Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism

  • Thomas Scherer
  • Christoph Buettner


Fatty acids released from white adipose tissue (WAT) provide important energy substrates during fasting. However, uncontrolled fatty acid release from WAT during non-fasting states causes lipotoxicity and promotes inflammation and insulin resistance, which can lead to and worsen type 2 diabetes (DM2). WAT is also a source for insulin sensitizing fatty acids such as palmitoleate produced during de novo lipogenesis. Insulin and leptin are two major hormonal adiposity signals that control energy homeostasis through signaling in the central nervous system. Both hormones have been implicated to regulate both WAT lipolysis and de novo lipogenesis through the mediobasal hypothalamus (MBH) in an opposing fashion independent of their respective peripheral receptors. Here, we review the current literature on brain leptin and insulin action in regulating WAT metabolism and discuss potential mechanisms and neuro-anatomical substrates that could explain the opposing effects of central leptin and insulin. Finally, we discuss the role of impaired hypothalamic control of WAT metabolism in the pathogenesis of insulin resistance, metabolic inflexibility and type 2 diabetes.


Adipose tissue Lipolysis De novo lipogenesis Sympathetic nervous system Brain Insulin Leptin 



Arcuate nucleus of the hypothalamus


Diabetes mellitus type 2


White adipose tissue


Mediobasal hypothalamus


Free fatty acids




Agouti-related peptide


Neuropeptide Y




Sprague Dawley


Neuronal insulin receptor knock-out


Phosphoinositide 3 kinase


Signal transducer and activator of transcription


Hormone sensitive lipase


Paraventricular nucleus





This work was supported by NIH Grants DK074873, DK083568 and DK082724 and an ADA basic research award to C.B. and a European Foundation for the Study of Diabetes grant to T.S.. C.B. is the recipient of a Hirschl Award.


  1. 1.
  2. 2.
    Gordon ES. Non-esterified fatty acids in the blood of obese and lean subjects. Am J Clin Nutr. 1960;8(5):740–7.Google Scholar
  3. 3.
    Mittendorfer B, Magkos F, Fabbrini E, Mohammed BS, Klein S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity (Silver Spring). 2009;17(10):1872–7. doi: 10.1038/oby.2009.224.CrossRefGoogle Scholar
  4. 4.
    Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol. 2010;298(4):C961–71. doi: 10.1152/ajpcell.00547.2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Boden G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diab Rep. 2006;6(3):177–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Pond C. The fats of life. Cambridge: Cambridge University Press; 1998.CrossRefGoogle Scholar
  7. 7.
    Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009;48(5):275–97. doi: 10.1016/j.plipres.2009.05.001.PubMedCrossRefGoogle Scholar
  8. 8.
    Hers HG, Hue L. Gluconeogenesis and related aspects of glycolysis. Annu Rev Biochem. 1983;52:617–53. doi: 10.1146/ Scholar
  9. 9.
    Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350(12):1220–34. doi: 10.1056/NEJMra025261.PubMedCrossRefGoogle Scholar
  10. 10.
    Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1991;72(1):96–107.PubMedCrossRefGoogle Scholar
  11. 11.
    Roust LR, Jensen MD. Postprandial free fatty acid kinetics are abnormal in upper body obesity. Diabetes. 1993;42(11):1567–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest. 1989;84(1):205–13. doi: 10.1172/JCI114142.PubMedCrossRefGoogle Scholar
  13. 13.
    Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120(10):3466–79. doi: 10.1172/JCI42845.PubMedCrossRefGoogle Scholar
  14. 14.
    Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005;54(12):3458–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859–65. doi: 10.1172/JCI118742.PubMedCrossRefGoogle Scholar
  17. 17.
    Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest. 1983;72(5):1737–47. doi: 10.1172/JCI111133.PubMedCrossRefGoogle Scholar
  18. 18.
    Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab. 2002;283(1):E12–9. doi: 10.1152/ajpendo.00429.2001.PubMedGoogle Scholar
  19. 19.
    Large V, Peroni O, Letexier D, Ray H, Beylot M. Metabolism of lipids in human white adipocyte. Diabetes Metab. 2004;30(4):294–309.PubMedCrossRefGoogle Scholar
  20. 20.
    Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44. doi: 10.1016/j.cell.2008.07.048.PubMedCrossRefGoogle Scholar
  21. 21.
    Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr. 2010;92(6):1350–8. doi: 10.3945/ajcn.110.003970.PubMedCrossRefGoogle Scholar
  22. 22.
    Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506. doi: 10.1053/j.gastro.2007.04.068.PubMedCrossRefGoogle Scholar
  23. 23.
    D’Adamo E, Cali AM, Weiss R, Santoro N, Pierpont B, Northrup V, et al. Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents. Diabetes Care. 2010;33(8):1817–22. doi: 10.2337/dc10-0284.PubMedCrossRefGoogle Scholar
  24. 24.
    Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Ann Intern Med. 2010;153(12):790–9. doi: 10.1059/0003-4819-153-12-201012210-00005.PubMedGoogle Scholar
  25. 25.
    Swierczynski J, Goyke E, Wach L, Pankiewicz A, Kochan Z, Adamonis W, et al. Comparative study of the lipogenic potential of human and rat adipose tissue. Metabolism. 2000;49(5):594–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuchiya Y, Hatakeyama H, Emoto N, Wagatsuma F, Matsushita S, Kanzaki M. Palmitate-induced down-regulation of sortilin and impaired GLUT4 trafficking in C2C12 myotubes. J Biol Chem. 2010;285(45):34371–81. doi: 10.1074/jbc.M110.128520.PubMedCrossRefGoogle Scholar
  27. 27.
    Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab. 2002;282(1):E46–51.PubMedGoogle Scholar
  28. 28.
    Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia. 2009;52(5):882–90. doi: 10.1007/s00125-009-1300-4.PubMedCrossRefGoogle Scholar
  29. 29.
    Mayas MD, Ortega FJ, Macias-Gonzalez M, Bernal R, Gomez-Huelgas R, Fernandez-Real JM, et al. Inverse relation between FASN expression in human adipose tissue and the insulin resistance level. Nutr Metab (Lond). 2010;7(3). doi: 10.1186/1743-7075-7-3.
  30. 30.
    Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548–56. doi: 10.1210/jc.2004-0395.PubMedCrossRefGoogle Scholar
  31. 31.
    Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71. doi: 10.1038/35007534.PubMedGoogle Scholar
  32. 32.
    Schwartz MW, Porte Jr D. Diabetes, obesity, and the brain. Science. 2005;307(5708):375–9. doi: 10.1126/science.1104344.PubMedCrossRefGoogle Scholar
  33. 33.
    Weigle DS, Bukowski TR, Foster DC, Holderman S, Kramer JM, Lasser G, et al. Recombinant ob protein reduces feeding and body weight in the ob/ob mouse. J Clin Invest. 1995;96(4):2065–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269(5223):540–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269(5223):546–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Air EL, Benoit SC, Blake Smith KA, Clegg DJ, Woods SC. Acute third ventricular administration of insulin decreases food intake in two paradigms. PharmacolBiochemBehav. 2002;72(1–2):423–9.Google Scholar
  38. 38.
    Woods SC, Lotter EC, McKay LD, Porte D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282(5738):503–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Chavez M, Kaiyala K, Madden LJ, Schwartz MW, Woods SC. Intraventricular insulin and the level of maintained body weight in rats. Behav Neurosci. 1995;109(3):528–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Jessen L, Clegg DJ, Bouman SD. Evaluation of the lack of anorectic effect of intracerebroventricular insulin in rats. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R43–50. doi: 10.1152/ajpregu.90736.2008.PubMedCrossRefGoogle Scholar
  41. 41.
    Franssila-Kallunki A, Groop L. Factors associated with basal metabolic rate in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(10):962–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103. doi: 10.1172/JCI15693.PubMedGoogle Scholar
  43. 43.
    Assimacopoulos-Jeannet F, Brichard S, Rencurel F, Cusin I, Jeanrenaud B. In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism. 1995;44(2):228–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Degerman E, Landström TR, Holst LS, Göransson O, Härndahl L, Ahmad F, et al. Role for Phosphodiesterase 3B in Regulation of Lipolysis and Insulin Secretion. In: LeRoith D, Olefsky JM, Taylor SI, editors. Diabetes mellitus: A fundamental and clinical text. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 374–81.Google Scholar
  45. 45.
    Hegele RA. Monogenic forms of insulin resistance: apertures that expose the common metabolic syndrome. Trends Endocrinol Metab. 2003;14(8):371–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Donohue WL, Uchida I. Leprechaunism: a euphemism for a rare familial disorder. J Pediatr. 1954;45(5):505–19.PubMedCrossRefGoogle Scholar
  47. 47.
    Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002;3(1):25–38.PubMedCrossRefGoogle Scholar
  48. 48.
    Seibler J, Kleinridders A, Kuter-Luks B, Niehaves S, Bruning JC, Schwenk F. Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res. 2007;35(7):e54. doi: 10.1093/nar/gkm122.PubMedCrossRefGoogle Scholar
  49. 49.
    Koch L, Wunderlich FT, Seibler J, Konner AC, Hampel B, Irlenbusch S, et al. Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 2008;118(6):2132–47. doi: 10.1172/JCI31073.PubMedGoogle Scholar
  50. 50.
    Wang MY, Lee Y, Unger RH. Novel form of lipolysis induced by leptin. J Biol Chem. 1999;274(25):17541–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Shimabukuro M, Koyama K, Chen G, Wang MY, Trieu F, Lee Y, et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA. 1997;94(9):4637–41.PubMedCrossRefGoogle Scholar
  52. 52.
    de Luca C, Kowalski TJ, Zhang Y, Elmquist JK, Lee C, Kilimann MW, et al. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J Clin Invest. 2005;115(12):3484–93. doi: 10.1172/JCI24059.PubMedCrossRefGoogle Scholar
  53. 53.
    Guo K, McMinn JE, Ludwig T, Yu YH, Yang G, Chen L, et al. Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology. 2007;148(8):3987–97. doi: 10.1210/en.2007-0261.PubMedCrossRefGoogle Scholar
  54. 54.
    Paz-Filho GJ, Ayala A, Esposito K, Erol HK, Delibasi T, Hurwitz BE, et al. Effects of leptin on lipid metabolism. Horm Metab Res. 2008;40(8):572–4. doi: 10.1055/s-0028-1082052.PubMedCrossRefGoogle Scholar
  55. 55.
    Gallardo N, Bonzon-Kulichenko E, Fernandez-Agullo T, Molto E, Gomez-Alonso S, Blanco P, et al. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology. 2007;148(12):5604–10. doi: 10.1210/en.2007-0933.PubMedCrossRefGoogle Scholar
  56. 56.
    McMinn JE, Liu SM, Liu H, Dragatsis I, Dietrich P, Ludwig T, et al. Neuronal deletion of Lepr elicits diabesity in mice without affecting cold tolerance or fertility. Am J Physiol Endocrinol Metab. 2005;289(3):E403–11. doi: 10.1152/ajpendo.00535.2004.PubMedCrossRefGoogle Scholar
  57. 57.
    Buettner C, Muse ED, Cheng A, Chen L, Scherer T, Pocai A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med. 2008;14(6):667–75. doi: 10.1038/nm1775.PubMedCrossRefGoogle Scholar
  58. 58.
    Anthonsen MW, Ronnstrand L, Wernstedt C, Degerman E, Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem. 1998;273(1):215–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13(2):183–94. doi: 10.1016/j.cmet.2011.01.008.PubMedCrossRefGoogle Scholar
  60. 60.
    Giordano A, Song CK, Bowers RR, Ehlen JC, Frontini A, Cinti S, et al. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1243–55. doi: 10.1152/ajpregu.00679.2005.PubMedCrossRefGoogle Scholar
  61. 61.
    Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, et al. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat–functional implications. J Clin Invest. 2002;110(9):1243–50. doi: 10.1172/JCI15736.PubMedGoogle Scholar
  62. 62.
    Buettner C, Camacho RC. Hypothalamic control of hepatic glucose production and its potential role in insulin resistance. Endocrinol Metab Clin North Am. 2008;37(4):825–40. doi: 10.1016/j.ecl.2008.09.001.PubMedCrossRefGoogle Scholar
  63. 63.
    Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434(7036):1026–31. doi: 10.1038/nature03439.PubMedCrossRefGoogle Scholar
  64. 64.
    Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376–82. doi: 10.1038/nm798.PubMedCrossRefGoogle Scholar
  65. 65.
    Gutierrez-Juarez R, Obici S, Rossetti L. Melanocortin-independent effects of leptin on hepatic glucose fluxes. J Biol Chem. 2004;279(48):49704–15. doi: 10.1074/jbc.M408665200.PubMedCrossRefGoogle Scholar
  66. 66.
    Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996;98(3):741–9. doi: 10.1172/JCI118846.PubMedCrossRefGoogle Scholar
  67. 67.
    Rebrin K, Steil GM, Getty L, Bergman RN. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes. 1995;44(9):1038–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004;42(6):983–91. doi: 10.1016/j.neuron.2004.06.004.PubMedCrossRefGoogle Scholar
  69. 69.
    van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology. 2008;149(4):1773–85. doi: 10.1210/en.2007-1132.PubMedCrossRefGoogle Scholar
  70. 70.
    Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010;11(4):286–97. doi: 10.1016/j.cmet.2010.03.002.PubMedCrossRefGoogle Scholar
  71. 71.
    Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438–49. doi: 10.1016/j.cmet.2007.05.004.PubMedCrossRefGoogle Scholar
  72. 72.
    Lin HV, Plum L, Ono H, Gutierrez-Juarez R, Shanabrough M, Borok E, et al. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in AgRP and POMC neurons. Diabetes. 2009. doi: 10.2337/db09-1303.
  73. 73.
    Padilla SL, Carmody JS, Zeltser LM. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med. 2010;16(4):403–5. doi: 10.1038/nm.2126.PubMedCrossRefGoogle Scholar
  74. 74.
    Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480–4. doi: 10.1038/35078085.PubMedCrossRefGoogle Scholar
  75. 75.
    Al-Qassab H, Smith MA, Irvine EE, Guillermet-Guibert J, Claret M, Choudhury AI, et al. Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab. 2009;10(5):343–54. doi: 10.1016/j.cmet.2009.09.008.PubMedCrossRefGoogle Scholar
  76. 76.
    Xu AW, Kaelin CB, Takeda K, Akira S, Schwartz MW, Barsh GS. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest. 2005;115(4):951–8. doi: 10.1172/JCI24301.PubMedGoogle Scholar
  77. 77.
    Williams KW, Margatho LO, Lee CE, Choi M, Lee S, Scott MM, et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci: The Official Journal of the Society for Neuroscience. 2010;30(7):2472–9. doi: 10.1523/JNEUROSCI.3118-09.2010.Google Scholar
  78. 78.
    Belgardt BF, Okamura T, Bruning JC. Hormone and glucose signalling in POMC and AgRP neurons. J Physiol. 2009;587(Pt 22):5305–14. doi: 10.1113/jphysiol.2009.179192.PubMedCrossRefGoogle Scholar
  79. 79.
    Belgardt BF, Bruning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci. 2010;1212:97–113. doi: 10.1111/j.1749-6632.2010.05799.x.PubMedCrossRefGoogle Scholar
  80. 80.
    Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest. 2007;117(8):2325–36. doi: 10.1172/JCI31516.PubMedCrossRefGoogle Scholar
  81. 81.
    van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci. 2004;7(5):493–4. doi: 10.1038/nn1226.PubMedCrossRefGoogle Scholar
  82. 82.
    Yamashita H, Inenaga K, Koizumi K. Possible projections from regions of paraventricular and supraoptic nuclei to the spinal cord: electrophysiological studies. Brain Res. 1984;296(2):373–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Stanley S, Pinto S, Segal J, Perez CA, Viale A, DeFalco J, et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci USA. 2010;107(15):7024–9. doi: 10.1073/pnas.1002790107.PubMedCrossRefGoogle Scholar
  84. 84.
    Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ. Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2005;289(5):R1467–76. doi: 10.1152/ajpregu.00348.2005.PubMedCrossRefGoogle Scholar
  85. 85.
    Brito MN, Brito NA, Baro DJ, Song CK, Bartness TJ. Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology. 2007;148(11):5339–47. doi: 10.1210/en.2007-0621.PubMedCrossRefGoogle Scholar
  86. 86.
    Zheng H, Patterson LM, Phifer CB, Berthoud HR. Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R247–58. doi: 10.1152/ajpregu.00869.2004.PubMedCrossRefGoogle Scholar
  87. 87.
    Baker RA, Herkenham M. Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. J Comp Neurol. 1995;358(4):518–30. doi: 10.1002/cne.903580405.PubMedCrossRefGoogle Scholar
  88. 88.
    Frederich RC, Lollmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, et al. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest. 1995;96(3):1658–63. doi: 10.1172/JCI118206.PubMedCrossRefGoogle Scholar
  89. 89.
    Degerman E, Smith CJ, Tornqvist H, Vasta V, Belfrage P, Manganiello VC. Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc Natl Acad Sci USA. 1990;87(2):533–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Smith CJ, Vasta V, Degerman E, Belfrage P, Manganiello VC. Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin- and cAMP-dependent activation by phosphorylation. J Biol Chem. 1991;266(20):13385–90.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Medicine and Department of NeuroscienceMount Sinai School of MedicineNew YorkUSA

Personalised recommendations