Advertisement

Reviews in Endocrine and Metabolic Disorders

, Volume 16, Issue 4, pp 299–309 | Cite as

Bisphenol A: Targeting metabolic tissues

  • Nicolas Chevalier
  • Patrick Fénichel
Article

Abstract

The prevalence of obesity, metabolic syndrome and type 2 diabetes has dramatically increased worldwide over the last few decades. Although genetic predisposition and lifestyle factors like decreased physical activity and energy-dense diet are well-known factors in the pathophysiology of these conditions, accumulating evidence suggests that the increase in endocrine disrupting chemicals (EDCs) in the environment also explains a substantial part of the incidence of these metabolic diseases. Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide. Most people are exposed to it daily by consuming food and beverages into which BPA has leached from polycarbonate containers, including reusable bottles and baby bottles. Although initially considered to be a weak environmental estrogen, BPA may be similar in potency to 17β-estradiol in stimulating cellular responses, especially at low but environmentally relevant doses (nM), as more recent studies have demonstrated. In this review, we summarize both epidemiological evidence and in vivo experimental data that point to an association between BPA exposure and the induction of insulin resistance and/or disruption of pancreatic beta cell function and/or obesity. We then discuss the in vitro data and explain the potential mechanisms involved in the metabolic disorders observed after BPA exposure.

Keywords

Bisphenol A Diabetes Type 2 diabetes Obesity Xenoestrogen Estrogens Fetal programming Endocrine disruptors 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning this article.

References

  1. 1.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev. 2009;30(4):293–342. doi: 10.1210/er.2009-0002.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive summary to EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):593–602. doi: 10.1210/er.2015-1093.CrossRefPubMedGoogle Scholar
  3. 3.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116(1):39–44. doi: 10.1289/ehp.10753.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    vom Saal FS, Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect. 2005;113(8):926–33.CrossRefGoogle Scholar
  5. 5.
    Taylor JA, Vom Saal FS, Welshons WV, Drury B, Rottinghaus G, Hunt PA, et al. Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: relevance for human exposure. Environ Health Perspect. 2011;119(4):422–30. doi: 10.1289/ehp.1002514.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77. doi: 10.1016/j.reprotox.2007.07.010.CrossRefPubMedGoogle Scholar
  7. 7.
    Geens T, Goeyens L, Covaci A. Are potential sources for human exposure to bisphenol-A overlooked? Int J Hyg Environ Health. 2011;214(5):339–47. doi: 10.1016/j.ijheh.2011.04.005.CrossRefPubMedGoogle Scholar
  8. 8.
    Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007;24(2):199–224. doi: 10.1016/j.reprotox.2007.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pereira-Fernandes A, Demaegdt H, Vandermeiren K, Hectors TL, Jorens PG, Blust R, et al. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PLoS One. 2013;8(10), e77481. doi: 10.1371/journal.pone.0077481.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, et al. Bisphenol a and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect. 2014;122(8):775–86. doi: 10.1289/ehp.1307728.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Janesick AS, Shioda T, Blumberg B. Transgenerational inheritance of prenatal obesogen exposure. Mol Cell Endocrinol. 2014;398(1–2):31–5. doi: 10.1016/j.mce.2014.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, et al. Meeting report on the 3rd international congress on developmental origins of health and disease (DOHaD). Pediatr Res. 2007;61(5 Pt 1):625–9. doi: 10.1203/pdr.0b013e3180459fcd.CrossRefPubMedGoogle Scholar
  13. 13.
    International Diabetes Federation. http://www.idf.org/diabetesatlas: IDF Diabetes Atlas, 6th edn. Brussels, Belgium: International Diabetes Federation; 2013.
  14. 14.
    World Health Organization. Diabetes (Fact Sheet N°312). http://www.who.int/mediacentre/factsheets/fs312/en/October 2013.
  15. 15.
    Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol. 2011;7(6):346–53. doi: 10.1038/nrendo.2011.56.CrossRefPubMedGoogle Scholar
  16. 16.
    Chevalier N, Fenichel P. Endocrine disruptors: new players in the pathophysiology of type 2 diabetes? Diabetes Metabolism. 2015;41(2):107–15. doi: 10.1016/j.diabet.2014.09.005.CrossRefPubMedGoogle Scholar
  17. 17.
    Trasande L. Further limiting bisphenol a in food uses could provide health and economic benefits. Health Aff (Millwood). 2014;33(2):316–23. doi: 10.1377/hlthaff.2013.0686.CrossRefGoogle Scholar
  18. 18.
    Legler J, Fletcher T, Govarts E, Porta M, Blumberg B, Heindel JJ, et al. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European union. J Clin Endocrinology Metabolism. 2015;100(4):1278–88. doi: 10.1210/jc.2014-4326.CrossRefGoogle Scholar
  19. 19.
    Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–10. doi: 10.1001/jama.300.11.1303.CrossRefPubMedGoogle Scholar
  20. 20.
    Sun Q, Cornelis MC, Townsend MK, Tobias DK, Eliassen AH, Franke AA, et al. Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the nurses’ health study (NHS) and NHSII cohorts. Environ Health Perspect. 2014;122(6):616–23. doi: 10.1289/ehp.1307201.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Song Y, Chou EL, Baecker A, You NY, Song Y, Sun Q, et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J Diabetes. 2015. doi: 10.1111/1753-0407.12325.PubMedGoogle Scholar
  22. 22.
    Lakind JS, Goodman M, Mattison DR. Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research. Crit Rev Toxicol. 2014;44(2):121–50. doi: 10.3109/10408444.2013.860075.CrossRefPubMedGoogle Scholar
  23. 23.
    LaKind JS, Goodman M, Naiman DQ. Use of NHANES data to link chemical exposures to chronic diseases: a cautionary tale. PLoS One. 2012;7(12), e51086. doi: 10.1371/journal.pone.0051086.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bi Y, Wang W, Xu M, Wang T, Lu J, Xu Y et al. Diabetes genetic risk score modifies effect of bisphenol A exposure on deterioration in glucose metabolism. J Clin Endocrinology Metabolism. 2015:jc20153039. doi: 10.1210/jc.2015-3039.
  25. 25.
    Trasande L, Attina TM, Blustein J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA. 2012;308(11):1113–21. doi: 10.1001/2012.jama.11461.CrossRefPubMedGoogle Scholar
  26. 26.
    Carwile JL, Michels KB. Urinary bisphenol A and obesity: NHANES 2003–2006. Environ Res. 2011;111(6):825–30. doi: 10.1016/j.envres.2011.05.014.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shankar A, Teppala S, Sabanayagam C. Urinary bisphenol a levels and measures of obesity: results from the national health and nutrition examination survey 2003–2008. ISRN Endocrinol. 2012;2012:965243. doi: 10.5402/2012/965243.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ning G, Bi Y, Wang T, Xu M, Xu Y, Huang Y, et al. Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chinese adults: a cross-sectional analysis. Ann Intern Med. 2011;155(6):368–74. doi: 10.7326/0003-4819-155-6-201109200-00005.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang T, Li M, Chen B, Xu M, Xu Y, Huang Y, et al. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinology Metabolism. 2012;97(2):E223–7. doi: 10.1210/jc.2011-1989.CrossRefGoogle Scholar
  30. 30.
    Barker DJ. The developmental origins of adult disease. Eur J Epidemiol. 2003;18(8):733–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens and obesity. Mol Cell Endocrinol. 2009;304(1–2):84–9. doi: 10.1016/j.mce.2009.02.024.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chou WC, Chen JL, Lin CF, Chen YC, Shih FC, Chuang CY. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environ Health. 2011;10:94. doi: 10.1186/1476-069X-10-94.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Walsh JM, Byrne J, Mahony RM, Foley ME, McAuliffe FM. Leptin, fetal growth and insulin resistance in non-diabetic pregnancies. Early Hum Dev. 2014;90(6):271–4. doi: 10.1016/j.earlhumdev.2014.03.007.CrossRefPubMedGoogle Scholar
  34. 34.
    Ashley-Martin J, Dodds L, Arbuckle TE, Ettinger AS, Shapiro GD, Fisher M, et al. A birth cohort study to investigate the association between prenatal phthalate and bisphenol A exposures and fetal markers of metabolic dysfunction. Environ Health. 2014;13:84. doi: 10.1186/1476-069X-13-84.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Snijder CA, Heederik D, Pierik FH, Hofman A, Jaddoe VW, Koch HM, et al. Fetal growth and prenatal exposure to bisphenol A: the generation R study. Environ Health Perspect. 2013;121(3):393–8. doi: 10.1289/ehp.1205296.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Miao M, Yuan W, Zhu G, He X, Li DK. In utero exposure to bisphenol-A and its effect on birth weight of offspring. Reprod Toxicol. 2011;32(1):64–8. doi: 10.1016/j.reprotox.2011.03.002.CrossRefPubMedGoogle Scholar
  37. 37.
    Lee BE, Park H, Hong YC, Ha M, Kim Y, Chang N, et al. Prenatal bisphenol A and birth outcomes: MOCEH (mothers and children’s environmental health) study. Int J Hyg Environ Health. 2014;217(2–3):328–34. doi: 10.1016/j.ijheh.2013.07.005.CrossRefPubMedGoogle Scholar
  38. 38.
    Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–7. doi: 10.1289/ehp.11007.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Philippat C, Mortamais M, Chevrier C, Petit C, Calafat AM, Ye X, et al. Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect. 2012;120(3):464–70. doi: 10.1289/ehp.1103634.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Harley KG, Aguilar Schall R, Chevrier J, Tyler K, Aguirre H, Bradman A, et al. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ Health Perspect. 2013;121(4):514–20. doi: 10.1289/ehp.1205548.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect. 2006;114(1):106–12.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yang Y, Sabg-Yon K, Yeon-Pyo H, Jihyun A, Moon-Seo P. Environmentally relevant levels of Bisphenol A may accelerate the development of type II diabetes mellitus in adolescent Otsuka Long Evans Tokushima Fatty rats. Toxicol Environ Heal Sci. 2014;6(1):41–7.CrossRefGoogle Scholar
  43. 43.
    Batista TM, Alonso-Magdalena P, Vieira E, Amaral ME, Cederroth CR, Nef S, et al. Short-term treatment with bisphenol-A leads to metabolic abnormalities in adult male mice. PLoS One. 2012;7(3), e33814. doi: 10.1371/journal.pone.0033814.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Marmugi A, Ducheix S, Lasserre F, Polizzi A, Paris A, Priymenko N, et al. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology. 2012;55(2):395–407. doi: 10.1002/hep.24685.CrossRefPubMedGoogle Scholar
  45. 45.
    Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquie M, Gauthier BR, et al. Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS One. 2008;3(4), e2069. doi: 10.1371/journal.pone.0002069.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Moghaddam HS, Samarghandian S, Farkhondeh T. Effect of bisphenol A on blood glucose, lipid profile and oxidative stress indices in adult male mice. Toxicol Mech Methods. 2015;25(7):507–13. doi: 10.3109/15376516.2015.1056395.CrossRefPubMedGoogle Scholar
  47. 47.
    Marmugi A, Lasserre F, Beuzelin D, Ducheix S, Huc L, Polizzi A, et al. Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology. 2014;325:133–43. doi: 10.1016/j.tox.2014.08.006.CrossRefPubMedGoogle Scholar
  48. 48.
    Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in neonatal and adult Sprague–Dawley rats. Toxicol Appl Pharmacol. 2010;247(2):158–65. doi: 10.1016/j.taap.2010.06.008.CrossRefPubMedGoogle Scholar
  49. 49.
    Churchwell MI, Camacho L, Vanlandingham MM, Twaddle NC, Sepehr E, Delclos KB, et al. Comparison of life-stage-dependent internal dosimetry for bisphenol A, ethinyl estradiol, a reference estrogen, and endogenous estradiol to test an estrogenic mode of action in Sprague Dawley rats. Toxicol Sci: Off J Soc Toxicol. 2014;139(1):4–20. doi: 10.1093/toxsci/kfu021.CrossRefGoogle Scholar
  50. 50.
    Mattison DR, Karyakina N, Goodman M, LaKind JS. Pharmaco- and toxicokinetics of selected exogenous and endogenous estrogens: a review of the data and identification of knowledge gaps. Crit Rev Toxicol. 2014;44(8):696–724. doi: 10.3109/10408444.2014.930813.CrossRefPubMedGoogle Scholar
  51. 51.
    Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci: Off J Soc Toxicol. 2005;84(2):319–27. doi: 10.1093/toxsci/kfi088.CrossRefGoogle Scholar
  52. 52.
    Kidani T, Kamei S, Miyawaki J, Aizawa J, Sakayama K, Masuno H. Bisphenol A downregulates Akt signaling and inhibits adiponectin production and secretion in 3T3-L1 adipocytes. J Atheroscler Thromb. 2010;17(8):834–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Newbold RR, Padilla-Banks E, Jefferson WN. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology. 2006;147(6 Suppl):S11–7. doi: 10.1210/en.2005-1164.CrossRefPubMedGoogle Scholar
  54. 54.
    Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;109(7):675–80.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tyl RW, Myers CB, Marr MC, Sloan CS, Castillo NP, Veselica MM, et al. Two-generation reproductive toxicity study of dietary bisphenol A in CD-1 (Swiss) mice. Toxicol Sci: Off J Soc Toxicol. 2008;104(2):362–84. doi: 10.1093/toxsci/kfn084.CrossRefGoogle Scholar
  56. 56.
    Alonso-Magdalena P, Vieira E, Soriano S, Menes L, Burks D, Quesada I, et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ Health Perspect. 2010;118(9):1243–50. doi: 10.1289/ehp.1001993.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liu J, Yu P, Qian W, Li Y, Zhao J, Huan F, et al. Perinatal bisphenol A exposure and adult glucose homeostasis: identifying critical windows of exposure. PLoS One. 2013;8(5), e64143. doi: 10.1371/journal.pone.0064143.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Angle BM, Do RP, Ponzi D, Stahlhut RW, Drury BE, Nagel SC, et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol. 2013;42:256–68. doi: 10.1016/j.reprotox.2013.07.017.CrossRefPubMedGoogle Scholar
  59. 59.
    Garcia-Arevalo M, Alonso-Magdalena P, Rebelo Dos Santos J, Quesada I, Carneiro EM, Nadal A. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS One. 2014;9(6), e100214. doi: 10.1371/journal.pone.0100214.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cabaton NJ, Canlet C, Wadia PR, Tremblay-Franco M, Gautier R, Molina J, et al. Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. Environ Health Perspect. 2013;121(5):586–93. doi: 10.1289/ehp.1205588.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Tremblay-Franco M, Cabaton NJ, Canlet C, Gautier R, Schaeberle CM, Jourdan F, et al. Dynamic metabolic disruption in rats perinatally exposed to low doses of bisphenol-a. PLoS One. 2015;10(10), e0141698. doi: 10.1371/journal.pone.0141698.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat Rev Endocrinol. 2012;8(11):639–49. doi: 10.1038/nrendo.2012.96.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Alonso-Magdalena P, Garcia-Arevalo M, Quesada I, Nadal A. Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology. 2015;156(5):1659–70. doi: 10.1210/en.2014-1952.CrossRefPubMedGoogle Scholar
  64. 64.
    Dodds E, Goldberg L, Lawson W, Robinson R. OEstrogenic activity of certain synthetic compounds. Nature. 1938;141:247–8.CrossRefGoogle Scholar
  65. 65.
    Kuiper GG, Gustafsson JA. The novel estrogen receptor-beta subtype: potential role in the cell- and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett. 1997;410(1):87–90.CrossRefPubMedGoogle Scholar
  66. 66.
    Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, et al. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol. 1998;142(1–2):203–14.CrossRefPubMedGoogle Scholar
  67. 67.
    Routledge EJ, White R, Parker MG, Sumpter JP. Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biological Chem. 2000;275(46):35986–93. doi: 10.1074/jbc.M006777200.CrossRefGoogle Scholar
  68. 68.
    Ohlstein JF, Strong AL, McLachlan JA, Gimble JM, Burow ME, Bunnell BA. Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells. J Mol Endocrinol. 2014;53(3):345–53. doi: 10.1530/JME-14-0052.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Masuyama H, Hiramatsu Y. Involvement of suppressor for Gal 1 in the ubiquitin/proteasome-mediated degradation of estrogen receptors. J Biological Chem. 2004;279(13):12020–6. doi: 10.1074/jbc.M312762200.CrossRefGoogle Scholar
  70. 70.
    Quesada I, Fuentes E, Viso-Leon MC, Soria B, Ripoll C, Nadal A. Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. FASEB J: Off Publ Federation Am Soc Experimental Biology. 2002;16(12):1671–3. doi: 10.1096/fj.02-0313fje.Google Scholar
  71. 71.
    Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect. 2005;113(8):969–77.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ben-Jonathan N, Steinmetz R. Xenoestrogens: the emerging story of bisphenol a. Trends Endocrinol Metab. 1998;9(3):124–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Boucher JG, Boudreau A, Ahmed S, Atlas E. In vitro effects of bisphenol a beta-D-glucuronide (BPA-G) on adipogenesis in human and murine preadipocytes. Environ Health Perspect. 2015;123(12):1287–93. doi: 10.1289/ehp.1409143.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Silva E, Kabil A, Kortenkamp A. Cross-talk between non-genomic and genomic signalling pathways--distinct effect profiles of environmental estrogens. Toxicol Appl Pharmacol. 2010;245(2):160–70. doi: 10.1016/j.taap.2010.02.015.CrossRefPubMedGoogle Scholar
  75. 75.
    Audet-Walsh E, Giguere V. The multiple universes of estrogen-related receptor alpha and gamma in metabolic control and related diseases. Acta Pharmacol Sin. 2015;36(1):51–61. doi: 10.1038/aps.2014.121.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Matsushima A, Teramoto T, Okada H, Liu X, Tokunaga T, Kakuta Y, et al. ERRgamma tethers strongly bisphenol A and 4-alpha-cumylphenol in an induced-fit manner. Biochem Biophys Res Commun. 2008;373(3):408–13. doi: 10.1016/j.bbrc.2008.06.050.CrossRefPubMedGoogle Scholar
  77. 77.
    Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett. 2006;167(2):95–105. doi: 10.1016/j.toxlet.2006.08.012.CrossRefPubMedGoogle Scholar
  78. 78.
    Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahtouf A, et al. Peroxisome proliferator-activated receptor gamma is a target for halogenated analogs of bisphenol A. Environ Health Perspect. 2011;119(9):1227–32. doi: 10.1289/ehp.1003328.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sun H, Xu LC, Chen JF, Song L, Wang XR. Effect of bisphenol A, tetrachlorobisphenol A and pentachlorophenol on the transcriptional activities of androgen receptor-mediated reporter gene. Food Chem Toxicol. 2006;44(11):1916–21. doi: 10.1016/j.fct.2006.06.013.CrossRefPubMedGoogle Scholar
  80. 80.
    Zoeller RT, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology. 2005;146(2):607–12. doi: 10.1210/en.2004-1018.CrossRefPubMedGoogle Scholar
  81. 81.
    Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinology Metabolism. 2002;87(11):5185–90. doi: 10.1210/jc.2002-020209.CrossRefGoogle Scholar
  82. 82.
    Soriano S, Alonso-Magdalena P, Garcia-Arevalo M, Novials A, Muhammed SJ, Salehi A, et al. Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of Langerhans: role of estrogen receptor beta. PLoS One. 2012;7(2), e31109. doi: 10.1371/journal.pone.0031109.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yuchi Y, Cai Y, Legein B, De Groef S, Leuckx G, Coppens V, et al. Estrogen receptor alpha regulates beta-cell formation during pancreas development and following injury. Diabetes. 2015;64(9):3218–28. doi: 10.2337/db14-1798.CrossRefPubMedGoogle Scholar
  84. 84.
    Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34(3):309–38. doi: 10.1210/er.2012-1055.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Adachi T, Yasuda K, Mori C, Yoshinaga M, Aoki N, Tsujimoto G, et al. Promoting insulin secretion in pancreatic islets by means of bisphenol A and nonylphenol via intracellular estrogen receptors. Food Chem Toxicol. 2005;43(5):713–9. doi: 10.1016/j.fct.2005.01.009.CrossRefPubMedGoogle Scholar
  86. 86.
    Fernandez MF, Arrebola JP, Taoufiki J, Navalon A, Ballesteros O, Pulgar R, et al. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod Toxicol. 2007;24(2):259–64. doi: 10.1016/j.reprotox.2007.06.007.CrossRefPubMedGoogle Scholar
  87. 87.
    Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008;116(12):1642–7. doi: 10.1289/ehp.11537.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol. 2009;304(1–2):49–54. doi: 10.1016/j.mce.2009.02.022.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Jiang Y, Xia W, Zhu Y, Li X, Wang D, Liu J, et al. Mitochondrial dysfunction in early life resulted from perinatal bisphenol A exposure contributes to hepatic steatosis in rat offspring. Toxicol Lett. 2014;228(2):85–92. doi: 10.1016/j.toxlet.2014.04.013.CrossRefPubMedGoogle Scholar
  90. 90.
    Huc L, Lemarie A, Gueraud F, Helies-Toussaint C. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol In Vitro. 2012;26(5):709–17. doi: 10.1016/j.tiv.2012.03.017.CrossRefPubMedGoogle Scholar
  91. 91.
    Ma Y, Xia W, Wang DQ, Wan YJ, Xu B, Chen X, et al. Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia. 2013;56(9):2059–67. doi: 10.1007/s00125-013-2944-7.CrossRefPubMedGoogle Scholar
  92. 92.
    Wei J, Lin Y, Li Y, Ying C, Chen J, Song L, et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology. 2011;152(8):3049–61. doi: 10.1210/en.2011-0045.CrossRefPubMedGoogle Scholar
  93. 93.
    Bromer JG, Wu J, Zhou Y, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology. 2009;150(7):3376–82. doi: 10.1210/en.2009-0071.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ho SM, Tang WY, de Frausto BJ, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66(11):5624–32. doi: 10.1158/0008-5472.CAN-06-0516.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Susiarjo M, Xin F, Bansal A, Stefaniak M, Li C, Simmons RA, et al. Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology. 2015;156(6):2049–58. doi: 10.1210/en.2014-2027.CrossRefPubMedGoogle Scholar
  96. 96.
    Li G, Chang H, Xia W, Mao Z, Li Y, Xu S. F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. Toxicol Lett. 2014;228(3):192–9. doi: 10.1016/j.toxlet.2014.04.012.CrossRefPubMedGoogle Scholar
  97. 97.
    Nadal A. Obesity: fat from plastics? Linking bisphenol A exposure and obesity. Nat Rev Endocrinol. 2013;9(1):9–10. doi: 10.1038/nrendo.2012.205.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Centre Hospitalier Universitaire de Nice, Hôpital de l’Archet 2, Service d’Endocrinologie, Diabétologie et Médecine de la ReproductionNice Cedex 3France
  2. 2.Université de Nice-Sophia Antipolis, Faculté de MédecineInstitut Signalisation et Pathologie (IFR 50)NiceFrance
  3. 3.Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 “Environnement, Reproduction et Cancers Hormono-Dépendants”NiceFrance

Personalised recommendations