The role of innate immunity in the regulation of brown and beige adipogenesis

  • Vasileia Ismini Alexaki
  • Triantafyllos Chavakis


The adipose tissue (AT) is multifunctional, acting as an endocrine tissue and participating in the regulation of the organism’s homeostasis. Metabolic, endocrine and inflammatory mechanisms are tightly intertwined within the AT, regulating its function. Disruption of the equilibrium among these mechanisms leads to pathologies, the most common being obesity-related insulin resistance. Two types of AT exist, the white and the brown AT. Traditionally the white AT (WAT) was thought to store energy in the form of lipids, while the brown AT (BAT) was known to mediate heat generation. Recently, the ‘brite’ or ‘beige’ AT was identified, which is localized predominantly in subcutaneous WAT, but shares functional features with the BAT and is capable of heat production. The major stimulus triggering beige and brown adipogenesis is cold exposure and catecholamine signalling. However, several further signals and mechanisms exist, which can orchestrate and fine-tune beige and brown AT function. Immune cells and inflammation have emerged as regulators of beige and brown AT function. The present review will focus on the recently identified crosstalk between innate immunity and the regulation of beige and brown adipogenesis.


Innate immunity Type 2 immunity Inflammation Brown adipose tissue Beige adipose tissue 



Supported by grants from the Else-Kröner-Fresenius Stiftung (2014_A137) (TC), as well as grants from the Deutsche Forschungsgemeinschaft (CH279/5-1 to TC and AL1686/2-2 to VIA).

Conflict of Interest

We declare no conflict of interest.


  1. 1.
    Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548–56.PubMedCrossRefGoogle Scholar
  2. 2.
    Chmelar J, Chung KJ, Chavakis T. The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance. Thromb Haemost. 2013;109(3):399–406.PubMedCrossRefGoogle Scholar
  3. 3.
    Schulz TJ, Tseng YH. Brown adipose tissue: development, metabolism and beyond. Biochem J. 2013;453(2):167–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Chau YY. Bandiera R, Serrels A, Martínez-Estrada OM, QingW, Lee M, et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol. 2014;16:367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Large V, Peroni O, Letexier D, Ray H, Beylot M. Metabolism of lipids in human white adipocyte. Diabete Metab. 2004;30(4):294–309.PubMedCrossRefGoogle Scholar
  8. 8.
    Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11–12):741–51.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123(8):3395–403.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cohen P, Spiegelman BM. Brown and Beige Fat: Molecular Parts of a Thermogenic Machine. Diabetes. 2015;64(7):2346–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, et al. Evidence for two types of brown adipose tissue in humans. Nat Med. 2013;19(5):631–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27(3):234–50.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012;15(4):480–91.Google Scholar
  18. 18.
    Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;5;285(10):7153–64.CrossRefGoogle Scholar
  20. 20.
    Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1–2):304–16.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 2012;7(11):e49452.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    de Jong JM, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab. 2015;308(12):E1085–105.PubMedCrossRefGoogle Scholar
  23. 23.
    Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature. 2014;510(7503):76–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Fedorenko A, Lishko PV, Kirichok Y. Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria. Cell. 2012;151:400–13.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011;14(2):272–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Kooijman S, van den Heuvel JK, Rensen PC. Neuronal Control of Brown Fat Activity. Trends Endocrinol Metab. 2015;26(11):657–68.PubMedCrossRefGoogle Scholar
  28. 28.
    Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res. 2009;50(1):3–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Cao W, Medvedev AV, Daniel KW, Collins S. beta-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem. 2001;276(29):27077–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F, Bai X, et al. Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol. 2005;25(13):5466–79.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013;19(5):635–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A, et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013;17(5):798–805.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123(8):3404–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123(1):215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest. 1995;96(6):2914–23.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lowell BB. V SS, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993;366(6457):740–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Young JB, Saville E, Rothwell NJ, Stock MJ, Landsberg L. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J Clin Invest. 1982;69(5):1061–71.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157(6):1292–308.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fromme T, Klingenspor M. Uncoupling protein 1 expression and high-fat diets. Am J Physiol Regul Integr Comp Physiol. 2011;300(1):R1–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Rong JX, Qiu Y, Hansen MK, Zhu L, Zhang V, Xie M. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes. 2007;56(7):1751–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Garcia-Martin R, Alexaki VI, Qin N, Rubin de Celis MF, Economopoulou M, Ziogas A, et al. Adipocyte-specific HIF2alpha deficiency exacerbates obesity-induced brown adipose tissue dysfunction and metabolic dysregulation. Mol Cell Biol. 2015.Google Scholar
  44. 44.
    Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, et al. Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest. 2014;124(5):2099–112.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chiang SH, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM, et al. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell. 2009;138(5):961–75.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Chatzigeorgiou A, Karalis KP, Bornstein SR, Chavakis T. Lymphocytes in obesity-related adipose tissue inflammation. Diabetologia. 2012;55(10):2583–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Chawla A, Nguyen KD, Koh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11(11):738–49.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057–63.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.PubMedCrossRefGoogle Scholar
  53. 53.
    Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J. 2006;398(2):153–68.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286(15):12983–90.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rabelo R, Reyes C, Schifman A, Silva JE. Interactions among receptors, thyroid hormone response elements, and ligands in the regulation of the rat uncoupling protein gene expression by thyroid hormone. Endocrinology. 1996;137(8):3478–87.PubMedGoogle Scholar
  56. 56.
    de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW, et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest. 2001;108(9):1379–85.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lafontan M, Moro C, Berlan M, Crampes F, Sengenes C, Galitzky J. Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab. 2008;19(4):130–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessì-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Moreno-Aliaga MJ, Perez-Echarri N, Marcos-Gomez B, Larequi E, Gil-Bea FJ, Viollet B, et al. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab. 2011;14(2):242–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157(6):1279–91.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):1000–4.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A. 2011;108(1):143–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gnad T, Scheibler S, von Kugelgen I, Scheele C, Kilic A, Glode A, et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature. 2014;516(7531):395–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Chatzigeorgiou A. Chavakis T. Handb Exp Pharmacol: Immune Cells and Metabolism; 2015.Google Scholar
  67. 67.
    Ip BC, Hogan AE, Nikolajczyk BS. Lymphocyte roles in metabolic dysfunction: of men and mice. Trends Endocrinol Metab. 2015;26(2):91–100.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell. 2015;161(1):146–60.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chatzigeorgiou A, Chung KJ, Garcia-Martin R, Alexaki VI, Klotzsche-von Ameln A, Phieler J, et al. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology. 2014;60(4):1196–210.PubMedCrossRefGoogle Scholar
  70. 70.
    Chatzigeorgiou A, Seijkens T, Zarzycka B, Engel D, Poggi M, van den Berg S, et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc Natl Acad Sci U S A. 2014;111(7):2686–91.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Phieler J, Chung KJ, Chatzigeorgiou A, Klotzsche-von Ameln A, Garcia-Martin R, Sprott D, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191(8):4367–74.PubMedCrossRefGoogle Scholar
  72. 72.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20.PubMedCrossRefGoogle Scholar
  73. 73.
    McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41(1):36–48.PubMedCrossRefGoogle Scholar
  74. 74.
    DiSpirito JR, Mathis D. Immunological contributions to adipose tissue homeostasis. Semin Immunol. 2015;27(5):315–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.PubMedCrossRefGoogle Scholar
  76. 76.
    Kowalski GM, Nicholls HT, Risis S, Watson NK, Kanellakis P, Bruce CR, et al. Deficiency of haematopoietic-cell-derived IL-10 does not exacerbate high-fat-diet-induced inflammation or insulin resistance in mice. Diabetologia. 2011;54(4):888–99.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243–7.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    La Flamme AC, Kharkrang M, Stone S, Mirmoeini S, Chuluundorj D, Kyle R. Type II-activated murine macrophages produce IL-4. PLoS One. 2012;7(10):e46989.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pouliot P, Turmel V, Gelinas E, Laviolette M, Bissonnette EY. Interleukin-4 production by human alveolar macrophages. Clin Exp Allergy. 2005;35(6):804–10.PubMedCrossRefGoogle Scholar
  80. 80.
    Zeng MY, Pham D, Bagaitkar J, Liu J, Otero K, Shan M, et al. An efferocytosis-induced, IL-4-dependent macrophage-iNKT cell circuit suppresses sterile inflammation and is defective in murine CGD. Blood. 2013;121(17):3473–83.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37(3):574–87.PubMedCrossRefGoogle Scholar
  82. 82.
    Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7(6):485–95.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480(7375):104–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 2015;160(1–2):74–87.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res. 2014;55(3):385–97.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chang YH, Ho KT, Lu SH, Huang CN, Shiau MY. Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. Int J Obes. 2012;36(7):993–8.CrossRefGoogle Scholar
  87. 87.
    Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, Jouihan H, Morel CR, Heredia JE, et al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A. 2010;107(52):22617–22.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, et al. Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation. Cell Metab. 2015;22(2):279–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519(7542):242–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R, Kawamoto S, et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol. 2015;16(3):276–85.PubMedCrossRefGoogle Scholar
  91. 91.
    Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013;210(3):535–49.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Knudsen JG, Murholm M, Carey AL, Bienso RS, Basse AL, Allen TL, et al. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One. 2014;9(1):e84910.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ma Y, Gao M, Sun H, Liu D. Interleukin-6 gene transfer reverses body weight gain and fatty liver in obese mice. Biochim Biophys Acta. 2015;1852(5):1001–11.PubMedCrossRefGoogle Scholar
  94. 94.
    Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15(5):423–30.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001;97(1):14–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Nielsen AR, Hojman P, Erikstrup C, Fischer CP, Plomgaard P, Mounier R, et al. Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass. J Clin Endocrinol Metab. 2008;93(11):4486–93.PubMedCrossRefGoogle Scholar
  97. 97.
    Barra NG, Reid S, MacKenzie R, Werstuck G, Trigatti BL, Richards C, et al. Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity (Silver Spring). 2010;18(8):1601–7.CrossRefGoogle Scholar
  98. 98.
    Almendro V, Fuster G, Busquets S, Ametller E, Figueras M, Argiles JM, et al. Effects of IL-15 on rat brown adipose tissue: uncoupling proteins and PPARs. Obesity (Silver Spring). 2008;16(2):285–9.CrossRefGoogle Scholar
  99. 99.
    Ortega MT, Xie L, Mora S, Chapes SK. Evaluation of macrophage plasticity in brown and white adipose tissue. Cell Immunol. 2011;271(1):124–33.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Roberts-Toler C, O'Neill BT, Cypess AM. Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring). 2015;23(9):1765–70.CrossRefGoogle Scholar
  101. 101.
    Medrikova D, Sijmonsma TP, Sowodniok K, Richards DM, Delacher M, Sticht C, et al. Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS One. 2015;10(2):e0118534.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17(4):376–85.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, et al. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput Biol. 2009;5(3):e1000324.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Ye J Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes. 2009;33(1):54–66.CrossRefGoogle Scholar
  106. 106.
    Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.Google Scholar
  108. 108.
    Erridge C, Samani NJ. Saturated fatty acids do not directly stimulate Toll-like receptor signaling. Arterioscler Thromb Vasc Biol. 2009;29(11):1944–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol. 2007;27(1):84–91.PubMedCrossRefGoogle Scholar
  110. 110.
    Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res. 2007;100(11):1589–96.PubMedCrossRefGoogle Scholar
  111. 111.
    Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18(8):1279–85.PubMedCrossRefGoogle Scholar
  112. 112.
    Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007;56(8):1986–98.PubMedCrossRefGoogle Scholar
  113. 113.
    Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12):1443–55.PubMedCrossRefGoogle Scholar
  114. 114.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Crespo A, Filla MB, Russell SW, Murphy WJ. Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: partial role of autocrine/paracrine interferon-alpha/beta. Biochem J. 2000;349(Pt 1):99–104.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Stoiber D, Kovarik P, Cohney S, Johnston JA, Steinlein P, Decker T. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J Immunol. 1999;163(5):2640–7.PubMedGoogle Scholar
  117. 117.
    Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002;277(44):42394–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Shi H, Tzameli I, Bjorbaek C, Flier JS. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem. 2004;279(33):34733–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Galic S, Sachithanandan N, Kay TW, Steinberg GR. Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochem J. 2014;461(2):177–88.PubMedCrossRefGoogle Scholar
  120. 120.
    Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab. 2006;17(9):365–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Goto T, Naknukool S, Yoshitake R, Hanafusa Y, Tokiwa S, Li Y, et al. Proinflammatory cytokine interleukin-1beta suppresses cold-induced thermogenesis in adipocytes. Cytokine. 2016;77:107–14.PubMedCrossRefGoogle Scholar
  122. 122.
    Sakamoto T, Takahashi N, Sawaragi Y, Naknukool S, Yu R, Goto T, et al. Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10 T1/2 adipocytes. Am J Physiol Cell Physiol. 2013;304(8):C729–38.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, et al. TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest. 2006;116(10):2791–8.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology. 2012;153(9):4238–45.PubMedCrossRefGoogle Scholar
  125. 125.
    Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33–8.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM. 2,4-Dinitrophenol (DNP): A Weight Loss Agent with Significant Acute Toxicity and Risk of Death. J Med Toxicol. 2011;7(3):205–12.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science. 2015;347(6227):1253–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Clinical Pathobiochemistry, Medical FacultyTechnische Universität DresdenDresdenGermany
  2. 2.Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of MedicineTU DresdenDresdenGermany
  3. 3.German Center for Diabetes Research (DZD e.V.)NeuherbergGermany

Personalised recommendations