of resources is discussed in this paper.


anaerobic treatment decentralised sanitation domestic wastewater reuse source separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, LK, Ohashi, Y, Mochida, E, Okui, H, Ueki, Y, Harada, H, Ohashi, A 1997Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes processWat. Sci. Tech.36433440Google Scholar
  2. Alef, K, Nannipieri, P 1995Urease activityAlef, KNannipieri, P eds. Methods in Applied Soil Microbiology and BiochemistryAcademic Press InkLondonGoogle Scholar
  3. Americal Water Works Association (AWWA, 2005) Fact sheets Stats on tap
  4. Angelidaki, I, Ahring, BK 1994Anaerobic thermophilic digestion of manure at different ammonia loads: the effect of temperatureWater Res.28727731CrossRefGoogle Scholar
  5. American Water Works Association (AWWA, 2005) Stats on Tap. CBC News Online | August 25, 2004.Google Scholar
  6. Bogte, JJ, Breure, AM, Andel, JG, Lettinga, G 1993Anaerobic treatment of domestic wastewater in small scale UASB reactorsWater Sci. Tech.277582Google Scholar
  7. Buuren, JCL, Abusam, A, Zeeman, G, Lettinga, G 1999Primary effluent filtration in small-scale installationsWater Sci. Technol.39195202Google Scholar
  8. Castillo, A, Cecchi, F, Mata-Alvarez, J 1997A combined anaerobic-aerobic system to treat domestic sewage in coastal areasWater Res.3130573063CrossRefGoogle Scholar
  9. Cavalcanti, PFF 2003Integrated application of the UASB reactor and ponds for domestic sewage treatment in tropical regionsSub-department of Environmental Technology, Wageningen UniversityWageningen, The NetherlandsPhD ThesisGoogle Scholar
  10. Chernicharo, CA L, Nascimento, MCP 2001Feasibility of a pilot-scale UASB/trickling filter system for domestic sewage treatmentWater Sci. Tech.44221228Google Scholar
  11. Cummings, JH, Bingham, SA, Heaton, KW, Eastwood, MA 1992Fecal weight, colon cancer risk and dietary intake of nonstarch polysaccharides (dietary fiber)Gastroenterology10317831789Google Scholar
  12. Draaijer, H, Maas, JAW, Schaapman, JE, Khan, A 1992Performance of the 5 MLD UASB reactor for sewage treatment at Kanpur, IndiaWater Sci. Tech.25123133Google Scholar
  13. Drangert J-O (2000) Reuse - the ultimate sink? Urine-diverting toilets to protect groundwater quality and fertilise urban agriculture. In: Chorus I, Ringelband G, Schlag G & Schmoll O (Eds) Water, Sanitation and Health. Proceedings of the International Conference, Bad Elster, Germany, 24–28 November, 1998 (pp. 275–280). IWA Publishing, London, UKGoogle Scholar
  14. Eggers, E, Dirkzwager, AH, Honing, H 1991Full-scale experiences with phosphate crystallization in a crystalactorWater Sci. Tech.23819824Google Scholar
  15. Egun, GN, Atinmo, T 1993Protein requirement of young adult Nigerian females on habitual Nigerian diet at the usual level of energy intakeBritish Journal of Nutrition70439448Google Scholar
  16. El-Mashad H (2003) Solar thermophilic anaerobic reactor (STAR) for renewable energy production. Ph.d. Thesis, Sub-department of Environmental Technology, Wageningen UniversityGoogle Scholar
  17. Elmitwalli TA (2000) Anaerobic treatment of domestic sewage at low temperature. PhD Thesis, Sub-department of Environmental Technology, Wageningen UniversityGoogle Scholar
  18. Elmitwalli, T, Zeeman, G, Lettinga, G 2001Anaerobic treatment of domestic sewage at low temperatureWat. Sci. Tech.443340Google Scholar
  19. Elmitwalli, TA, Zeeman, G, Oahn, KLT, Lettinga, G 2002Treatment of domestic sewage in a two-step system anaerobic filter/anaerobic hybrid reactor at low temperatureWater Res.3622252232CrossRefGoogle Scholar
  20. Elmitwalli T, Leeuwen van M, Kujawa-Roeleveld K, Sanders W & Zeeman G (2006) Anaerobic biodegradability and digestion in accumulation systems for concentrated black water and kitchen organic wastes. Accepted for publication in Water Sci. and Tech.Google Scholar
  21. EPA 1980 Design Manual: Onsite Wastewater Treatment and Disposal Systems. EPA 625/1–80–012, U.S. EPA, Washington, DCGoogle Scholar
  22. EPA (2000a) Decentralized Systems Technology Fact Sheet Septic System Tank EPA 832-F-00-040Google Scholar
  23. EPA (2000b) Onsite Wastewater Treatment Systems Special Issues Fact Sheet 1 Septic Tank Additives EPA 625/R-00/008Google Scholar
  24. Eriksson, E, Auffarth, K, Henze, M, Ledin, A 2002Characteristics of grey wastewaterUrban Water485104CrossRefGoogle Scholar
  25. European Council of Ministers (1991) Official Journal of European Commission L 135, 30.5.1991, pp. 40–52Google Scholar
  26. European Environmental Agency (EEA, 2001) Indicator Fact Sheet Signals 2001 – Chapter Households. YIR01HH07 Household water consumptionGoogle Scholar
  27. Fadel A (2001) The Egyptian experience with low cost technologies for domestic wastewater collection and treatment. Presented on the international symposium on low cost wastewater treatment and reuse, February, 3–4, 2001, Cairo, EgyptGoogle Scholar
  28. Feachem, R, McGarry, M, Mara, D 1980Water Waste and Health in Hot ClimatesJ WileyLondon, UKGoogle Scholar
  29. Flameling, AG 1994Study into the possibilities of anaerobic treatment of domestic wastewater in order to reduce the greenhouse effectWageningen UniversityWageningen, The NetherlandsMsC thesisGoogle Scholar
  30. Fraústo da Silva JJR & Williams RJP (1997) The Biological Chemistry of the Elements – The Inorganic Chemistry of Life. Oxford, OxfordGoogle Scholar
  31. Fricker, J, Rozen, R, Melchior, JC, Apfelbaum, M 1991Energy metabolism adaptation in obese adulst on a very low calorie dietAm. J. Clin. Nutr.53826830Google Scholar
  32. Fujimoto, N, Mizuochi, T, Togami, Y 1991Phosphorus fixation in the sludge treatment system of a biological phosphorus removal processWater Sci. Technol.23635640Google Scholar
  33. Gajdos, R 1998Bioconversion of organic waste by the year 2010: to recycle elements and save energy. ResourcesConserv. Recycling236786Google Scholar
  34. Guyton, AC 1992Human Physiology and Mechanisms of DiseaseW.B.Saunders CompanyPhiladelphiaGoogle Scholar
  35. Haandel, AC, Lettinga, G 1994Anaerobic Sewage Treatment A Practical Guide for Regions with a Hot ClimateJohn Wiley & Sons LtdChichester, UKGoogle Scholar
  36. Haskoning (1996) 14 MLD UASB treatment plant in Mirzapur, India. Evaluation report on process performance. Haskoning Consulting Engineers and ArchitectsGoogle Scholar
  37. Hellinga, C, Schellen, AAJC, Mulder, JW, Loosdrecht, MCM, Heijnen, JJ 1998The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewaterWater Sci. Techn.37135142Google Scholar
  38. Hellström D & Kärrman E (1996) Nitrogen and phosphorus in fresh and stored urine. Proceedings from the 2nd International Conference on Ecological Engineering for Wastewater Treatment, September 18–22 1995 (pp. 221–226). Waedenswil, Environmental Research ForumGoogle Scholar
  39. Helsel, ZR 1992Energy in farm productionFluck, RC eds. Energy in World AgricultureElsevierNew York177201Google Scholar
  40. Henze, M 1997Waste design for households with respect to water, organics and nutrientsWater Sci. Tech.35113120Google Scholar
  41. Henze M & Ledin A (2001) Types, characteristics and quantities of classic, combined domestic wastewaters. In: Lens P, Zeeman G & Lettinga G (Eds) IWA publishing Decentralised Sanitation and Reuse: concepts, systems and implementationGoogle Scholar
  42. Holden B & Ward M (1999) An overview of domestic and commercial re-use of water. Presented at the IQPC conference on water recycling and effluent reuse, 16 December, Copthorne, Effngham Park, London, UKGoogle Scholar
  43. Höglund C (2001) Evaluation of microbial health risks associated with the reuse of source-separated human urine, Doctoral thesis Royal Institute of Technology (KTH), Department of Biotechnology, Applied Microbiology, Swedish Institute for Infectious Disease Control (SMI) Department of Water and Environmental MicrobiologyGoogle Scholar
  44. Huang, CSS 1982Nitrification kinetics and its RBC applicationsJ. ASCE. Environ. Dn.108473487Google Scholar
  45. Hulshof-Pol LW (1989) The phenomenon of granulation of anaerobic sludge. PhD thesis of Wageningen University. Wageningen, The NetherlandsGoogle Scholar
  46. Hulshof-Pol L, Euler H, Eitner A & Grohantz TBW (1997) State of the art, sector review. Anaerobic treands. WQI July/August, 1997, 31–33Google Scholar
  47. International Food Policy Research Institute (IFPRI) (2002) Global Water Outlook to 2025: Averting an Impending Crisis Global Water Outlook to 2025: Averting an Impending Crisis.
  48. Janus, HM, Roest, H 1997Don’t reject idea of treating reject waterWater Sci. Tech.352734CrossRefGoogle Scholar
  49. Jefferson, B, Laine, A, Parsons, S, Stephenson, T, Judd, S 1999Technologies for domestic wastewater recyclingUrban Water1285292Google Scholar
  50. Jefferson, B, Judd, S, Diaper, C 2001Treatment methods for grey waterLens, PZeeman, GLettinga, G eds. Decentralised Sanitation and Reuse-, Concepts, Systems and ImplementationIWA PublishingUKGoogle Scholar
  51. Jefferson, B, Palmer, A, Jeffrey, P, Stuetz, R, Judd, S 2004Grey water characterization and its impact on the selection and operation of technologies for urban reuseWater Sci. Tech.50157164Google Scholar
  52. Jetten, MSM, Strous, M, Pas-Schoonen, KT, Schalk, J, Dongen, UGJM, Graaf, AA, Logemann, S, Muyzer, G, Loosdrecht, MCM, Kuenen, JG 1999The anaerobic oxidation of ammoniumFEMS Micr. Rev.22421437Google Scholar
  53. Jewel, WJ, Switzenbaum, MS, Moris, JW 1981Municipal wastewater treatment with the anaerobic attached microbial film bed processJ. Water Pollut. Control Fed.53482490Google Scholar
  54. Jönsson, H, Eriksson, H, Vinnerås, B 2000Collection tanks for human urine – ventilation and ammonia loss. (Uppsamlingstankar för humanurin – gasväng och ammoniakförlust)Department of Agricultural Engineering, Swedish University of Agricultural SciencesUppsala, SwedenManuscript. (In Swedish, English summary)Google Scholar
  55. Johnston, FA, McMillan, TJ 1952The amount of nitrogen retaines by 6 young women on an intake of approximately 70 gm of protein a dayJ. Nutr.35425433Google Scholar
  56. Jönsson, H, Stenström, TA, Svensson, J, Sundin, A 1997Source separated urine-nutrient and heavy metal content, water saving and faecal contaminationWater Sci. Technol.35145152Google Scholar
  57. Kalogo, Y, Verstraete, W 2000Technical feasibility of the treatment of domestic wastewater by a CEPS-UASB systemEnviron. Tech.215565Google Scholar
  58. Kirchmann, H, Pettersson, S 1995Human urine – chemical composition and fertilizer use efficiencyFertilising Res.40149154Google Scholar
  59. Kujawa-Roeleveld, K, Elmitwalli, T, Gaillard, A, Leeuwen, M, Zeeman, G 2003aCo-digestion of concentrated black water and kitchen refuse in an accumulation system within the DESAR (decentralized sanitation and reuse) conceptWater Sci. Technol.48121128Google Scholar
  60. Kujawa-Roeleveld K, Elmitwalli T, van Leeuwen M, Tawfik A, Mes de T & Zeeman G (2003b) Anaerobic digestion and physiological waste and kitchen refuse towards resource management in the DESAR concept (pp. 499–507). Proceedings of the 2nd IWA/GTZ international symposium on ecological sanitation, Lübeck, GermanyGoogle Scholar
  61. Kujawa-Roeleveld, K, Fernandes, T, Wiryawan, Y, Tawfik, A, Visser, M, Zeeman, G 2005Performance of UASB septic tank for treatment of concentrated black water within DESAR conceptWat. Sci. Tech.52301313Google Scholar
  62. Last, ARM, Lettinga, G 1992Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocitiesWater Sci. Tech.2517011723Google Scholar
  63. Lentner, C, Wink, A 1981Units of Measurement, Body Fluids, Composition of the Body, Nutrition. Geigy Scientific tablesCiba-GeigyBasleGoogle Scholar
  64. Lettinga, G, Man, A, Grin, P, Hulshof Pol, L 1987Anaerobic wastewater treatment as an appropriate technology for developping countriesTribune Cebedeau402132Google Scholar
  65. Lettinga, G, Man, Ad, Last, ARMvd, Wiegant, W, Knippenberg, K, Frijns, J, Buuren, JCLv 1993Anaerobic treatment of domestic sewage and wastewaterWater Sci. Tech.276773Google Scholar
  66. Lettinga G, Lier van JB & Zeeman G (2001) Sustainability in environmental protection, centralisation or decentralisation in Urban sanitation. Presented on the international symposium on low cost wastewater treatment and reuse, February, 3–4, 2001, Cairo, EgyptGoogle Scholar
  67. Li, XZ, Zhao, QL, Hao, XD 1999Ammonium removal from landfill leachate by chemical precipitationWaste Manage.19409415Google Scholar
  68. Lind, BB, Ban, Z, Byden, S 2000Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastoniteBioresource Technology73169174CrossRefGoogle Scholar
  69. Lowenthal RE, Kornmuller URC & van Heerden EP (1994) Struvite precipitation in anaerobic treatment systems. Proceedings, 7th International Symposium on Anaerobic Digestion, Cape Town, SAGoogle Scholar
  70. Maaskant, W, Magelhaes, C, Maas, J, Onstwedder, H 1991The upflow anaerobic sludge blanket (UASB) or the treatment of sewageEnviron. Poll.1647653Google Scholar
  71. Machdar, I, Sekiguchi, Y, Sumino, H, Ohashi, A, Harada, H 2000Combination of a UASB reactor and a curtain type DHS (downflow hanging sponge) reactor as a cost-effective sewage treatment system for developing countriesWat. Sci. Tech.428388Google Scholar
  72. Mahmoud N (2002) Anaerobic pre-treatment of sewage under low temperature (15 °C) conditions in an integrated UASB-Digester system. PhD thesis of Wageningen UniversityGoogle Scholar
  73. Manninen, A, Kangas, J, Linnainmaa, M, Savolainen, H 1989Ammonia in finish poultry houses: effects of litter on ammonia levels and their reduction by technical binding agentsAm. Ind. Hyg. Assoc.50210215Google Scholar
  74. Maqueda, C, Perez Rodriguez, JL, Lebrato, J 1994Study of struvite precipitation in anaerobic digestersWater Res.28411416CrossRefGoogle Scholar
  75. Marschini Sergio, J, Moreira, EAM, Moreira, MZ, Hiramatsu, T, Dutrade Olivera, JE, Vannucchi, H 1996Whole body protein metabolism turnover in men on a high or low calorie rice and bean brazilian dietNutr. Res.16435441Google Scholar
  76. Maurer M, Muncke J & Larsen T (2003a) Techniques for nitrogen recovery and reuse. In: Lens P et al. (2003) Water and Resource Recovery in Industry. IWA PublishingGoogle Scholar
  77. Maurer, M, Schwegler, P, Larsen, TA 2003bNutrients in urine: energetic aspects of removal and recoveryWater Sci. Tech.483746Google Scholar
  78. McClelland, ISM, Jackson, AA 1996Urea kinetics in healthy young women: minimal effect of stage of menstrual cycle, contraceptive pil and protein intakeBr. J. Nutr.76199209CrossRefGoogle Scholar
  79. Mels, A, Otterpohl, R, Zeeman, G 2005Paradigm shifts in wastewater managementSustain. Building011416Google Scholar
  80. Miles, A, Ellis, TG 2001Struvite precipitation potential for nutrient recovery from anaerobically treated wastesWater Sci. Tech.43259266Google Scholar
  81. Monroy, O, Fama, G, Meraz, M, Montoya, L, Macarie, H 2000Anaerobic digestion for wastewater treatment in Mexico: state of technologyWater Res.3418031816CrossRefGoogle Scholar
  82. Nguyen, ML, Tanner, CC 1998Ammonium removal from wastewaters using natural New Zealand zeolites cations in the synthetic solutionsNew Zeal. J. Agric. Res.41427446Google Scholar
  83. NIPO/VEVIN (2002) Milieu en natuur compendium–03.html
  84. Omura, T, Onuma, H, Aizawa, J, Umita, T, Yagi, T 1989Removal efficiencies of indicator microorganisms in sewage treatment plantsWater Sci. Tech.21119124Google Scholar
  85. Otterpohl, R, Grottker, M, Lange, J 1997Sustainable water and waste management in urban areasWater Sci. Tech.35121133CrossRefGoogle Scholar
  86. Polprasert, C 1989Organic waste recyclingJohn Willey & SonsChichester-New York, Brisbane-Toronto-SingaporeGoogle Scholar
  87. Pozo del, R, Diez, V, Garrido, SE, Morales, M, Osorio, R 2002Hydraulic Distribution Effect on a Real-Scale Trickling FilterEnviron. Eng. Sci.19151157Google Scholar
  88. Ronteltap M, Biebow M, Maurer M & Gujer W (2003) Thermodynamics of struvite precipitation in source-separated urine (pp. 463–470). Proceedings of the 2nd IWA/GTZ international symposium on ecological sanitation, Lübeck, GermanyGoogle Scholar
  89. Trémolières J, Bonfilis S, Carré L & Sautier C (1961). Une méthode d’étude de la digistibilité chez l’homme, le fécalogramme (pp. 281–289). Nutritio et Dieta; European Review of Nutrition and Dietetics 3Google Scholar
  90. Salutski, ML, Duseth, MG, Ries, KM, Shapiero, JJ 1970Ultimate disposal of phosphate from wastewater by recovery as fertilizerChem. Eng. Prog. Symp. Ser.1075462Google Scholar
  91. Schellinkhout A, Lettinga G, van Velsen L & Louwe Kooijmans J (1985) The application of UASB reactor for the direct treatment of domestic wastewater under tropical conditions, In: Schwitzenbaum MS (Ed.). Proceedings of the Seminar/Workshop on Anaerobic Treatment of Sewage, (pp. 259–276) Amherst USAGoogle Scholar
  92. Schellinkhout, A, Collazos, CJ 1992Full scale application of the UASB technology for sewage treatmentWater Sci. Tech.25159166Google Scholar
  93. Schuiling, RD, Anrade, A 1999Recovery of struvite from calf manureEnviron. Technol.20765768Google Scholar
  94. Schwitzenbaum, MS, Jewel, WJ 1980Anaerobic attached microbial film expanded bed reactor treatmentJ. Water Pollut. Control Fed.5219531965Google Scholar
  95. Seghezzo L (2004) Anaerobic treatment of domestic wastewater in subtropical regions. PhD thesis of Wageningen UniversityGoogle Scholar
  96. Shaggu, EJ 2004Sustainable environmental protection using modified pit-latrinesWageningen UniversityThe NetherlandsPhD thesisGoogle Scholar
  97. Sperling, M, Freire, VH, Chernicharo, CA L 2001Performance evaluation of an UASB-activated sludge system treating municipal wastewaterWater Sci. Tech.43323328Google Scholar
  98. Steen, P, Brenner, A, Buuren, J, Oron, G 1999Post-treatment of UASB reactor effluent in an integrated duckweed and stabilisation pond systemWater Res.33615620Google Scholar
  99. Stevik, TK, Ausland, G, Jenssen, PD, Siegrist, RL 1999Removal of E. coli during intermittent filtration of wastewater effluent as affected by dosing rate and media typeWater Res.3320882098CrossRefGoogle Scholar
  100. STOWA (2001) Separate urine collection and treatment. Options for sustainable wastewater systems and mineral recovery report No 2001-39.Google Scholar
  101. STOWA (2005) Decentral Sanitation and Re-use: Options for separate treatment of urine. STOWA report No 2055-11Google Scholar
  102. STOWA (2005) DESAR, options for separate treatment of urine. Report No 2005-11Google Scholar
  103. Tandukar M, Uemura S, Machdar I, Ohashi A & Harada H (2004) A low cost municipal sewage treatment system with a combination of UASB and the ‘fourth generation’ downflow hanging sponge (DHS) reactors. Presented on the 10th Anaerobic Digestion Congres, Montreal, CanadaGoogle Scholar
  104. Tawfik, AI 2002The biorotor system for post-treatment of anaerobic effluentPhD thesis of Sub-department of Environmental Technology, Wageningen UniversityThe NetherlandsGoogle Scholar
  105. Third, KA, Sliekers, AO, Kuenen, JG, Jetten, MSM 2001The CANON system (Completely Autotrophic Nitrogen-removal Over Nitrite) under ammonium limitation: interaction and competition between three groups of bacteriaSystem. Appl. Microbiol.24588596Google Scholar
  106. Uemura, S, Takahashi, K, Takaishi, A, Machdar, I, Ohashi, A, Harada, H 2002Removal of indigenous coliphages and fecal coliforms by a novel sewage treatment system consisting of UASB and DHS unitsWater Sci. Technol.46303309Google Scholar
  107. Ueno, Y, Fujii, M 2001Three years experience of operating and selling recovered struvite from full-scale plantEnviron. Technol.2213731381Google Scholar
  108. Dongen, U, Jetten, MSM, Loosdrecht, MCM 2001aThe SAHRON®-Anammox® process for treatment of ammonium rich wastewaterWater Sci. Technol.44153160Google Scholar
  109. Van Dongen, L.G.J.M., Jetten, M.S.M. and Van Loosdrecht, M.C.M. (2001b) “The combined Sharon/Anammox process: A sustainable method for N-removal from sludge water.” IWA Publishing ISBN: 1843390000Google Scholar
  110. Velsen, AFM 1981Anaerobic digestion of piggery wasteWageningen UniversityThe NetherlandsPhD thesisGoogle Scholar
  111. Vieira, SMM, Souza, ME 1986Development of technology for the use of the UASB reactor in domestic sewage treatmentWater Sci. Technol.18221238Google Scholar
  112. Wisgerhof M (2003) Vermalen en bepalen; een onderzoek naar de mogelijkheden en beperkingen van voedselrestenvermalers, Afstudeerrapport Consumententechnologie en Productgebruik, Wageningen Universiteit, (in Dutch)Google Scholar
  113. Verstraete W, Morgan-Sagastume F, Aiyuk S, Waweru M, Rabaey K & Lissens G (2004) Anaerobic digestion as a core technology is sustainable management of organic matter. Presented on the 10th Anaerobic Digestion Congress, Montreal, Canada, Aug–Sep, 2004Google Scholar
  114. Vinnerås B, Höglund C, Jönsson H & Stenström TA (1999) Characterisation of sludge in urine separating sewerage systems. In: Klöve B, Etniner C, Jenssen P & Maehlum T (Eds) Proceedings of the 4th International Conference – Managing the Wastewater Resource Ecological Engineering for Wastewater Treatment. Norway, June 7–11, 1999.Google Scholar
  115. Vinnerås B (2002) Possibilities for Sustainable Nutrient Recycling by Faecal Separation Combined with Urine Diversion PhD thesis, Agraria 353, Department of Agricultural Enginering, Swedish University of Agricultural SciencesGoogle Scholar
  116. Vogel MP & Rupp GL (2002) Septic Tank and Drainfield Operation and Maintenance. Mont Guide Fact Sheet MT199401 HR 10/2002Google Scholar
  117. Wang, K 1994Integrated anaerobic and aerobic treatment of sewageSub-department of Environmental Technology, Wageningen UniversityThe NetherlandsPhD thesisGoogle Scholar
  118. Webb, KM, Ho, GE 1992Struvite (MgNH4PO4 · 6H2O) solubility and its application to a piggery effluent problemWater Sci. Technol.2622292232Google Scholar
  119. Wellinger, A, Kaufmann, R 1982Biogasproduktion aus Schweingülle in nicht beheitzen AnlagenBlätter für Landtechnik198112Google Scholar
  120. WHO (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Technical report series No. 778. Geneva, World Health OrganisationGoogle Scholar
  121. Wijn de JF & Hekkens WThJM (1985) Fysiologie van de voeding, Bohn, Scheltema & Holkema, Utrecht/AntwerpenGoogle Scholar
  122. Winblad U & Simpson-Hébert M (eds) (2004) Ecological Sanitation, Revised and Enlarged Edition. Stockholm Environment Institute 2004.Google Scholar
  123. Wrigley, TJ, Webb, KM, Venkitachalm, H 1992A laboratory study of struvite precipitation after anaerobic digestion of piggery wastesBioresouce Technol.42117121Google Scholar
  124. WRS (2001) Water Revival Systems. Market survey – extremely low flush toilets plus urine diverting toiletsand urinals for collection of black water and/or urine. SwedEnviro report 2001:1Google Scholar
  125. Yoda M, Hattori M & Miyaiji Y (1985) Treatment of municipal wastewater by anaerobic fluidized bed: behaviour of organic suspended solids in anaerobic treatment of sewage. In Proc. Seminar/Workshop: Anaerobic Treatment of Sewage (pp. 161–197). Amherst, Mass, USAGoogle Scholar
  126. Yu, H, Tay, JH, Wilson, F 1997A sustainable municipal wastewater treatment process for tropical and subtropical regions in developing countriesWater Sci. Tech.35191198CrossRefGoogle Scholar
  127. Zeeman, G 1991Mesophilic and psychrophilic digestion of liquid manureWageningen UniversityThe NetherlandsPhD thesisGoogle Scholar
  128. Zeeman, G, Sanders, WTM, Wang, K, Lettinga, G 1997Anaerobic treatment of complex wastewater and waste activated sludge. Application of upflow anaerobic solid removal (UASR) reactor for the removal and pre-hydrolysis of suspended CODWater Sci. Technol.35121128CrossRefGoogle Scholar
  129. Zeeman, G, Lettinga, G 1999The role of anaerobic digestion of domestic sewage in closing the water and nutrient cycle at community levelWater Sci. Technol.39187194CrossRefGoogle Scholar
  130. Zeeman G, Kujawa-Roeleveld K & Lettinga G (2001) Anaerobic treatment systems for high strength domestic waste (water) streams) IN: Lens P, Zeeman G & Lettinga G (Eds) Decentralised Sanitation and Reuse. Concepts, systems and implementation. IWA publishingGoogle Scholar
  131. Zeeman, G, Sanders, W, Lettinga, G 2000Feasibility of the on-site treatment of sewage and swill in large buildingsWat. Sci. Tech.41916Google Scholar
  132. Zweig, RO 1985Freshwater aquaculture in China: ecosystem managment for survivalAmbio146674Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Sub-Department of Environmental TechnologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Lettinga Associates Foundation (LeAF)WageningenThe Netherlands

Personalised recommendations