Skip to main content

Advertisement

Log in

Fertility preservation options in transgender people: A review

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Gender affirming procedures adversely affect the reproductive potential of transgender people. Thus, fertility preservation options should be discussed with all transpeople before medical and surgical transition. In transwomen, semen cryopreservation is typically straightforward and widely available at fertility centers. The optimal number of vials frozen depends on their reproductive goals and treatment options, therefore a consultation with a fertility specialist is optimal. Experimental techniques including spermatogonium stem cells (SSC) and testicular tissue preservation are technologies currently under development in prepubertal individuals but are not yet clinically available. In transmen, embryo and/or oocyte cryopreservation is currently the best option for fertility preservation. Embryo cryopreservation requires fertilization of the transman’s oocytes with a donor or partner’s sperm prior to cryopreservation, but this limits his future options for fertilizing the eggs with another partner or donor. Oocyte cryopreservation offers transmen the opportunity to preserve their fertility without committing to a male partner or sperm donor at the time of cryopreservation. Both techniques however require at least a two-week treatment course, egg retrieval under sedation and considerable cost. Ovarian tissue cryopreservation is a promising experimental method that may be performed at the same time as gender affirming surgery but is offered in only a limited amount of centers worldwide. In select places, this method may be considered for prepubertal children, adolescents, and adults when ovarian stimulation is not possible. Novel methods such as in-vitro activation of primordial follicles, in vitro maturation of immature oocytes and artificial gametes are under development and may hold promise for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hembree WC, Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, et al. Endocrine treatment of gender-dysphoric/gender-incongruent persons: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017;102(11):3869–903. https://doi.org/10.1210/jc.2017-01658.

    Article  PubMed  Google Scholar 

  2. Martinez F. International Society for Fertility Preservation E-AEWG. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Fertil Steril. 2017;108(3):407–15 e11. https://doi.org/10.1016/j.fertnstert.2017.05.024.

    Article  PubMed  Google Scholar 

  3. WPATH. Standards of Care for the Health of Transsexual, Transgender, and Gender Nonconforming People Version 7. 2011.

  4. Tornello SL, Bos H. Parenting intentions among transgender individuals. LGBT Health. 2017;4(2):115–20. https://doi.org/10.1089/lgbt.2016.0153.

    Article  PubMed  Google Scholar 

  5. Wierckx K, Van Caenegem E, Pennings G, Elaut E, Dedecker D, Van de Peer F, et al. Reproductive wish in transsexual men. Hum Reprod. 2012;27(2):483–7. https://doi.org/10.1093/humrep/der406.

    Article  PubMed  Google Scholar 

  6. Wierckx K, Stuyver I, Weyers S, Hamada A, Agarwal A, De Sutter P, et al. Sperm freezing in transsexual women. Arch Sex Behav. 2012;41(5):1069–71. https://doi.org/10.1007/s10508-012-0012-x.

    Article  PubMed  Google Scholar 

  7. De Sutter P, Kira K, Verschoor A, Hotimsky A. The Desire to have Children and the Preservation of Fertility in Transsexual Women: A Survey. Int J Transgend. 2002;6(3).

  8. Goldman RH, Kaser DJ, Missmer SA, Farland LV. Scout, Ashby RK et al. fertility treatment for the transgender community: a public opinion study. J Assist Reprod Genet. 2017;34(11):1457–67. https://doi.org/10.1007/s10815-017-1035-y.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Armuand G, Dhejne C, Olofsson JI, Rodriguez-Wallberg KA. Transgender men's experiences of fertility preservation: a qualitative study. Hum Reprod. 2017;32(2):383–90. https://doi.org/10.1093/humrep/dew323.

    Article  CAS  PubMed  Google Scholar 

  10. Mitu K. Transgender reproductive choice and fertility preservation. AMA J Ethics. 2016;18(11):1119–25. https://doi.org/10.1001/journalofethics.2016.18.11.pfor2-1611.

    Article  PubMed  Google Scholar 

  11. Jones CA, Reiter L, Greenblatt E. Fertility preservation in transgender patients. Int J Transgend. 2016;17(2):76–82. https://doi.org/10.1080/15532739.2016.1153992.

    Article  CAS  Google Scholar 

  12. Wakefield BW, Boguszewski K, Cheney D, Taylor J. 74 - trends in fertility preservation for transgender adolescents and young adults at an Academic Referral Center. J Adolesc Health. 2018;62(2, Supplement):S41. https://doi.org/10.1016/j.jadohealth.2017.11.081.

    Article  Google Scholar 

  13. Chen D, Simons L, Johnson EK, Lockart BA, Finlayson C. Fertility preservation for transgender adolescents. J Adolesc Health. 2017;61(1):120–3. https://doi.org/10.1016/j.jadohealth.2017.01.022.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nahata L, Tishelman AC, Caltabellotta NM, Quinn GP. Low fertility preservation utilization among transgender youth. J Adolesc Health. 2017;61(1):40–4. https://doi.org/10.1016/j.jadohealth.2016.12.012.

    Article  PubMed  Google Scholar 

  15. James-Abra S, Tarasoff LA, Green D, Epstein R, Anderson S, Marvel S, et al. Trans people's experiences with assisted reproduction services: a qualitative study. Hum Reprod. 2015;30(6):1365–74. https://doi.org/10.1093/humrep/dev087.

    Article  CAS  PubMed  Google Scholar 

  16. Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kliesch S, et al. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod. 2015;30(11):2463–75. https://doi.org/10.1093/humrep/dev190.

    Article  PubMed  Google Scholar 

  17. Schneider F, Kliesch S, Schlatt S, Neuhaus N. Andrology of male-to-female transsexuals: influence of cross-sex hormone therapy on testicular function. Andrology. 2017;5(5):873–80. https://doi.org/10.1111/andr.12405.

    Article  CAS  PubMed  Google Scholar 

  18. Nieschlag E, Kamischke A, Behre H. Hormonal male contraception: the essential role of testosterone. In: Testosterone: action, deficiency, substitution. 3rd ed. Cambridge: Cambridge University Press; 2004. p. 685–714.

    Chapter  Google Scholar 

  19. Fredricsson B, Carlstrom K. Effects of low doses of cyproterone acetate on sperm morphology and some other parameters of reproduction in normal men. Andrologia. 1981;13(4):369–75.

    Article  CAS  Google Scholar 

  20. Fogh M, Corker CS, Hunter WM, McLean H, Philip J, Schou G, et al. The effects of low doses of cyproterone acetate on some functions of the reproductive system in normal men. Acta Endocrinol. 1979;91(3):545–52.

    Article  CAS  Google Scholar 

  21. Wang C, Yeung KK. Use of low-dosage oral cyproterone acetate as a male contraceptive. Contraception. 1980;21(3):245–72.

    Article  CAS  Google Scholar 

  22. Meriggiola MC, Bremner WJ, Costantino A, Di Cintio G, Flamigni C. Low dose of cyproterone acetate and testosterone enanthate for contraception in men. Hum Reprod. 1998;13(5):1225–9.

    Article  CAS  Google Scholar 

  23. Meriggiola MC, Bremner WJ, Paulsen CA, Valdiserri A, Incorvaia L, Motta R, et al. A combined regimen of cyproterone acetate and testosterone enanthate as a potentially highly effective male contraceptive. J Clin Endocrinol Metab. 1996;81(8):3018–23. https://doi.org/10.1210/jcem.81.8.8768868.

    Article  CAS  PubMed  Google Scholar 

  24. Steelman SL, Brooks JR, Morgan ER, Patanelli DJ. Anti-androgenic activity of spironolactone. Steroids. 1969;14(4):449–50.

    Article  CAS  Google Scholar 

  25. Corvol P, Michaud A, Menard J, Freifeld M, Mahoudeau J. Antiandrogenic effect of spirolactones: mechanism of action. Endocrinology. 1975;97(1):52–8. https://doi.org/10.1210/endo-97-1-52.

    Article  CAS  PubMed  Google Scholar 

  26. Mokhtar M, Shariatie M, Tadayon N. The effect of spironolactone on concentration of LH, FSH, testosterone Di-hydrotestosterone and spermatogenesis in rats. J Ardabil Univ Med Sci. 2007;7(1):62–8.

    Google Scholar 

  27. Kose MG, Erdem SR, Peskircioglu CL, Caylak B. Effects of angiogenesis inhibition by spironolactone on isolated vas deferens contractility in an experimental varicocele model in rats. Urology. 2012;80(4):816–21. https://doi.org/10.1016/j.urology.2012.07.017.

    Article  PubMed  Google Scholar 

  28. Gokhan-Kose M, Erdem SR, Peskircioglu CL, Caylak B. Angiogenesis inhibition impairs testicular morphology in experimental left varicocele rat model. Actas Urol Esp. 2014;38(7):459–64. https://doi.org/10.1016/j.acuro.2013.12.013.

    Article  CAS  PubMed  Google Scholar 

  29. Lunglmayr G, Girsch E, Meixner EM, Viehberger G, Bieglmayer C. Effects of long term GnRH analogue treatment on hormone levels and spermatogenesis in patients with carcinoma of the prostate. Urol Res. 1988;16(4):315–9.

    Article  CAS  Google Scholar 

  30. Labrie F, Cusan L, Seguin C, Belanger A, Pelletier G, Reeves J, et al. Antifertility effects of LHRH agonists in the male rat and inhibition of testicular steroidogenesis in man. Int J Fertil. 1980;25(3):157–70.

    CAS  PubMed  Google Scholar 

  31. Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, Cusan L, et al. Gonadotropin-releasing hormone agonists in the treatment of prostate cancer. Endocr Rev. 2005;26(3):361–79. https://doi.org/10.1210/er.2004-0017.

    Article  CAS  PubMed  Google Scholar 

  32. Linde R, Doelle GC, Alexander N, Kirchner F, Vale W, Rivier J, et al. Reversible inhibition of testicular steroidogenesis and spermatogenesis by a potent gonadotropin-releasing hormone agonist in normal men: an approach toward the development of a male contraceptive. N Engl J Med. 1981;305(12):663–7. https://doi.org/10.1056/NEJM198109173051203.

    Article  CAS  PubMed  Google Scholar 

  33. Kuber W, Viehberger G, Zeillinger R, Spona J. Effects of the duration of therapy with the LHRH agonist D-ser (BUT)6 Azgly10-LHRH (ICI 118-630) on the steroid hormone content and the morphology of human testicular tissue in the treatment of patients with advanced prostate cancer. Urol Res. 1991;19(1):19–24.

    Article  CAS  Google Scholar 

  34. Bhasin S, Swerdloff RS. Mechanisms of gonadotropin-releasing hormone agonist action in the human male. Endocr Rev. 1986;7(1):106–14. https://doi.org/10.1210/edrv-7-1-106.

    Article  CAS  PubMed  Google Scholar 

  35. Behre HM, Nashan D, Hubert W, Nieschlag E. Depot gonadotropin-releasing hormone agonist blunts the androgen-induced suppression of spermatogenesis in a clinical trial of male contraception. J Clin Endocrinol Metab. 1992;74(1):84–90. https://doi.org/10.1210/jcem.74.1.1727833.

    Article  CAS  PubMed  Google Scholar 

  36. Leavy M, Trottmann M, Liedl B, Reese S, Stief C, Freitag B, et al. Effects of elevated beta-estradiol levels on the functional morphology of the testis - new insights. Sci Rep. 2017;7:39931. https://doi.org/10.1038/srep39931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thiagaraj D, Gunasegaram R, Loganath A, Peh KL, Kottegoda SR, Ratnam SS. Histopathology of the testes from male transsexuals on oestrogen therapy. Ann Acad Med Singap. 1987;16(2):347–8.

    CAS  PubMed  Google Scholar 

  38. Schulze C. Response of the human testis to long-term estrogen treatment: morphology of Sertoli cells, Leydig cells and spermatogonial stem cells. Cell Tissue Res. 1988;251(1):31–43.

    Article  CAS  Google Scholar 

  39. Kaushik MC, Misro MM, Sehgal N, Nandan D. Effect of chronic oestrogen administration on androgen receptor expression in reproductive organs and pituitary of adult male rat. Andrologia. 2010;42(3):193–205. https://doi.org/10.1111/j.1439-0272.2009.00979.x.

    Article  CAS  PubMed  Google Scholar 

  40. Kaushik MC, Misro MM, Sehgal N, Nandan D. AR versus ER (alpha) expression in the testis and pituitary following chronic estrogen administration in adult rat. Syst Biol Reprod Med. 2010;56(6):420–30. https://doi.org/10.3109/19396368.2010.501891.

    Article  CAS  PubMed  Google Scholar 

  41. Schneider F, Neuhaus N, Wistuba J, Zitzmann M, Hess J, Mahler D, et al. Testicular functions and clinical characterization of patients with gender dysphoria (GD) undergoing sex reassignment surgery (SRS). J Sex Med. 2015;12(11):2190–200. https://doi.org/10.1111/jsm.13022.

    Article  CAS  PubMed  Google Scholar 

  42. Hamada A, Kingsberg S, Wierckx K, T'Sjoen G, De Sutter P, Knudson G, et al. Semen characteristics of transwomen referred for sperm banking before sex transition: a case series. Andrologia. 2015;47(7):832–8. https://doi.org/10.1111/and.12330.

    Article  CAS  PubMed  Google Scholar 

  43. T'Sjoen G, Van Caenegem E, Wierckx K. Transgenderism and reproduction. Curr Opin Endocrinol Diabetes Obes. 2013;20(6):575–9. https://doi.org/10.1097/01.med.0000436184.42554.b7.

    Article  PubMed  Google Scholar 

  44. Kafetsoulis A, Brackett NL, Ibrahim E, Attia GR, Lynne CM. Current trends in the treatment of infertility in men with spinal cord injury. Fertil Steril. 2006;86(4):781–9. https://doi.org/10.1016/j.fertnstert.2006.01.060.

    Article  PubMed  Google Scholar 

  45. Meseguer M, Garrido N, Remohi J, Pellicer A, Simon C, Martinez-Jabaloyas JM, et al. Testicular sperm extraction (TESE) and ICSI in patients with permanent azoospermia after chemotherapy. Hum Reprod. 2003;18(6):1281–5.

    Article  CAS  Google Scholar 

  46. Hsiao W, Stahl PJ, Osterberg EC, Nejat E, Palermo GD, Rosenwaks Z, et al. Successful treatment of postchemotherapy azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience. J Clin Oncol. 2011;29(12):1607–11. https://doi.org/10.1200/JCO.2010.33.7808.

    Article  PubMed  Google Scholar 

  47. Damani MN, Master V, Meng MV, Burgess C, Turek P, Oates RD. Postchemotherapy ejaculatory azoospermia: fatherhood with sperm from testis tissue with intracytoplasmic sperm injection. J Clin Oncol. 2002;20(4):930–6. https://doi.org/10.1200/JCO.2002.20.4.930.

    Article  CAS  PubMed  Google Scholar 

  48. De Roo C, Tilleman K, T'Sjoen G, De Sutter P. Fertility options in transgender people. Int Rev Psychiatry. 2016;28(1):112–9. https://doi.org/10.3109/09540261.2015.1084275.

    Article  PubMed  Google Scholar 

  49. Ma HM, Chen SK, Chen RM, Zhu C, Xiong F, Li T, et al. Pubertal development timing in urban Chinese boys. Int J Androl. 2011;34(5 Pt 2):e435–45. https://doi.org/10.1111/j.1365-2605.2011.01173.x.

    Article  PubMed  Google Scholar 

  50. Guizar-Vazquez JJ, Rosales-Lopez A, Ortiz-Jalomo R, Nava-Delgado SE, Salamanca-Gomez F. Age of onset of spermaturia (spermache) in 669 Mexican children and its relation to secondary sexual characteristics and height. Bol Med Hosp Infant Mex. 1992;49(1):12–7.

    CAS  PubMed  Google Scholar 

  51. Nielsen CT, Skakkebaek NE, Richardson DW, Darling JA, Hunter WM, Jorgensen M, et al. Onset of the release of spermatozoa (spermarche) in boys in relation to age, testicular growth, pubic hair, and height. J Clin Endocrinol Metab. 1986;62(3):532–5. https://doi.org/10.1210/jcem-62-3-532.

    Article  CAS  PubMed  Google Scholar 

  52. van Casteren NJ, Dohle GR, Romijn JC, de Muinck Keizer-Schrama SM, Weber RF, van den Heuvel-Eibrink MM. Semen cryopreservation in pubertal boys before gonadotoxic treatment and the role of endocrinologic evaluation in predicting sperm yield. Fertil Steril. 2008;90(4):1119–25. https://doi.org/10.1016/j.fertnstert.2007.08.006.

    Article  PubMed  Google Scholar 

  53. Daudin M, Rives N, Walschaerts M, Drouineaud V, Szerman E, Koscinski I, et al. Sperm cryopreservation in adolescents and young adults with cancer: results of the French national sperm banking network (CECOS). Fertil Steril. 2015;103(2):478–86 e1. https://doi.org/10.1016/j.fertnstert.2014.11.012.

    Article  PubMed  Google Scholar 

  54. Bahadur G, Ling KL, Hart R, Ralph D, Wafa R, Ashraf A, et al. Semen quality and cryopreservation in adolescent cancer patients. Hum Reprod. 2002;17(12):3157–61.

    Article  CAS  Google Scholar 

  55. Freour T, Mirallie S, Jean M, Barriere P. Sperm banking and assisted reproductive outcome in men with cancer: a 10 years' experience. Int J Clin Oncol. 2012;17(6):598–603. https://doi.org/10.1007/s10147-011-0330-3.

    Article  PubMed  Google Scholar 

  56. Schmidt KL, Larsen E, Bangsboll S, Meinertz H, Carlsen E, Andersen AN. Assisted reproduction in male cancer survivors: fertility treatment and outcome in 67 couples. Hum Reprod. 2004;19(12):2806–10. https://doi.org/10.1093/humrep/deh518.

    Article  PubMed  Google Scholar 

  57. Ohlander S, Hotaling J, Kirshenbaum E, Niederberger C, Eisenberg ML. Impact of fresh versus cryopreserved testicular sperm upon intracytoplasmic sperm injection pregnancy outcomes in men with azoospermia due to spermatogenic dysfunction: a meta-analysis. Fertil Steril. 2014;101(2):344–9. https://doi.org/10.1016/j.fertnstert.2013.10.012.

    Article  PubMed  Google Scholar 

  58. Wyns C, Curaba M, Petit S, Vanabelle B, Laurent P, Wese JF, et al. Management of fertility preservation in prepubertal patients: 5 years' experience at the Catholic University of Louvain. Hum Reprod. 2011;26(4):737–47. https://doi.org/10.1093/humrep/deq387.

    Article  CAS  PubMed  Google Scholar 

  59. Bertelloni S, Baroncelli GI, Ferdeghini M, Menchini-Fabris F, Saggese G. Final height, gonadal function and bone mineral density of adolescent males with central precocious puberty after therapy with gonadotropin-releasing hormone analogues. Eur J Pediatr. 2000;159(5):369–74.

    Article  CAS  Google Scholar 

  60. Loverro G, Resta L, Dellino M, Edoardo DN, Cascarano MA, Loverro M, et al. Uterine and ovarian changes during testosterone administration in young female-to-male transsexuals. Taiwan J Obstet Gynecol. 2016;55(5):686–91. https://doi.org/10.1016/j.tjog.2016.03.004.

    Article  PubMed  Google Scholar 

  61. Tuckerman EM, Okon MA, Li T, Laird SM. Do androgens have a direct effect on endometrial function? An in vitro study. Fertil Steril. 2000;74(4):771–9.

    Article  CAS  Google Scholar 

  62. Perrone AM, Cerpolini S, Maria Salfi NC, Ceccarelli C, De Giorgi LB, Formelli G, et al. Effect of long-term testosterone administration on the endometrium of female-to-male (FtM) transsexuals. J Sex Med. 2009;6(11):3193–200. https://doi.org/10.1111/j.1743-6109.2009.01380.x.

    Article  CAS  PubMed  Google Scholar 

  63. Miller N, Bedard YC, Cooter NB, Shaul DL. Histological changes in the genital tract in transsexual women following androgen therapy. Histopathology. 1986;10(7):661–9.

    Article  CAS  Google Scholar 

  64. Grynberg M, Fanchin R, Dubost G, Colau JC, Bremont-Weil C, Frydman R, et al. Histology of genital tract and breast tissue after long-term testosterone administration in a female-to-male transsexual population. Reprod BioMed Online. 2010;20(4):553–8. https://doi.org/10.1016/j.rbmo.2009.12.021.

    Article  CAS  PubMed  Google Scholar 

  65. Spinder T, Spijkstra JJ, van den Tweel JG, Burger CW, van Kessel H, Hompes PG, et al. The effects of long term testosterone administration on pulsatile luteinizing hormone secretion and on ovarian histology in eugonadal female to male transsexual subjects. J Clin Endocrinol Metab. 1989;69(1):151–7. https://doi.org/10.1210/jcem-69-1-151.

    Article  CAS  PubMed  Google Scholar 

  66. Amirikia H, Savoy-Moore RT, Sundareson AS, Moghissi KS. The effects of long-term androgen treatment on the ovary. Fertil Steril. 1986;45(2):202–8.

    Article  CAS  Google Scholar 

  67. Ikeda K, Baba T, Noguchi H, Nagasawa K, Endo T, Kiya T, et al. Excessive androgen exposure in female-to-male transsexual persons of reproductive age induces hyperplasia of the ovarian cortex and stroma but not polycystic ovary morphology. Hum Reprod. 2013;28(2):453–61. https://doi.org/10.1093/humrep/des385.

    Article  CAS  PubMed  Google Scholar 

  68. Caanen MR, Schouten NE, Kuijper EAM, van Rijswijk J, van den Berg MH, van Dulmen-den Broeder E, et al. Effects of long-term exogenous testosterone administration on ovarian morphology, determined by transvaginal (3D) ultrasound in female-to-male transsexuals. Hum Reprod. 2017;32(7):1457–64. https://doi.org/10.1093/humrep/dex098.

    Article  PubMed  Google Scholar 

  69. Van Den Broecke R, Van Der Elst J, Liu J, Hovatta O, Dhont M. The female-to-male transsexual patient: a source of human ovarian cortical tissue for experimental use. Hum Reprod. 2001;16(1):145–7.

    Article  Google Scholar 

  70. De Roo C, Lierman S, Tilleman K, Peynshaert K, Braeckmans K, Caanen M, et al. Ovarian tissue cryopreservation in female-to-male transgender people: insights into ovarian histology and physiology after prolonged androgen treatment. Reprod BioMed Online. 2017;34(6):557–66. https://doi.org/10.1016/j.rbmo.2017.03.008.

    Article  PubMed  Google Scholar 

  71. Rodriguez-Wallberg KA, Dhejne C, Stefenson M, Degerblad M, Olofsson JI. Preserving eggs for men's fertility. A pilot experience with fertility preservation for female-to-male transsexuals in Sweden. Fertil Steril. 2014;102(3):e160–e1. https://doi.org/10.1016/j.fertnstert.2014.07.550.

    Article  Google Scholar 

  72. Light AD, Obedin-Maliver J, Sevelius JM, Kerns JL. Transgender men who experienced pregnancy after female-to-male gender transitioning. Obstet Gynecol. 2014;124(6):1120–7. https://doi.org/10.1097/AOG.0000000000000540.

    Article  CAS  PubMed  Google Scholar 

  73. Donnez J, Dolmans MM. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65. https://doi.org/10.1056/NEJMra1614676.

    Article  PubMed  Google Scholar 

  74. Ethics Committee of American Society for Reproductive M. Fertility preservation and reproduction in patients facing gonadotoxic therapies: a committee opinion. Fertil Steril. 2013;100(5):1224–31. https://doi.org/10.1016/j.fertnstert.2013.08.041.

    Article  Google Scholar 

  75. Gong D, Liu YL, Zheng Z, Tian YF, Li Z. An overview on ethical issues about sperm donation. Asian J Androl. 2009;11(6):645–52. https://doi.org/10.1038/aja.2009.61.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ethics Committee of the American Society for Reproductive M. Interests, obligations, and rights in gamete donation: a committee opinion. Fertil Steril. 2014;102(3):675–81. https://doi.org/10.1016/j.fertnstert.2014.06.001.

    Article  Google Scholar 

  77. Rienzi L, Ubaldi FM. Oocyte versus embryo cryopreservation for fertility preservation in cancer patients: guaranteeing a women's autonomy. J Assist Reprod Genet. 2015;32(8):1195–6. https://doi.org/10.1007/s10815-015-0507-1.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Donnez J, Dolmans MM. Fertility preservation in women. Nat Rev Endocrinol. 2013;9(12):735–49. https://doi.org/10.1038/nrendo.2013.205.

    Article  CAS  PubMed  Google Scholar 

  79. Cobo A, Garcia-Velasco JA, Domingo J, Remohi J, Pellicer A. Is vitrification of oocytes useful for fertility preservation for age-related fertility decline and in cancer patients? Fertil Steril. 2013;99(6):1485–95. https://doi.org/10.1016/j.fertnstert.2013.02.050.

    Article  PubMed  Google Scholar 

  80. Glujovsky D, Riestra B, Sueldo C, Fiszbajn G, Repping S, Nodar F, et al. Vitrification versus slow freezing for women undergoing oocyte cryopreservation. Cochrane Database Syst Rev. 2014;9:CD010047. https://doi.org/10.1002/14651858.CD010047.pub2.

    Article  Google Scholar 

  81. Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25(9):2239–46. https://doi.org/10.1093/humrep/deq146.

    Article  PubMed  Google Scholar 

  82. Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and post-warming fertility outcomes: a systematic review and meta-analysis. Reprod BioMed Online. 2014;29(2):159–76. https://doi.org/10.1016/j.rbmo.2014.03.024.

    Article  PubMed  Google Scholar 

  83. Practice Committees of American Society for Reproductive M, Society for Assisted Reproductive T. Mature oocyte cryopreservation: a guideline. Fertil Steril 2013;99(1):37–43. https://doi.org/10.1016/j.fertnstert.2012.09.028.

  84. Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006;86(1):70–80. https://doi.org/10.1016/j.fertnstert.2006.03.017.

    Article  PubMed  Google Scholar 

  85. Cobo A, Garcia-Velasco JA, Coello A, Domingo J, Pellicer A, Remohi J. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril. 2016;105(3):755–64 e8. https://doi.org/10.1016/j.fertnstert.2015.11.027.

    Article  PubMed  Google Scholar 

  86. Maxwell S, Noyes N, Keefe D, Berkeley AS, Goldman KN. Pregnancy outcomes after fertility preservation in transgender men. Obstet Gynecol. 2017;129(6):1031–4. https://doi.org/10.1097/AOG.0000000000002036.

    Article  PubMed  Google Scholar 

  87. Rosen MP, Shen S, Dobson AT, Rinaudo PF, McCulloch CE, Cedars MI. A quantitative assessment of follicle size on oocyte developmental competence. Fertil Steril. 2008;90(3):684–90. https://doi.org/10.1016/j.fertnstert.2007.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wittmaack FM, Kreger DO, Blasco L, Tureck RW, Mastroianni L Jr, Lessey BA. Effect of follicular size on oocyte retrieval, fertilization, cleavage, and embryo quality in in vitro fertilization cycles: a 6-year data collection. Fertil Steril. 1994;62(6):1205–10.

    Article  CAS  Google Scholar 

  89. Greve T, Schmidt KT, Kristensen SG, Ernst E, Andersen CY. Evaluation of the ovarian reserve in women transplanted with frozen and thawed ovarian cortical tissue. Fertil Steril. 2012;97(6):1394–8 e1. https://doi.org/10.1016/j.fertnstert.2012.02.036.

    Article  PubMed  Google Scholar 

  90. Wallace WH, Smith AG, Kelsey TW, Edgar AE, Anderson RA. Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation. Lancet Oncol. 2014;15(10):1129–36. https://doi.org/10.1016/S1470-2045(14)70334-1.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stoop D, Cobo A, Silber S. Fertility preservation for age-related fertility decline. Lancet. 2014;384(9950):1311–9. https://doi.org/10.1016/S0140-6736(14)61261-7.

    Article  PubMed  Google Scholar 

  92. Beckmann MW, Dittrich R, Lotz L, van der Ven K, van der Ven HH, Liebenthron J, et al. Fertility protection: complications of surgery and results of removal and transplantation of ovarian tissue. Reprod BioMed Online. 2018;36(2):188–96. https://doi.org/10.1016/j.rbmo.2017.10.109.

    Article  PubMed  Google Scholar 

  93. Wallace WH, Kelsey TW, Anderson RA. Fertility preservation in pre-pubertal girls with cancer: the role of ovarian tissue cryopreservation. Fertil Steril. 2016;105(1):6–12. https://doi.org/10.1016/j.fertnstert.2015.11.041.

    Article  PubMed  Google Scholar 

  94. Practice Committee of American Society for Reproductive M. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril. 2014;101(5):1237–43. https://doi.org/10.1016/j.fertnstert.2014.02.052.

    Article  Google Scholar 

  95. Schmidt KL, Ernst E, Byskov AG, Nyboe Andersen A, Yding AC. Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. Hum Reprod. 2003;18(12):2654–9.

    Article  CAS  Google Scholar 

  96. Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Sanchez Serrano M, Schmidt KT, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 2013;99(6):1503–13. https://doi.org/10.1016/j.fertnstert.2013.03.030.

    Article  PubMed  Google Scholar 

  97. Ting AY, Mullen SF, Zelinski MB. Vitrification of ovarian tissue for fertility preservation. In: Woodruff TK, Gosiengfiao YC, editors. Pediatric and adolescent Oncofertility: best practices and emerging technologies. Cham: Springer International Publishing; 2017. p. 79–97.

    Chapter  Google Scholar 

  98. Silber S. Chapter 13 human ovarian tissue Vitrification. Methods Mol Biol. 2017;1568:177–94. https://doi.org/10.1007/978-1-4939-6828-2_13.

    Article  CAS  PubMed  Google Scholar 

  99. Jensen AK, Kristensen SG, Macklon KT, Jeppesen JV, Fedder J, Ernst E, et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod. 2015;30(12):2838–45. https://doi.org/10.1093/humrep/dev230.

    Article  CAS  PubMed  Google Scholar 

  100. Kim SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet. 2012;29(6):489–93. https://doi.org/10.1007/s10815-012-9757-3.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Ernst E, Macklon KT, et al. Fertility preservation for age-related fertility decline. Lancet. 2015;385(9967):506–7. https://doi.org/10.1016/S0140-6736(15)60198-2.

    Article  PubMed  Google Scholar 

  102. Yin H, Jiang H, Kristensen SG, Andersen CY. Vitrification of in vitro matured oocytes collected from surplus ovarian medulla tissue resulting from fertility preservation of ovarian cortex tissue. J Assist Reprod Genet. 2016;33(6):741–6. https://doi.org/10.1007/s10815-016-0691-7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Abir R, Ben-Aharon I, Garor R, Yaniv I, Ash S, Stemmer SM, et al. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum Reprod. 2016;31(4):750–62. https://doi.org/10.1093/humrep/dew007.

    Article  CAS  PubMed  Google Scholar 

  104. Segers I, Mateizel I, Van Moer E, Smitz J, Tournaye H, Verheyen G, et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising "ex vivo" method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet. 2015;32(8):1221–31. https://doi.org/10.1007/s10815-015-0528-9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive T. In vitro maturation: a committee opinion. Fertil Steril. 2013;99(3):663–6. https://doi.org/10.1016/j.fertnstert.2012.12.031.

    Article  Google Scholar 

  106. Fadini R, Mignini Renzini M, Dal Canto M, Epis A, Crippa M, Caliari I, et al. Oocyte in vitro maturation in normo-ovulatory women. Fertil Steril. 2013;99(5):1162–9. https://doi.org/10.1016/j.fertnstert.2013.01.138.

    Article  PubMed  Google Scholar 

  107. Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–9. https://doi.org/10.1073/pnas.1312830110.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30(3):608–15. https://doi.org/10.1093/humrep/deu353.

    Article  PubMed  Google Scholar 

  109. Zhai J, Yao G, Dong F, Bu Z, Cheng Y, Sato Y, et al. In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients. J Clin Endocrinol Metab. 2016;101(11):4405–12. https://doi.org/10.1210/jc.2016-1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kawamura K, Cheng Y, Sun YP, Zhai J, Diaz-Garcia C, Simon C, et al. Ovary transplantation: to activate or not to activate. Hum Reprod. 2015;30(11):2457–60. https://doi.org/10.1093/humrep/dev211.

    Article  PubMed  Google Scholar 

  111. Sato T, Katagiri K, Yokonishi T, Kubota Y, Inoue K, Ogonuki N, et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun. 2011;2:472. https://doi.org/10.1038/ncomms1478.

    Article  CAS  PubMed  Google Scholar 

  112. Sun M, Yuan Q, Niu M, Wang H, Wen L, Yao C, et al. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. 2018. https://doi.org/10.1038/s41418-017-0015-1.

  113. Vassena R, Eguizabal C, Heindryckx B, Sermon K, Simon C, van Pelt AM, et al. Stem cells in reproductive medicine: ready for the patient? Hum Reprod. 2015;30(9):2014–21. https://doi.org/10.1093/humrep/dev181.

    Article  CAS  PubMed  Google Scholar 

  114. Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18(3):330–40. https://doi.org/10.1016/j.stem.2016.01.017.

    Article  CAS  PubMed  Google Scholar 

  115. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539(7628):299–303. https://doi.org/10.1038/nature20104.

    Article  CAS  PubMed  Google Scholar 

  116. Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science. 2017;356(6334). https://doi.org/10.1126/science.aal1810.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natnita Mattawanon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattawanon, N., Spencer, J.B., Schirmer, D.A. et al. Fertility preservation options in transgender people: A review. Rev Endocr Metab Disord 19, 231–242 (2018). https://doi.org/10.1007/s11154-018-9462-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-018-9462-3

Keywords

Navigation