Skip to main content
Log in

Crude oil and gasoline volatility risk into a Realized-EGARCH model

  • Original Research
  • Published:
Review of Quantitative Finance and Accounting Aims and scope Submit manuscript

Abstract

This paper disentangles oil volatility risk to two components. The first component is attributed to crude oil, while the second is related to gasoline. This disentanglement serves the purpose of investigating the extent to which crude oil and gasoline are complementary in impacting return and variance residuals. The Realized-EGARCH model of Hansen et al. (J Appl Econom 29(5):774–799, 2014) is used to test the hypothesis that stock markets show some delay in incorporating oil information. This study shows that both crude oil- and gasoline-based information impact stock markets contemporaneously in a complementary fashion. Unlike the underreaction hypothesis, which is suggested as an explanation to the negative lagged effect of crude oil price change on return, the sequential information hypothesis explains better the ways information about oil is disseminated among U.S. industry portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. See for instance, Chen et al. (1986), Cong et al. (2008), and Jones and Kaul (1996).

  2. See for instance, Radchenko and Shapiro (2011), Ben Sita and Abosedra (2013), and Wang and Ngene (2017).

  3. See for instance, Marvel (1976), Kaufmann and Laskowski (2005), Yang and Ye (2008), Kaufmann and Ullman (2009), Kaufmann (2011), Kilian (2010), Cifarelli and Paladino (2010), Radchenko and Shapiro (2011), and Polemis and Fotis (2014).

  4. This is consistent with the underreaction hypothesis according to which investors exhibit conservatism bias, which is a tendency to underweight new information when updating prior beliefs (Barberis et al. 1998).

  5. This is in line with the sequential information hypothesis, investors receive information signals at different trading times. As a result, prices are partially revealing at the start, but fully revealing when bits of information are integrated through continuous trading (Copeland 1976).

  6. See for instance, El Hedi Arouri et al. (2011), and Sadorsky (2014).

  7. See Appendix 2 for the derivation of Eqs. (2), (3) and (4).

  8. The hedge ratio shows the number of crude oil units that is protected in terms of the number of gasoline units.

  9. I use monthly minimum and maximum volatilities, which has the disadvantage of being drawn from another distribution (extreme value distribution), but has the advantage of being generated by richer information dynamics, which are free from strong biases in intraday and interday bid-ask prices (Brandt and Jones 2006).

  10. See Hansen et al. (2012) for the properties of these log-likelihood functions.

  11. The crude oil spot prices are West Texas Intermediate (WTI) series, while the gasoline prices are a combination of New York Harbor (NYH) regular gasoline from June 2, 1986 to September 30, 2005 and reformulated RBOB regular gasoline series from October 3, 2005 to June 30, 2014.

  12. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

  13. http://www.federalreserve.gov/pubs/bulletin/2005/winter05_index.pdf.

References

  • Alizadeh S, Brandt MW, Diebold FX (2002) Range-based estimation of stochastic volatility models. J Finance 57(3):1047–1091

    Article  Google Scholar 

  • Andersen TG, Bollerslev T, Diebold FX, Ebens H (2001) The distribution of realized stock return volatility. J Financ Econ 61(1):43–76

    Article  Google Scholar 

  • Barberis N, Shleifer A, Vishny R (1998) A model of investor sentiment. J Financ Econ 49(3):307–343

    Article  Google Scholar 

  • Ben Sita B, Abdallah W (2014) Volatility links between the home and the host market for U.K. dual-listed stocks on us markets. J Int Financ Mark Inst Money 33:183–199

    Article  Google Scholar 

  • Ben Sita B, Abosedra S (2013) Causality-in-variance of prices of oil products. OPEC Energy Rev 37:373–386

    Article  Google Scholar 

  • Borenstein S, Cameron AC, Gilbert R (1997) Do gasoline prices respond asymmetrically to crude oil price changes? Q J Econ 112(1):305–339

    Article  Google Scholar 

  • Brandt MW, Jones CS (2006) Volatility forecasting with range-based EGARCH models. J Bus Econ Stat 24(4):470–486

    Article  Google Scholar 

  • Chen N-F, Roll R, Ross SA (1986) Economic forces and the stock market. J Bus 59(3):383–403

    Article  Google Scholar 

  • Cifarelli G, Paladino G (2010) Oil price dynamics and speculation: a multivariate financial approach. Energy Econ 32(2):363–372

    Article  Google Scholar 

  • Cong R-G, Wei Y-M, Jiao J-L, Fan Y (2008) Relationships between oil price shocks and stock market: an empirical analysis from china. Energy Policy 36(9):3544–3553

    Article  Google Scholar 

  • Copeland TE (1976) A model of asset trading under the assumption of sequential information arrival. J Finance 31(4):1149–1168

    Article  Google Scholar 

  • Driesprong G, Jacobsen B, Maat B (2008) Striking oil: another puzzle? J Financ Econ 89(2):307–327

    Article  Google Scholar 

  • El Hedi Arouri M, Jouini J, Nguyen DK (2011) Volatility spillovers between oil prices and stock sector returns: implications for portfolio management. J Int Money Finance 30(7):1387–1405

    Article  Google Scholar 

  • Elyasiani E, Mansur I, Odusami B (2011) Oil price shocks and industry stock returns. Energy Econ 33(5):966–974

    Article  Google Scholar 

  • Engle RF, Ghysels E, Sohn B (2013) Stock market volatility and macroeconomic fundamentals. Rev Econ Stat 95(3):776–797

    Article  Google Scholar 

  • Hansen PR, Huang Z, Shek HH (2012) Realized GARCH: a joint model for returns and realized measures of volatility. J Appl Econom 27(6):877–906

    Article  Google Scholar 

  • Hansen PR, Lunde A, Voev V (2014) Realized beta GARCH: a multivariate GARCH model with realized measures of volatility. J Appl Econom 29(5):774–799

    Article  Google Scholar 

  • Jiang Y, Ahmed S, Liu X (2017) Volatility forecasting in the Chinese Commodity Futures market with intraday data. Rev Quant Financ Acc 48:1123–1173

    Article  Google Scholar 

  • Jones CM, Kaul G (1996) Oil and the stock markets. J Finance 51(2):463–491

    Article  Google Scholar 

  • Kaufmann RK (2011) The role of market fundamentals and speculation in recent price changes for crude oil. Energy Policy 39(1):105–115

    Article  Google Scholar 

  • Kaufmann RK, Laskowski C (2005) Causes for an asymmetric relation between the price of crude oil and refined petroleum products. Energy Policy 33(12):1587–1596

    Article  Google Scholar 

  • Kaufmann RK, Ullman B (2009) Oil prices, speculation, and fundamentals: interpreting causal relations among spot and futures prices. Energy Econ 31(4):550–558

    Article  Google Scholar 

  • Kilian L (2010) Explaining fluctuations in gasoline prices: a joint model of the global crude oil market and the us retail gasoline market. Energy J 31(2):87–112

    Article  Google Scholar 

  • Marvel HP (1976) The economics of information and retail gasoline price behavior: an empirical analysis. J Polit Econ 84(5):1033–1060

    Article  Google Scholar 

  • Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59(2):347–370

    Article  Google Scholar 

  • Polemis ML, Fotis PN (2014) The taxation effect on gasoline price asymmetry nexus: evidence from both sides of the atlantic. Energy Policy 73:225–233

    Article  Google Scholar 

  • Radchenko S, Shapiro D (2011) Anticipated and unanticipated effects of crude oil prices and gasoline inventory changes on gasoline prices. Energy Econ 33(5):758–769

    Article  Google Scholar 

  • Sadorsky P (2014) Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Econ 43:72–81

    Article  Google Scholar 

  • Wang J, Ngene G (2017) Symmetric and asymmetric nonlinear causalities between oil prices and the U.S. economic sectors. Rev Quant Financ Acc. https://doi.org/10.1007/s11156-017-0668-3

    Google Scholar 

  • Yang H, Ye L (2008) Search with learning: understanding asymmetric price adjustments. Rand J Econ 39(2):547–564

    Article  Google Scholar 

Download references

Acknowledgements

I am thankful for helpful comments from, the editor (Dr. C.-F. Lee), two anonymous referees, and participants in the 4th International Symposium on Energy and Finance Issues on March 24–26, 2016 in Paris. Special thanks to Dania Makki for proofing read the last version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ben Sita.

Appendices

Appendix 1

See Table 8.

Table 8 U.S. industry portfolio names

Appendix 2: Decomposition of the oil risk factor

Start with

$$r_{c,t} = \alpha_{c} + \beta_{cx} r_{x,t} + \varepsilon_{c,t} ,$$
(15)
$$r_{g,t} = \alpha_{g} + \beta_{gc} (\alpha_{c} + \beta_{cx} r_{x,t} + \varepsilon_{c,t} ) + \varepsilon_{g,t} ,$$
(16)

Take the expected second moment of Eqs. (15) and (16).

$$\begin{aligned} Er_{c,t}^{2} & = E\alpha_{c}^{2} + 2\alpha_{c} \beta_{cx} Er_{x,t} + 2\alpha_{c} E\varepsilon_{c,t} + \beta_{cx}^{2} Er_{x,t}^{2} + 2\beta_{cx} E\varepsilon_{c,t} r_{x,t} + E\varepsilon_{ct}^{2} \\ h_{c,t} & = \beta_{cx,t}^{2} \sigma_{x,t}^{2} + \sigma_{c\varepsilon ,t}^{2} , \\ \end{aligned}$$
(17)
$$\begin{aligned} Er_{g,t}^{2} & = E\alpha_{c}^{2} \beta_{cg,t}^{2} + 2\alpha_{c} \alpha_{g} \beta_{cg,t} + 2\alpha_{c} \beta_{cx,t} \beta_{cg,t}^{2} Er_{x,t} + 2\alpha_{c} \beta_{cg,t}^{2} E\varepsilon_{ct} + 2\alpha_{c} \beta_{cg,t} E\varepsilon_{g,t} \\ & \quad + E\alpha_{c}^{2} + 2\alpha_{g} \beta_{cg,t} \beta_{cx,t} Er_{x,t} + 2\alpha_{g} \beta_{cg,t} E\varepsilon_{c,t} + 2\alpha_{g} E\varepsilon_{g,t} + \beta_{cg,t}^{2} \beta_{cx,t}^{2} Er_{x,t}^{2} \\ & \quad + 2\beta_{cx,t} \beta_{cg,t}^{2} E\varepsilon_{c,t} r_{x,t} + \beta_{cg,t}^{2} E\varepsilon_{c,t}^{2} + 2\beta_{cg,t} \beta_{cx,t} E\varepsilon_{g,t} r_{x,t} + 2\beta_{cg,t} E\varepsilon_{c,t} \varepsilon_{g,t} + E\varepsilon_{g,t}^{2} , \\ \end{aligned}$$
(18)
$$\begin{aligned} Er_{g,t}^{2} & = \beta_{cg,t}^{2} \beta_{cx,t}^{2} Er_{x,t}^{2} + \beta_{cg,t}^{2} E\varepsilon_{c,t}^{2} + 2\beta_{cg,t} E\varepsilon_{c,t} \varepsilon_{g,t} + E\varepsilon_{g,t}^{2} , \\ h_{g,t} & = \beta_{cg,t}^{2} \beta_{cx,t}^{2} \sigma_{x,t}^{2} + \beta_{cg,t}^{2} \sigma_{c\varepsilon ,t}^{2} + 2\beta_{cg,t} \sigma_{cg,t} + \sigma_{g\varepsilon ,t}^{2} \\ \end{aligned}$$
(19)
$$\begin{aligned} Er_{c,t} r_{g,t} & = \beta_{cg,t} E\varepsilon_{c,t}^{2} + E\varepsilon_{c,t} \varepsilon_{g,t} + E\alpha_{c} \alpha_{g} + E\alpha_{c}^{2} \beta_{cg,t} + \alpha_{c} E\varepsilon_{g,t} + \beta_{cg,t} \beta_{cx,t}^{2} Er_{x,t}^{2} \\ & \quad + \alpha_{g} \beta_{cx,t} Er_{x,t} + 2\alpha_{c} \beta_{cg,t} E\varepsilon_{c,t} + \beta_{cx,t} E\varepsilon_{g,t} r_{x,t} + 2\alpha_{c} \beta_{cg,t} \beta_{cx,t} Er_{x,t} + 2\beta_{cg,t} \beta_{cx.t} E\varepsilon_{c,t} r_{x,t} \\ h_{cg,t} & = \beta_{cg,t} \sigma_{c\varepsilon ,t}^{2} + \sigma_{cg,t} + \beta_{cg,t} \beta_{cx,t}^{2} \sigma_{x,t}^{2} , \\ \end{aligned}$$
(20)

Express the betas of Eqs. (1720) in relative terms as

$$\begin{aligned} \beta_{cx,t} & = \rho_{cx,t} \frac{{\sigma_{c,t} }}{{\sigma_{x,t} }} \\ \beta_{gc,t} & = \rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}, \\ \end{aligned}$$
(21)

Standardize the covariance in terms of crude oil variance and simplify thereafter to obtain,

$$\begin{aligned} \frac{{h_{cg,t} }}{{h_{c,t} }} & = \frac{{\rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}\sigma_{c\varepsilon ,t}^{2} + \sigma_{cg,t} + \rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}\left( {\rho_{cx,t} \frac{{\sigma_{c,t} }}{{\sigma_{x,t} }}} \right)^{2} \sigma_{x,t}^{2} }}{{\left( {\rho_{cx,t} \frac{{\sigma_{c,t} }}{{\sigma_{x,t} }}} \right)^{2} \sigma_{x,t}^{2} + \sigma_{c\varepsilon ,t}^{2} }}, \\ & = \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }} \times \rho_{gc,t} \times \frac{{\left( {2 + \rho_{cx,t}^{2} } \right)}}{{\left( {1 + \rho_{cx,t}^{2} } \right)}} \\ \end{aligned}$$
(22)

Standardize the covariance in terms of gasoline variance and simplify thereafter to obtain,

$$\begin{aligned} \frac{{h_{cg,t} }}{{h_{g,t} }} & = \frac{{\rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}\sigma_{c\varepsilon ,t}^{2} + \sigma_{cg,t} + \rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}\left( {\rho_{cx,t} \frac{{\sigma_{c,t} }}{{\sigma_{x,t} }}} \right)^{2} \sigma_{x,t}^{2} }}{{\left( {\rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}} \right)^{2} \left( {\rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}} \right)^{2} \left( {\rho_{cx,t} \frac{{\sigma_{c,t} }}{{\sigma_{x,t} }}} \right)^{2} \sigma_{x,t}^{2} + \left( {\rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}} \right)^{2} \sigma_{c\varepsilon ,t}^{2} + 2\rho_{gc,t} \frac{{\sigma_{g,t} }}{{\sigma_{c,t} }}\sigma_{cg,t} + \sigma_{g\varepsilon ,t}^{2} }}, \\ & = \frac{{\sigma_{c,t} }}{{\sigma_{g,t} }} \times \rho_{gc,t} \times \frac{{\left( {2 + \rho_{cx,t}^{2} } \right)}}{{\left( {1 + \rho_{gc,t}^{2} \rho_{cx,t}^{2} + 3\rho_{cx,t}^{2} } \right)}} \\ \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Sita, B. Crude oil and gasoline volatility risk into a Realized-EGARCH model. Rev Quant Finan Acc 53, 701–720 (2019). https://doi.org/10.1007/s11156-018-0763-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11156-018-0763-0

Keywords

JEL Classification

Navigation