Skip to main content
Log in

Orexin: Pathways to obesity resistance?

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity has increased in prevalence worldwide, attributed in part to the influences of an obesity-promoting environment and genetic factors. While obesity and overweight increasingly seem to be the norm, there remain individuals who resist obesity. We present here an overview of data supporting the idea that hypothalamic neuropeptide orexin A (OXA; hypocretin 1) may be a key component of brain mechanisms underlying obesity resistance. Prior work with models of obesity and obesity resistance in rodents has shown that increased orexin and/or orexin sensitivity is correlated with elevated spontaneous physical activity (SPA), and that orexin-induced SPA contributes to obesity resistance via increased non-exercise activity thermogenesis (NEAT). However, central hypothalamic orexin signaling mechanisms that regulate SPA remain undefined. Our ongoing studies and work of others support the hypothesis that one such mechanism may be upregulation of a hypoxia-inducible factor 1 alpha (HIF-1α)-dependent pathway, suggesting that orexin may promote obesity resistance both by increasing SPA and by influencing the metabolic state of orexin-responsive hypothalamic neurons. We discuss potential mechanisms based on both animal and in vitro pharmacological studies, in the context of elucidating potential molecular targets for obesity prevention and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DIO:

Diet-induced obese

DR:

Diet-resistant

ERK1/2:

Extracellular receptor kinase 1 and 2

FIH:

Factor inhibiting HIF

HA:

High-activity

HCR:

High caloric restriction

HEK:

Human embryonic kidney

HIF-1α:

Hypoxia-inducible factor 1 alpha

LA:

Low-activity

LCR:

Low caloric restriction

MAPK:

Mitogen-activated protein kinase

MKP-1:

MAPK-phosphatase-1

NEAT:

Non-exercise activity thermogenesis

OP:

Obesity-prone

OR:

Obesity-resistant

OX1R:

Orexin/hypocretin 1 receptor

OX2R:

Orexin/hypocretin 2 receptor

OXA:

Orexin A (Hypocretin 1)

OXB:

Orexin B (Hypocretin 2)

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

POMC:

Pro-opiomelanocortin

PTX:

Pertussis toxin

rLH:

Rostral lateral hypothalamic area

SPA:

Spontaneous physical activity

References

  1. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990;322(21):1477–82. doi:10.1056/NEJM199005243222101.

    Article  PubMed  CAS  Google Scholar 

  2. Forbes GB, Brown MR, Welle SL, Lipinski BA. Deliberate overfeeding in women and men: energy cost and composition of the weight gain. Br J Nutr. 1986;56(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–67. doi:10.2337/db07-0882.

    Article  PubMed  CAS  Google Scholar 

  4. Mustelin L, Silventoinen K, Pietilainen K, Rissanen A, Kaprio J. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins. Int J Obes (Lond). 2009;33(1):29–36. doi:10.1038/ijo.2008.258.

    Article  CAS  Google Scholar 

  5. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283(5399):212–4.

    Article  PubMed  CAS  Google Scholar 

  6. Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr. 2000;72(6):1451–4.

    PubMed  CAS  Google Scholar 

  7. Garland Jr T, Schutz H, Chappell MA, Keeney BK, Meek TH, Copes LE, et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol. 2011;214(Pt 2):206–29. doi:10.1242/jeb.048397.

    Article  PubMed  Google Scholar 

  8. Levine JA. Non-exercise activity thermogenesis (NEAT). Best Pract Res Clin Endocrinol Metab. 2002;16(4):679–702.

    Article  PubMed  Google Scholar 

  9. Teske JA, Levine AS, Kuskowski M, Levine JA, Kotz CM. Elevated hypothalamic orexin signaling, sensitivity to orexin A, and spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R889–99. doi:10.1152/ajpregu.00536.2005.

    Article  PubMed  CAS  Google Scholar 

  10. Levin BE. Orexins: neuropeptides for all seasons and functions. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R885–8. doi:10.1152/ajpregu.00344.2006.

    Article  PubMed  CAS  Google Scholar 

  11. Weyer C, Pratley RE, Salbe AD, Bogardus C, Ravussin E, Tataranni PA. Energy expenditure, fat oxidation, and body weight regulation: a study of metabolic adaptation to long-term weight change. J Clin Endocrinol Metab. 2000;85(3):1087–94.

    Article  PubMed  CAS  Google Scholar 

  12. Kotz CM. Integration of feeding and spontaneous physical activity: role for orexin. Physiol Behav. 2006;88(3):294–301. doi:10.1016/j.physbeh.2006.05.031.

    Article  PubMed  CAS  Google Scholar 

  13. Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH, et al. Interindividual variation in posture allocation: possible role in human obesity. Science. 2005;307(5709):584–6. doi:10.1126/science.1106561.

    Article  PubMed  CAS  Google Scholar 

  14. Kotz CM, Teske JA, Billington CJ. Neuroregulation of nonexercise activity thermogenesis and obesity resistance. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R699–710. doi:10.1152/ajpregu.00095.2007.

    Article  PubMed  CAS  Google Scholar 

  15. Nixon JP, Kotz CM, Novak CM, Billington CJ, Teske JA. Neuropeptides controlling energy balance: orexins and neuromedins. Handb Exp Pharmacol. 2012;209(209):77–109. doi:10.1007/978-3-642-24716-3_4.

    Article  PubMed  CAS  Google Scholar 

  16. Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. Brain orexin promotes obesity resistance. Ann N Y Acad Sci. 2012;1264(1):72–86. doi:10.1111/j.1749-6632.2012.06585.x.

    Article  PubMed  CAS  Google Scholar 

  17. Perez-Leighton CE, Boland K, Teske JA, Billington C, Kotz CM. Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am J Physiol Endocrinol Metab. 2012;303(7):E865–74. doi:10.1152/ajpendo.00119.2012.

    Article  PubMed  CAS  Google Scholar 

  18. Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009;9(1):64–76. doi:10.1016/j.cmet.2008.10.010.

    Article  PubMed  CAS  Google Scholar 

  19. Novak CM, Kotz CM, Levine JA. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab. 2006;290(2):E396–403. doi:10.1152/ajpendo.00293.2005.

    Article  PubMed  CAS  Google Scholar 

  20. Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol. 1997;273(2 Pt 2):R725–30.

    PubMed  CAS  Google Scholar 

  21. Schemmel R, Mickelsen O, Gill JL. Dietary obesity in rats: body weight and body fat accretion in seven strains of rats. J Nutr. 1970;100(9):1041–8.

    PubMed  CAS  Google Scholar 

  22. Ricci MR, Levin BE. Ontogeny of diet-induced obesity in selectively bred Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol. 2003;285(3):R610–8. doi:10.1152/ajpregu.00235.2003.

    PubMed  Google Scholar 

  23. Levin BE, Sullivan AC. Glucose-induced norepinephrine levels and obesity resistance. Am J Physiol. 1987;253(3 Pt 2):R475–81.

    PubMed  CAS  Google Scholar 

  24. Hassanain M, Levin BE. Dysregulation of hypothalamic serotonin turnover in diet-induced obese rats. Brain Res. 2002;929(2):175–80.

    Article  PubMed  CAS  Google Scholar 

  25. Levin BE. Obesity-prone and -resistant rats differ in their brain [3H]paraminoclonidine binding. Brain Res. 1990;512(1):54–9.

    Article  PubMed  CAS  Google Scholar 

  26. Levin BE. Reduced norepinephrine turnover in organs and brains of obesity-prone rats. Am J Physiol. 1995;268(2 Pt 2):R389–94.

    PubMed  CAS  Google Scholar 

  27. Teske JA, Billington CJ, Kuskowski MA, Kotz CM. Spontaneous physical activity protects against fat mass gain. Int J Obes (Lond). 2012;36(4):603–13. doi:10.1038/ijo.2011.108.

    Article  CAS  Google Scholar 

  28. Thorpe AJ, Kotz CM. Orexin A in the nucleus accumbens stimulates feeding and locomotor activity. Brain Res. 2005;1050(1–2):156–62. doi:10.1016/j.brainres.2005.05.045.

    Article  PubMed  CAS  Google Scholar 

  29. Kiwaki K, Kotz CM, Wang C, Lanningham-Foster L, Levine JA. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am J Physiol Endocrinol Metab. 2004;286(4):E551–9. doi:10.1152/ajpendo.00126.2003.

    Article  PubMed  CAS  Google Scholar 

  30. Kotz CM, Wang C, Teske JA, Thorpe AJ, Novak CM, Kiwaki K, et al. Orexin A mediation of time spent moving in rats: neural mechanisms. Neuroscience. 2006;142(1):29–36. doi:10.1016/j.neuroscience.2006.05.028.

    Article  PubMed  CAS  Google Scholar 

  31. Kotz CM, Teske JA, Levine JA, Wang C. Feeding and activity induced by orexin A in the lateral hypothalamus in rats. Regul Pept. 2002;104(1–3):27–32.

    Article  PubMed  CAS  Google Scholar 

  32. Ida T, Nakahara K, Katayama T, Murakami N, Nakazato M. Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res. 1999;821(2):526–9.

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Leighton CE, Boland K, Billington C, Kotz CM. High and low activity rats: elevated intrinsic physical activity drives resistance to diet induced obesity in non-bred rats. Obesity (Silver Spring). 2012. doi:10.1002/oby.20045.

    Google Scholar 

  34. Wisloff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al-Share Q, et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science. 2005;307(5708):418–20. doi:10.1126/science.1108177.

    Article  PubMed  CAS  Google Scholar 

  35. Novak CM, Escande C, Burghardt PR, Zhang M, Barbosa MT, Chini EN, et al. Spontaneous activity, economy of activity, and resistance to diet-induced obesity in rats bred for high intrinsic aerobic capacity. Horm Behav. 2010;58(3):355–67. doi:10.1016/j.yhbeh.2010.03.013.

    Article  PubMed  Google Scholar 

  36. Farooqi IS. Monogenic human obesity syndromes. Prog Brain Res. 2006;153:119–25. doi:10.1016/S0079-6123(06)53006-7.

    Article  PubMed  CAS  Google Scholar 

  37. Farooqi IS. Monogenic human obesity. Front Horm Res. 2008;36:1–11. doi:10.1159/0000115333.

    PubMed  CAS  Google Scholar 

  38. Butterick TA, Nixon JP, Billington CJ, Kotz CM. Orexin A decreases lipid peroxidation and apoptosis in a novel hypothalamic cell model. Neurosci Lett. 2012;524(1):30–4. doi:10.1016/j.neulet.2012.07.002.

    Article  PubMed  CAS  Google Scholar 

  39. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.

    Article  PubMed  CAS  Google Scholar 

  40. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95(1):322–7.

    Article  PubMed  Google Scholar 

  41. de Lecea L, Sutcliffe JG, Fabre V. Hypocretins/orexins as integrators of physiological information: lessons from mutant animals. Neuropeptides. 2002;36(2–3):85–95.

    Article  PubMed  Google Scholar 

  42. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.

    PubMed  CAS  Google Scholar 

  43. Nixon JP, Smale L. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents. Behav Brain Funct. 2007;3:28. doi:10.1186/1744-9081-3-28.

    Article  PubMed  Google Scholar 

  44. Cutler DJ, Morris R, Sheridhar V, Wattam TA, Holmes S, Patel S, et al. Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord. Peptides. 1999;20(12):1455–70.

    Article  PubMed  CAS  Google Scholar 

  45. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998;438(1–2):71–5.

    Article  PubMed  CAS  Google Scholar 

  46. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435(1):6–25.

    Article  PubMed  CAS  Google Scholar 

  47. Holmqvist T, Akerman KE, Kukkonen JP. High specificity of human orexin receptors for orexins over neuropeptide Y and other neuropeptides. Neurosci Lett. 2001;305(3):177–80.

    Article  PubMed  CAS  Google Scholar 

  48. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, et al. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci. 2003;92(3):259–66.

    Article  PubMed  CAS  Google Scholar 

  49. Voisin T, Rouet-Benzineb P, Reuter N, Laburthe M. Orexins and their receptors: structural aspects and role in peripheral tissues. Cell Mol Life Sci. 2003;60(1):72–87.

    Article  PubMed  CAS  Google Scholar 

  50. Lund PE, Shariatmadari R, Uustare A, Detheux M, Parmentier M, Kukkonen JP, et al. The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C. J Biol Chem. 2000;275(40):30806–12. doi:10.1074/jbc.M002603200.

    Article  PubMed  CAS  Google Scholar 

  51. Spinazzi R, Andreis PG, Rossi GP, Nussdorfer GG. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Pharmacol Rev. 2006;58(1):46–57. doi:10.1124/pr.58.1.4.

    Article  PubMed  CAS  Google Scholar 

  52. Karteris E, Machado RJ, Chen J, Zervou S, Hillhouse EW, Randeva HS. Food deprivation differentially modulates orexin receptor expression and signaling in rat hypothalamus and adrenal cortex. Am J Physiol Endocrinol Metab. 2005;288(6):E1089–100. doi:10.1152/ajpendo.00351.2004.

    Article  PubMed  CAS  Google Scholar 

  53. Hilairet S, Bouaboula M, Carriere D, Le Fur G, Casellas P. Hypersensitization of the Orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J Biol Chem. 2003;278(26):23731–7. doi:10.1074/jbc.M212369200.

    Article  PubMed  CAS  Google Scholar 

  54. Tang J, Chen J, Ramanjaneya M, Punn A, Conner AC, Randeva HS. The signalling profile of recombinant human orexin-2 receptor. Cell Signal. 2008;20(9):1651–61. doi:10.1016/j.cellsig.2008.05.010.

    Article  PubMed  CAS  Google Scholar 

  55. Ammoun S, Johansson L, Ekholm ME, Holmqvist T, Danis AS, Korhonen L, et al. OX1 orexin receptors activate extracellular signal-regulated kinase in Chinese hamster ovary cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling. Mol Endocrinol. 2006;20(1):80–99. doi:10.1210/me.2004-0389.

    Article  PubMed  CAS  Google Scholar 

  56. Rodgers RJ, Halford JC, Nunes de Souza RL, Canto de Souza AL, Piper DC, Arch JR, et al. Dose-response effects of orexin-A on food intake and the behavioural satiety sequence in rats. Regul Pept. 2000;96(1–2):71–84.

    Article  PubMed  CAS  Google Scholar 

  57. Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev. 2009;61(2):162–76. doi:10.1124/pr.109.001321.

    Article  PubMed  CAS  Google Scholar 

  58. Roth RJ, Le AM, Zhang L, Kahn M, Samuel VT, Shulman GI, et al. MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice. J Clin Investig. 2009;119(12):3817–29. doi:10.1172/JCI39054.

    Article  PubMed  CAS  Google Scholar 

  59. Wu JJ, Roth RJ, Anderson EJ, Hong EG, Lee MK, Choi CS, et al. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab. 2006;4(1):61–73. doi:10.1016/j.cmet.2006.05.010.

    Article  PubMed  CAS  Google Scholar 

  60. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–51. doi:10.1152/advan.00052.2006.

    Article  PubMed  Google Scholar 

  61. O’Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Cummins EP, Monfared M, et al. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A. 2009;106(7):2188–93. doi:10.1073/pnas.0808801106.

    Article  PubMed  Google Scholar 

  62. Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin (Shanghai). 2011;43(4):248–57. doi:10.1093/abbs/gmr007.

    Article  CAS  Google Scholar 

  63. Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta. 2010;1802(1):228–34. doi:10.1016/j.bbadis.2009.07.014.

    Article  PubMed  CAS  Google Scholar 

  64. Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD, et al. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol. 2009;66(3):352–61. doi:10.1001/archneurol.2008.588.

    Article  PubMed  Google Scholar 

  65. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408. doi:10.1016/j.cell.2006.09.024.

    Article  PubMed  CAS  Google Scholar 

  66. Houten SM, Auwerx J. PGC-1alpha: turbocharging mitochondria. Cell. 2004;119(1):5–7. doi:10.1016/j.cell.2004.09.016.

    Article  PubMed  CAS  Google Scholar 

  67. Luo Y, Zhu W, Jia J, Zhang C, Xu Y. NMDA receptor dependent PGC-1alpha up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury. J Mol Neurosci: MN. 2009;39(1–2):262–8. doi:10.1007/s12031-009-9196-5.

    Article  PubMed  CAS  Google Scholar 

  68. Ma D, Li S, Lucas EK, Cowell RM, Lin JD. Neuronal inactivation of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) protects mice from diet-induced obesity and leads to degenerative lesions. J Biol Chem. 2010;285(50):39087–95. doi:10.1074/jbc.M110.151688.

    Article  PubMed  CAS  Google Scholar 

  69. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 2008;582(1):46–53. doi:10.1016/j.febslet.2007.11.034.

    Article  PubMed  CAS  Google Scholar 

  70. Sikder D, Kodadek T. The neurohormone orexin stimulates hypoxia-inducible factor-1 activity. Genes Dev. 2007;21(22):2995–3005. doi:10.1101/gad.1584307.

    Article  PubMed  CAS  Google Scholar 

  71. Yuan LB, Dong HL, Zhang HP, Zhao RN, Gong G, Chen XM, et al. Neuroprotective effect of orexin-A is mediated by an increase of hypoxia-inducible factor-1 activity in rat. Anesthesiology. 2011;114(2):340–54. doi:10.1097/ALN.0b013e318206ff6f.

    Article  PubMed  CAS  Google Scholar 

  72. Caretti A, Morel S, Milano G, Fantacci M, Bianciardi P, Ronchi R, et al. Heart HIF-1alpha and MAP kinases during hypoxia: are they associated in vivo? Exp Biol Med (Maywood). 2007;232(7):887–94.

    CAS  Google Scholar 

  73. Minet E, Michel G, Mottet D, Raes M, Michiels C. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic Biol Med. 2001;31(7):847–55.

    Article  PubMed  CAS  Google Scholar 

  74. Kodadek T, Cai D. Chemistry and biology of orexin signaling. Mol Biosyst. 2010;6(8):1366–75. doi:10.1039/c003468a.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Visk D, et al. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab. 2010;11(5):364–78. doi:10.1016/j.cmet.2010.03.001.

    Article  PubMed  CAS  Google Scholar 

  76. Zhang H, Zhang G, Gonzalez FJ, Park SM, Cai D. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation. PLoS Biol. 2011;9(7):e1001112. doi:10.1371/journal.pbio.1001112.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors received support from the US Department of Veterans Affairs Rehabilitation Research and Development, Veterans Affairs grant BX001686, and R01 DK078985.

Conflict of interest

The authors declared that they have no any potential conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy A. Butterick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterick, T.A., Billington, C.J., Kotz, C.M. et al. Orexin: Pathways to obesity resistance?. Rev Endocr Metab Disord 14, 357–364 (2013). https://doi.org/10.1007/s11154-013-9259-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9259-3

Keywords

Navigation