Reliable Computing

, Volume 11, Issue 5, pp 369–382 | Cite as

Quantified Set Inversion Algorithm with Applications to Control

  • Pau Herrero
  • Miguel A. Sainz
  • Josep Veh
  • Luc Jaulin


In this paper, a new algorithm based on Set Inversion techniques and Modal Interval Analysis is presented. This algorithm allows one to solve problems involving quantified constraints over the reals through the characterization of their solution sets. The presented methodology can be applied to a wide range of problems involving uncertain (non)linear systems. Finally, an advanced application is solved.


Mathematical Modeling Linear System Computational Mathematic Industrial Mathematic Interval Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdallah, C., Dorato, P., Famularo, D., and Yang, W.: Robust Nonlinear Feedback Design via Quantifier Elimination Theory, International Journal of Robust and Non-Linear Control 9 (1999), pp. 817–822.CrossRefGoogle Scholar
  2. 2.
    Benhamou, F. and Goulard, F.: Universally Quantified Interval Constraints, Lecture Notes in Computer Science 5 (4) (2000).Google Scholar
  3. 3.
    Benhamou, F., Goualard, F., Languenou, E., and Christie, M.: Interval Constraint Solving for Camera Control and Motion Planning, ACM Trans. Comput. Logic 5 (4) (2004), pp. 732–767.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Brown, C. W.: Quantifier Elimination by Partial Cylindrical Algebraic Decomposition,
  5. 5.
    Chauvin, C., Muller, M., and Weber, A.: An Application of Quantifier Elimination to Mathematical Biology, in: Computer Algebra in Science and Engineering, World Scientific, 1994, pp. 287–296.Google Scholar
  6. 6.
    Collins, G. E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition, in: 2nd GI Conf. Automata Theory and Formal Languages, Vol. 33, Springer, 1975, pp. 134–189.Google Scholar
  7. 7.
    Dorato., P.: Quantified Multivariate Polynomial Inequalities, IEEE Control Systems Magazine 20 (5) (2000), pp. 48–58.CrossRefGoogle Scholar
  8. 8.
    Gardeñes, E., Sainz, M. Á, Jorba, L., Calm, R., Estela, R., Mielgo, H., and Trepat, A.: Modal Intervals, Reliable Computing 7 (2) (2001), pp. 77–111.CrossRefGoogle Scholar
  9. 9.
    Gardeñes, E., Trepat, A., and Janer, J.: Sigla-PL/1: Development and Applications, in: Nickel, K. L. E. (ed.), Interval Mathematics 80, Springer, 1980, pp. 301–315.Google Scholar
  10. 10.
    Garloff, J. and Graf, B.: Solving Strict Polynomial Inequalities by Bernstein Expansion, in: The Use of Symbolic Methods in Control System Analysis and Design, 1999, pp. 339–352.Google Scholar
  11. 11.
    Hong, H.: Simple Solution Formula Construction in Cylindrical Algebraic Decomposition Based Quantifier Elimination, in: Proc. ISSAC’92, International Symposium on Symbolic and Algebraic Computation, 1992, pp. 177–188.Google Scholar
  12. 12.
    Ioakimidis, N. I.: REDLOG-Aided Derivation of Feasibility Conditions in Applied Mechanics and Engineering Problems under Simple Inequality Constraints, Journal of Mechanical Engineering (Strojnícky Casopis) 50 (1) (1999), pp. 58–69.Google Scholar
  13. 13.
    Jaulin, L., Ratschan, S., and Hardouin, L.: Set Computation for Nonlinear Control, Reliable Computing 10 (1) (2004), pp. 1–26.CrossRefGoogle Scholar
  14. 14.
    Jaulin, L. and Walter, E.: Set Inversion via Interval Analysis for Nonlinear Bounded-Error Estimation, Automatica 32 (8) (1993), pp. 1053–1064.CrossRefGoogle Scholar
  15. 15.
    Jirstrand, M.: Nonlinear Control System Design by Quantifier Elimination, Journal of Symbolic Computation 24 (2) (1997), pp. 137–152.CrossRefGoogle Scholar
  16. 16.
    Ratschan, S.: Solving Existentially Quantified Constraints with One Equality and Arbitrarily Many Inequalities, in: Rossi, F. (ed.), Proceedings of the Ninth International Conference on Principles and Practice of Constraint Programming, Springer, 2003, pp. 615–633.Google Scholar
  17. 17.
    Ratschan, S. and Vehí, J.: Robust Pole Clustering of Parametric Uncertain Systems Using Interval Methods, in: Colaneri, P. (ed.), Robust Control Design 2003-Proceedings of the 4th IFAC Symposium, Elsevier Science, 2004.Google Scholar
  18. 18.
    Shary, S. P.: A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity, Reliable Computing 8 (5) (2002), pp. 321–418.CrossRefGoogle Scholar
  19. 19.
    Stevens, B. and Lewis, F.: Aircraft Control and Simulation, Wiley, 1993.Google Scholar
  20. 20.
    Sturm, T.: Reasoning over Networks by Symbolic Methods, Applicable Algebra in Engineering Communication and Computing 10 (1) (2000), pp. 79–96.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Pau Herrero
    • 1
  • Miguel A. Sainz
    • 1
  • Josep Veh
    • 1
  • Luc Jaulin
    • 2
  1. 1.Institut d’Informàtica i Aplicacions (IIiA)Universitat de GironaGironaSpain
  2. 2.Extraction et Exploitation de l’Information en Environnements Incertains (E3I2)ENSIETAFrance

Personalised recommendations