Reviews in Endocrine and Metabolic Disorders

, Volume 12, Issue 4, pp 259–274 | Cite as

Novel pathways in gonadotropin receptor signaling and biased agonism



Gonadotropins play a central role in the control of male and female reproduction. Selective agonists and antagonists of gonadotropin receptors would be of great interest for the treatment of infertility or as non steroidal contraceptive. However, to date, only native hormones are being used in assisted reproduction technologies as there is no pharmacological agent available to manipulate gonadotropin receptors. Over the last decade, there has been a growing perception of the complexity associated with gonadotropin receptors’ cellular signaling. It is now clear that the Gs/cAMP/PKA pathway is not the sole mechanism that must be taken into account in order to understand these hormones’ biological actions. In parallel, consistent with the emerging paradigm of biased agonism, several examples of ligand-mediated selective signaling pathway activation by gonadotropin receptors have been reported. Small molecule ligands, modulating antibodies interacting with the hormones and glycosylation variants of the native glycoproteins have all demonstrated their potential to trigger such selective signaling. Altogether, the available data and emerging concepts give rise to intriguing opportunities towards a more efficient control of reproductive function and associated disorders.


Gonadotropin Luteinizing hormone Follicle-stimulating hormone Signaling GPCR Biased agonism 



This work was supported by the Action d’Envergure (AE) INRIA/INRA Regate, and Region Centre project. BIOS group is a young research team from INRA. Alfredo Ulloa-Aguirre is recipient of a Research Career Development Award from the Fundación IMSS, México and is supported by grant 86881 from CONACyT, Mexico. Eric Reiter and Alfredo Ulloa-Aguirre are members of Le Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Orléans, France.


  1. 1.
    Pierce JG, Parsons TF. Glycoprotein hormones: structure and function. Annu Rev Biochem. 1981;50:465–95.PubMedGoogle Scholar
  2. 2.
    Ryan RJ, Keutmann HT, Charlesworth MC, McCormick DJ, Milius RP, Calvo FO, et al. Structure-function relationships of gonadotropins. Recent Prog Horm Res. 1987;43:383–429.PubMedGoogle Scholar
  3. 3.
    Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002;23(2):141–74.PubMedGoogle Scholar
  4. 4.
    Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev. 1997;18(6):739–73.PubMedGoogle Scholar
  5. 5.
    Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev. 2000;21(5):551–83.PubMedGoogle Scholar
  6. 6.
    Erickson GF, Magoffin DA, Dyer CA, Hofeditz C. The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev. 1985;6(3):371–99.PubMedGoogle Scholar
  7. 7.
    Sharpe RM. Intratesticular control of steroidogenesis. Clin Endocrinol. 1990;33(6):787–807.Google Scholar
  8. 8.
    Lunenfeld B. Historical perspectives in gonadotrophin therapy. Hum Reprod Update. 2004;10(6):453–67.PubMedGoogle Scholar
  9. 9.
    Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27(2):170–207.PubMedGoogle Scholar
  10. 10.
    Ludwig M, Westergaard LG, Diedrich K, Andersen CY. Developments in drugs for ovarian stimulation. Best Pract Res Clin Obstet Gynaecol. 2003;17(2):231–47.PubMedGoogle Scholar
  11. 11.
    Vloeberghs V, Peeraer K, Pexsters A, D’Hooghe T. Ovarian hyperstimulation syndrome and complications of ART. Best Pract Res Clin Obstet Gynaecol. 2009;23(5):691–709.PubMedGoogle Scholar
  12. 12.
    Loutradis D, Drakakis P, Milingos S, Stefanidis K, Michalas S. Alternative approaches in the management of poor response in controlled ovarian hyperstimulation (COH). Ann NY Acad Sci. 2003;997:112–9.PubMedGoogle Scholar
  13. 13.
    Loutradis D, Elsheikh A, Kallianidis K, Drakakis P, Stefanidis K, Milingos S, et al. Results of controlled ovarian stimulation for ART in poor responders according to the short protocol using different gonadotrophins combinations. Arch Gynecol Obstet. 2004;270(4):223–6.PubMedGoogle Scholar
  14. 14.
    Cramer DW, Welch WR. Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst. 1983;71(4):717–21.PubMedGoogle Scholar
  15. 15.
    Choi JH, Wong AS, Huang HF, Leung PC. Gonadotropins and ovarian cancer. Endocr Rev. 2007;28(4):440–61.PubMedGoogle Scholar
  16. 16.
    Argento M, Hoffman P, Gauchez AS. Ovarian cancer detection and treatment: current situation and future prospects. Anticancer Res. 2008;28(5B):3135–8.PubMedGoogle Scholar
  17. 17.
    Radu A, Pichon C, Camparo P, Antoine M, Allory Y, Couvelard A et al. Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med.363(17):1621–30.Google Scholar
  18. 18.
    Naz RK, Gupta SK, Gupta JC, Vyas HK, Talwar AG. Recent advances in contraceptive vaccine development: a mini-review. Hum Reprod. 2005;20(12):3271–83.PubMedGoogle Scholar
  19. 19.
    Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15(2):201–4.PubMedGoogle Scholar
  20. 20.
    Aittomaki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell. 1995;82(6):959–68.PubMedGoogle Scholar
  21. 21.
    Foresta C, Selice R, Garolla A, Ferlin A. Follicle-stimulating hormone treatment of male infertility. Curr Opin Urol. 2008;18(6):602–7.PubMedGoogle Scholar
  22. 22.
    Tuvemo T. Treatment of central precocious puberty. Expert Opin Investig Drugs. 2006;15(5):495–505.PubMedGoogle Scholar
  23. 23.
    Lenzi A, Balercia G, Bellastella A, Colao A, Fabbri A, Foresta C, et al. Epidemiology, diagnosis, and treatment of male hypogonadotropic hypogonadism. J Endocrinol Investig. 2009;32(11):934–8.Google Scholar
  24. 24.
    Ma P, Zemmel R. Value of novelty? Nat Rev Drug Discov. 2002;1(8):571–2.PubMedGoogle Scholar
  25. 25.
    Stephenson RP. A modification of receptor theory. Br J Pharmacol Chemother. 1956;11(4):379–93.PubMedGoogle Scholar
  26. 26.
    Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007;320(1):1–13.PubMedGoogle Scholar
  27. 27.
    Violin JD, Lefkowitz RJ. Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci. 2007;28(8):416–22.PubMedGoogle Scholar
  28. 28.
    Kenakin T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov. 2005;4(11):919–27.PubMedGoogle Scholar
  29. 29.
    Galandrin S, Oligny-Longpre G, Bouvier M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci. 2007;28(8):423–30.PubMedGoogle Scholar
  30. 30.
    Kenakin T. Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci. 2007;28(8):407–15.PubMedGoogle Scholar
  31. 31.
    Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med. 2011.Google Scholar
  32. 32.
    Arey BJ, Stevis PE, Deecher DC, Shen ES, Frail DE, Negro-Vilar A, et al. Induction of promiscuous G protein coupling of the follicle-stimulating hormone (FSH) receptor: a novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol Endocrinol. 1997;11(5):517–26.PubMedGoogle Scholar
  33. 33.
    Crepieux P, Marion S, Martinat N, Fafeur V, Vern YL, Kerboeuf D, et al. The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene. 2001;20(34):4696–709.PubMedGoogle Scholar
  34. 34.
    Quintana J, Hipkin RW, Sanchez-Yague J, Ascoli M. Follitropin (FSH) and a phorbol ester stimulate the phosphorylation of the FSH receptor in intact cells. J Biol Chem. 1994;269(12):8772–9.PubMedGoogle Scholar
  35. 35.
    Lin YF, Tseng MJ, Hsu HL, Wu YW, Lee YH, Tsai YH. A novel follicle-stimulating hormone-induced G alpha h/phospholipase C-delta1 signaling pathway mediating rat sertoli cell Ca2+−influx. Mol Endocrinol. 2006;20(10):2514–27.PubMedGoogle Scholar
  36. 36.
    Gilchrist RL, Ryu KS, Ji I, Ji TH. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J Biol Chem. 1996;271(32):19283–7.PubMedGoogle Scholar
  37. 37.
    Moraga PF, Llanos MN, Ronco AM. Arachidonic acid release from rat Leydig cells depends on the presence of luteinizing hormone/human chorionic gonadotrophin receptors. J Endocrinol. 1997;154(2):201–9.PubMedGoogle Scholar
  38. 38.
    Ronco AM, Moraga PF, Llanos MN. Arachidonic acid release from rat Leydig cells: the involvement of G protein, phospholipase A2 and regulation of cAMP production. J Endocrinol. 2002;172(1):95–104.PubMedGoogle Scholar
  39. 39.
    Zeleznik AJ, Saxena D, Little-Ihrig L. Protein kinase B is obligatory for follicle-stimulating hormone-induced granulosa cell differentiation. Endocrinology. 2003;144(9):3985–94.PubMedGoogle Scholar
  40. 40.
    Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 2000;14(8):1283–300.PubMedGoogle Scholar
  41. 41.
    Wayne CM, Fan HY, Cheng X, Richards JS. Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol Endocrinol. 2007;21(8):1940–57.PubMedGoogle Scholar
  42. 42.
    Escamilla-Hernandez R, Little-Ihrig L, Orwig KE, Yue J, Chandran U, Zeleznik AJ. Constitutively active protein kinase A qualitatively mimics the effects of follicle-stimulating hormone on granulosa cell differentiation. Mol Endocrinol. 2008;22(8):1842–52.PubMedGoogle Scholar
  43. 43.
    Scobey M, Bertera S, Somers J, Watkins S, Zeleznik A, Walker W. Delivery of a cyclic adenosine 3′,5′-monophosphate response element-binding protein (creb) mutant to seminiferous tubules results in impaired spermatogenesis. Endocrinology. 2001;142(2):948–54.PubMedGoogle Scholar
  44. 44.
    Salvador LM, Park Y, Cottom J, Maizels ET, Jones JC, Schillace RV, et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J Biol Chem. 2001;276(43):40146–55.PubMedGoogle Scholar
  45. 45.
    Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123(5):833–47.PubMedGoogle Scholar
  46. 46.
    Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ. Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell. 2009;17(4):443–58.PubMedGoogle Scholar
  47. 47.
    Marion S, Kara E, Crepieux P, Piketty V, Martinat N, Guillou F, et al. G protein-coupled receptor kinase 2 and beta-arrestins are recruited to FSH receptor in stimulated rat primary Sertoli cells. J Endocrinol. 2006;190(2):341–50.PubMedGoogle Scholar
  48. 48.
    Marion S, Robert F, Crepieux P, Martinat N, Troispoux C, Guillou F, et al. G protein-coupled receptor kinases and beta arrestins are relocalized and attenuate cyclic 3′,5′-adenosine monophosphate response to follicle-stimulating hormone in rat primary Sertoli cells. Biol Reprod. 2002;66(1):70–6.PubMedGoogle Scholar
  49. 49.
    Kara E, Crepieux P, Gauthier C, Martinat N, Piketty V, Guillou F, et al. A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Mol Endocrinol. 2006;20(11):3014–26.PubMedGoogle Scholar
  50. 50.
    Wehbi V, Decourtye J, Piketty V, Durand G, Reiter E, Maurel MC. Selective modulation of follicle-stimulating hormone signaling pathways with enhancing equine chorionic gonadotropin/antibody immune complexes. Endocrinology. 2010;151(6):2788–99.PubMedGoogle Scholar
  51. 51.
    Wehbi V, Tranchant T, Durand G, Musnier A, Decourtye J, Piketty V, et al. Partially deglycosylated equine LH preferentially activates beta-arrestin-dependent signaling at the follicle-stimulating hormone receptor. Mol Endocrinol. 2010;24(3):561–73.PubMedGoogle Scholar
  52. 52.
    Tranchant T, Durand G, Gauthier C, Crepieux P, Ulloa-Aguirre A, Royere D, et al. Preferential beta-arrestin signalling at low receptor density revealed by functional characterization of the human FSH receptor A189 V mutation. Mol Cell Endocrinol. 2011;331(1):109–18.PubMedGoogle Scholar
  53. 53.
    Lécureuil C, Tesseraud S, Kara E, Martinat N, Sow A, Fontaine I, et al. Follicle-stimulating hormone activates p70 ribosomal protein S6 kinase by protein kinase A-mediated dephosphorylation of Thr 421/Ser 424 in primary Sertoli cells. Mol Endocrinol. 2005;19(7):1812–20.PubMedGoogle Scholar
  54. 54.
    Musnier A, Boulo T, Reiter E, Morales J, Oulhen N, Dupuy L et al. FSH signalling acts at multiple levels to regulate mRNA translation. submitted.Google Scholar
  55. 55.
    Musnier A, Heitzler D, Boulo T, Tesseraud S, Durand G, Lecureuil C, et al. Developmental regulation of p70 S6 kinase by a G protein-coupled receptor dynamically modelized in primary cells. Cell Mol Life Sci. 2009;66(21):3487–503.PubMedGoogle Scholar
  56. 56.
    Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, Chandel NS, et al. FSH activation of HIF-1 by the PI3-kinase/AKT/Rheb/mTOR pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem. 2004;279(19):19431–40.PubMedGoogle Scholar
  57. 57.
    Alam H, Weck J, Maizels E, Park Y, Lee EJ, Ashcroft M, et al. Role of the phosphatidylinositol-3-kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF)-1 activity and the HIF-1 target vascular endothelial growth factor in ovarian granulosa cells in response to follicle-stimulating hormone. Endocrinology. 2009;150(2):915–28.PubMedGoogle Scholar
  58. 58.
    Kayampilly PP, Menon KM. Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells. Endocrinology. 2007;148(8):3950–7.PubMedGoogle Scholar
  59. 59.
    Kayampilly PP, Menon KM. Follicle-stimulating hormone inhibits adenosine 5′-monophosphate-activated protein kinase activation and promotes cell proliferation of primary granulosa cells in culture through an Akt-dependent pathway. Endocrinology. 2009;150(2):929–35.PubMedGoogle Scholar
  60. 60.
    Hou X, Arvisais EW, Davis JS. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase. Endocrinology. 2010;151(6):2846–57.PubMedGoogle Scholar
  61. 61.
    Fan HY, O’Connor A, Shitanaka M, Shimada M, Liu Z, Richards JS. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol. 2011;24(8):1529–42.Google Scholar
  62. 62.
    Rosano L, Cianfrocca R, Masi S, Spinella F, Di Castro V, Biroccio A, et al. Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proc Natl Acad Sci USA. 2009;106(8):2806–11.PubMedGoogle Scholar
  63. 63.
    Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villen J, et al. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci USA. 2010;107(34):15299–304.PubMedGoogle Scholar
  64. 64.
    Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 1999;283(5402):655–61.PubMedGoogle Scholar
  65. 65.
    Goel R, Phillips-Mason PJ, Raben DM, Baldassare JJ. alpha-Thrombin induces rapid and sustained Akt phosphorylation by beta-arrestin1-dependent and -independent mechanisms, and only the sustained Akt phosphorylation is essential for G1 phase progression. J Biol Chem. 2002;277(21):18640–8.PubMedGoogle Scholar
  66. 66.
    Lodeiro M, Theodoropoulou M, Pardo M, Casanueva FF, Camina JP. c-Src regulates Akt signaling in response to ghrelin via beta-arrestin signaling-independent and -dependent mechanisms. PLoS ONE. 2009;4(3):e4686.PubMedGoogle Scholar
  67. 67.
    Schmid CL, Bohn LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J Neurosci. 2010;30(40):13513–24.PubMedGoogle Scholar
  68. 68.
    Nechamen CA, Thomas RM, Cohen BD, Acevedo G, Poulikakos PI, Testa JR, et al. Human follicle-stimulating hormone (FSH) receptor interacts with the adaptor protein APPL1 in HEK 293 cells: potential involvement of the PI3K pathway in FSH signaling. Biol Reprod. 2004;71(2):629–36.PubMedGoogle Scholar
  69. 69.
    Liu Z, Rudd MD, Hernandez-Gonzalez I, Gonzalez-Robayna I, Fan HY, Zeleznik AJ, et al. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol Endocrinol. 2009;23(5):649–61.PubMedGoogle Scholar
  70. 70.
    Thomas RM, Nechamen CA, Mzurkiewicz JE, Ulloa-Aguirre A, Dias JA. The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca2+ mobilization. Endocrinology. 2011;152(4):1691–1701.PubMedGoogle Scholar
  71. 71.
    Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, et al. Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci USA. 2005;102(5):1442–7.PubMedGoogle Scholar
  72. 72.
    Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ. Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA. 2005;102(5):1448–53.PubMedGoogle Scholar
  73. 73.
    Mukherjee S, Gurevich VV, Jones JC, Casanova JE, Frank SR, Maizels ET, et al. The ADP ribosylation factor nucleotide exchange factor ARNO promotes beta-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. Proc Natl Acad Sci USA. 2000;97(11):5901–6.PubMedGoogle Scholar
  74. 74.
    Zhang Q, Bhola NE, Lui VW, Siwak DR, Thomas SM, Gubish CT, et al. Antitumor mechanisms of combined gastrin-releasing peptide receptor and epidermal growth factor receptor targeting in head and neck cancer. Mol Cancer Ther. 2007;6(4):1414–24.PubMedGoogle Scholar
  75. 75.
    Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4.PubMedGoogle Scholar
  76. 76.
    Turner CE, Brown MC. Cell motility: ARNO and ARF6 at the cutting edge. Curr Biol. 2001;11(21):R875–7.PubMedGoogle Scholar
  77. 77.
    Wang X, Walsh LP, Reinhart AJ, Stocco DM. The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J Biol Chem. 2000;275(26):20204–9.PubMedGoogle Scholar
  78. 78.
    Fan QR, Hendrickson WA. Structure of human follicle-stimulating hormone in complex with its receptor. Nature. 2005;433(7023):269–77.PubMedGoogle Scholar
  79. 79.
    Arey BJ, Deecher DC, Shen ES, Stevis PE, Meade Jr EH, Wrobel J, et al. Identification and characterization of a selective, nonpeptide follicle-stimulating hormone receptor antagonist. Endocrinology. 2002;143(10):3822–9.PubMedGoogle Scholar
  80. 80.
    Wrobel J, Green D, Jetter J, Kao W, Rogers J, Perez MC, et al. Synthesis of (bis)sulfonic acid, (bis)benzamides as follicle-stimulating hormone (FSH) antagonists. Bioorg Med Chem. 2002;10(3):639–56.PubMedGoogle Scholar
  81. 81.
    Guo T, Adang AE, Dolle RE, Dong G, Fitzpatrick D, Geng P, et al. Small molecule biaryl FSH receptor agonists. Part 1: lead discovery via encoded combinatorial synthesis. Bioorg Med Chem Lett. 2004;14(7):1713–6.PubMedGoogle Scholar
  82. 82.
    Guo T, Adang AE, Dong G, Fitzpatrick D, Geng P, Ho KK, et al. Small molecule biaryl FSH receptor agonists. Part 2: lead optimization via parallel synthesis. Bioorg Med Chem Lett. 2004;14(7):1717–20.PubMedGoogle Scholar
  83. 83.
    van Straten NC, van Berkel TH, Demont DR, Karstens WJ, Merkx R, Oosterom J, et al. Identification of substituted 6-amino-4-phenyltetrahydroquinoline derivatives: potent antagonists for the follicle-stimulating hormone receptor. J Med Chem. 2005;48(6):1697–700.PubMedGoogle Scholar
  84. 84.
    Yanofsky SD, Shen ES, Holden F, Whitehorn E, Aguilar B, Tate E, et al. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists. J Biol Chem. 2006;281(19):13226–33.PubMedGoogle Scholar
  85. 85.
    Arey BJ, Yanofsky SD, Claudia Perez M, Holmes CP, Wrobel J, Gopalsamy A, et al. Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem Biophys Res Commun. 2008;368(3):723–8.PubMedGoogle Scholar
  86. 86.
    Dias JA, Bonnet B, Weaver BA, Watts J, Kluetzman K, Thomas RM et al. A negative allosteric modulator demonstrates biased antagonism of the follicle stimulating hormone receptor. Molecular and cellular endocrinology. 2011.Google Scholar
  87. 87.
    Maclean D, Holden F, Davis AM, Scheuerman RA, Yanofsky S, Holmes CP, et al. Agonists of the follicle stimulating hormone receptor from an encoded thiazolidinone library. J Comb Chem. 2004;6(2):196–206.PubMedGoogle Scholar
  88. 88.
    van Straten NC, Schoonus-Gerritsma GG, van Someren RG, Draaijer J, Adang AE, Timmers CM, et al. The first orally active low molecular weight agonists for the LH receptor: thienopyr(im)idines with therapeutic potential for ovulation induction. Chembiochem. 2002;3(10):1023–6.PubMedGoogle Scholar
  89. 89.
    Jorand-Lebrun C, Brondyk B, Lin J, Magar S, Murray R, Reddy A, et al. Identification, synthesis, and biological evaluation of novel pyrazoles as low molecular weight luteinizing hormone receptor agonists. Bioorg Med Chem Lett. 2007;17(7):2080–5.PubMedGoogle Scholar
  90. 90.
    Arey BJ. Allosteric modulators of glycoprotein hormone receptors: discovery and therapeutic potential. Endocr. 2008;34(1–3):1–10.Google Scholar
  91. 91.
    Janovick JA, Maya-Nunez G, Ulloa-Aguirre A, Huhtaniemi IT, Dias JA, Verbost P, et al. Increased plasma membrane expression of human follicle-stimulating hormone receptor by a small molecule thienopyr(im)idine. Mol Cell Endocrinol. 2009;298(1–2):84–8.PubMedGoogle Scholar
  92. 92.
    May LT, Leach K, Sexton PM, Christopoulos A. Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol. 2007;47:1–51.PubMedGoogle Scholar
  93. 93.
    Schwartz TW, Frimurer TM, Holst B, Rosenkilde MM, Elling CE. Molecular mechanism of 7TM receptor activation–a global toggle switch model. Annu Rev Pharmacol Toxicol. 2006;46:481–519.PubMedGoogle Scholar
  94. 94.
    Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature. 2007;450(7168):383–7.PubMedGoogle Scholar
  95. 95.
    Ferasin L, Gabai G, Beattie J, Bono G, Holder AT. Enhancement of FSH bioactivity in vivo using site-specific antisera. J Endocrinol. 1997;152(3):355–63.PubMedGoogle Scholar
  96. 96.
    Glencross RG, Lovell RD, Holder AT. Monoclonal antibody enhancement of FSH-induced uterine growth in snell dwarf mice. J Endocrinol. 1993;136(3):R5–7.PubMedGoogle Scholar
  97. 97.
    Holder AT, Aston R, Preece MA, Ivanyi J. Monoclonal antibody-mediated enhancement of growth hormone activity in vivo. J Endocrinol. 1985;107(3):R9–12.PubMedGoogle Scholar
  98. 98.
    Holder AT, Aston R, Rest JR, Hill DJ, Patel N, Ivanyi J. Monoclonal antibodies can enhance the biological activity of thyrotropin. Endocrinology. 1987;120(2):567–73.PubMedGoogle Scholar
  99. 99.
    Aston R, Holder AT, Ivanyi J, Bomford R. Enhancement of bovine growth hormone activity in vivo by monoclonal antibodies. Mol Immunol. 1987;24(2):143–50.PubMedGoogle Scholar
  100. 100.
    Pell JM, Johnsson ID, Pullar RA, Morrell DJ, Hart IC, Holder AT, et al. Potentiation of growth hormone activity in sheep using monoclonal antibodies. J Endocrinol. 1989;120(2):R15–8.PubMedGoogle Scholar
  101. 101.
    Boyman O, Surh CD, Sprent J. Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert Opin Biol Ther. 2006;6(12):1323–31.PubMedGoogle Scholar
  102. 102.
    Boyman O, Ramsey C, Kim DM, Sprent J, Surh CD. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol. 2008;180(11):7265–75.PubMedGoogle Scholar
  103. 103.
    Herve V, Roy F, Bertin J, Guillou F, Maurel MC. Antiequine chorionic gonadotropin (eCG) antibodies generated in goats treated with eCG for the induction of ovulation modulate the luteinizing hormone and follicle-stimulating hormone bioactivities of eCG differently. Endocrinology. 2004;145(1):294–303.PubMedGoogle Scholar
  104. 104.
    Bishop LA, Robertson DM, Cahir N, Schofield PR. Specific roles for the asparagine-linked carbohydrate residues of recombinant human follicle stimulating hormone in receptor binding and signal transduction. Mol Endocrinol. 1994;8(6):722–31.PubMedGoogle Scholar
  105. 105.
    Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291(5512):2364–9.PubMedGoogle Scholar
  106. 106.
    Ulloa-Aguirre A, Timossi C, Damian-Matsumura P, Dias JA. Role of glycosylation in function of follicle-stimulating hormone. Endocr. 1999;11(3):205–15.Google Scholar
  107. 107.
    Matzuk MM, Boime I. Site-specific mutagenesis defines the intracellular role of the asparagine-linked oligosaccharides of chorionic gonadotropin beta subunit. J Biol Chem. 1988;263(32):17106–11.PubMedGoogle Scholar
  108. 108.
    Matzuk MM, Boime I. The role of the asparagine-linked oligosaccharides of the alpha subunit in the secretion and assembly of human chorionic gonadotrophin. J Cell Biol. 1988;106(4):1049–59.PubMedGoogle Scholar
  109. 109.
    Matzuk MM, Boime I. Mutagenesis and gene transfer define site-specific roles of the gonadotropin oligosaccharides. Biol Reprod. 1989;40(1):48–53.PubMedGoogle Scholar
  110. 110.
    Matzuk MM, Hsueh AJ, Lapolt P, Tsafriri A, Keene JL, Boime I. The biological role of the carboxyl-terminal extension of human chorionic gonadotropin [corrected] beta-subunit. Endocrinology. 1990;126(1):376–83.PubMedGoogle Scholar
  111. 111.
    Muyan M, Boime I. The carboxyl-terminal region is a determinant for the intracellular behavior of the chorionic gonadotropin beta subunit: effects on the processing of the Asn-linked oligosaccharides. Mol Endocrinol. 1998;12(5):766–72.PubMedGoogle Scholar
  112. 112.
    Sairam MR, Bhargavi GN. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones. Science. 1985;229(4708):65–7.PubMedGoogle Scholar
  113. 113.
    Sairam MR. Role of carbohydrates in glycoprotein hormone signal transduction. FASEB J. 1989;3(8):1915–26.PubMedGoogle Scholar
  114. 114.
    Smith PL, Kaetzel D, Nilson J, Baenziger JU. The sialylated oligosaccharides of recombinant bovine lutropin modulate hormone bioactivity. J Biol Chem. 1990;265(2):874–81.PubMedGoogle Scholar
  115. 115.
    Baenziger JU, Green ED. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta. 1988;947(2):287–306.PubMedGoogle Scholar
  116. 116.
    Bousfield GR, Butnev VY, Gotschall RR, Baker VL, Moore WT. Structural features of mammalian gonadotropins. Mol Cell Endocrinol. 1996;125(1–2):3–19.PubMedGoogle Scholar
  117. 117.
    Bousfield GR, Butnev VY, Walton WJ, Nguyen VT, Huneidi J, Singh V, et al. All-or-none N-glycosylation in primate follicle-stimulating hormone beta-subunits. Mol Cell Endocrinol. 2007;260–262:40–8.PubMedGoogle Scholar
  118. 118.
    Walton WJ, Nguyen VT, Butnev VY, Singh V, Moore WT, Bousfield GR. Characterization of human FSH isoforms reveals a nonglycosylated beta-subunit in addition to the conventional glycosylated beta-subunit. J Clin Endocrinol Metab. 2001;86(8):3675–85.PubMedGoogle Scholar
  119. 119.
    Green ED, Boime I, Baenziger JU. Differential processing of Asn-linked oligosaccharides on pituitary glycoprotein hormones: implications for biologic function. Mol Cell Biochem. 1986;72(1–2):81–100.PubMedGoogle Scholar
  120. 120.
    Renwick AG, Mizuochi T, Kochibe N, Kobata A. The asparagine-linked sugar chains of human follicle-stimulating hormone. J Biochem. 1987;101(5):1209–21.PubMedGoogle Scholar
  121. 121.
    Green ED, Baenziger JU. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988;263(1):36–44.PubMedGoogle Scholar
  122. 122.
    Green ED, Baenziger JU. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988;263(1):25–35.PubMedGoogle Scholar
  123. 123.
    Weisshaar G, Hiyama J, Renwick AG, Nimtz M. NMR investigations of the N-linked oligosaccharides at individual glycosylation sites of human lutropin. Eur J Biochem/FEBS. 1991;195(1):257–68.Google Scholar
  124. 124.
    Weisshaar G, Hiyama J, Renwick AG. Site-specific N-glycosylation of human chorionic gonadotrophin–structural analysis of glycopeptides by one- and two-dimensional 1H NMR spectroscopy. Glycobiology. 1991;1(4):393–404.PubMedGoogle Scholar
  125. 125.
    Dalpathado DS, Irungu J, Go EP, Butnev VY, Norton K, Bousfield GR, et al. Comparative glycomics of the glycoprotein follicle stimulating hormone: glycopeptide analysis of isolates from two mammalian species. Biochemistry. 2006;45(28):8665–73.PubMedGoogle Scholar
  126. 126.
    Muyan M, Ruddon RW, Norton SE, Boime I, Bedows E. Dissociation of early folding events from assembly of the human lutropin beta-subunit. Mol Endocrinol. 1998;12(10):1640–9.PubMedGoogle Scholar
  127. 127.
    Bousfield GR, Butnev VY, Bidart JM, Dalpathado D, Irungu J, Desaire H. Chromatofocusing fails to separate hFSH isoforms on the basis of glycan structure. Biochemistry. 2008;47(6):1708–20.PubMedGoogle Scholar
  128. 128.
    Ulloa-Aguirre A, Midgley Jr AR, Beitins IZ, Padmanabhan V. Follicle-stimulating isohormones: characterization and physiological relevance. Endocr Rev. 1995;16(6):765–87.PubMedGoogle Scholar
  129. 129.
    Birken S, Maydelman Y, Gawinowicz MA, Pound A, Liu Y, Hartree AS. Isolation and characterization of human pituitary chorionic gonadotropin. Endocrinology. 1996;137(4):1402–11.PubMedGoogle Scholar
  130. 130.
    Olivares A, Cardenas M, Timossi C, Zarinan T, Diaz-Sanchez V, Ulloa-Aguirre A. Reactivity of different LH and FSH standards and preparations in the world health organization matched reagents for enzyme-linked immunoassays of gonadotrophins. Hum Reprod. 2000;15(11):2285–91.PubMedGoogle Scholar
  131. 131.
    Stanton PG, Burgon PG, Hearn MT, Robertson DM. Structural and functional characterisation of hFSH and hLH isoforms. Mol Cell Endocrinol. 1996;125(1–2):133–41.PubMedGoogle Scholar
  132. 132.
    Wide L, Bakos O. More basic forms of both human follicle-stimulating hormone and luteinizing hormone in serum at midcycle compared with the follicular or luteal phase. J Clin Endocrinol Metab. 1993;76(4):885–9.PubMedGoogle Scholar
  133. 133.
    Bishop LA, Nguyen TV, Schofield PR. Both of the beta-subunit carbohydrate residues of follicle-stimulating hormone determine the metabolic clearance rate and in vivo potency. Endocrinology. 1995;136(6):2635–40.PubMedGoogle Scholar
  134. 134.
    Matzuk MM, Keene JL, Boime I. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem. 1989;264(5):2409–14.PubMedGoogle Scholar
  135. 135.
    Valove FM, Finch C, Anasti JN, Froehlich J, Flack MR. Receptor binding and signal transduction are dissociable functions requiring different sites on follicle-stimulating hormone. Endocrinology. 1994;135(6):2657–61.PubMedGoogle Scholar
  136. 136.
    Bousfield GR, Butnev VY, Butnev VY, Nguyen VT, Gray CM, Dias JA, et al. Differential effects of alpha subunit Asparagine56 oligosaccharide structure on equine lutropin and follitropin hybrid conformation and receptor-binding activity. Biochemistry. 2004;43(33):10817–33.PubMedGoogle Scholar
  137. 137.
    Flack MR, Froehlich J, Bennet AP, Anasti J, Nisula BC. Site-directed mutagenesis defines the individual roles of the glycosylation sites on follicle-stimulating hormone. J Biol Chem. 1994;269(19):14015–20.PubMedGoogle Scholar
  138. 138.
    Nguyen VT, Singh V, Butnev VY, Gray CM, Westfall S, Davis JS, et al. Inositol phosphate stimulation by LH requires the entire alpha Asn56 oligosaccharide. Mol Cell Endocrinol. 2003;199(1–2):73–86.PubMedGoogle Scholar
  139. 139.
    Rebois RV, Liss MT. Antibody binding to the beta-subunit of deglycosylated chorionic gonadotropin converts the antagonist to an agonist. J Biol Chem. 1987;262(8):3891–6.PubMedGoogle Scholar
  140. 140.
    Butney VY, Gotschall RR, Butnev VY, Baker VL, Moore WT, Bousfield GR. Hormone-specific inhibitory influence of alpha-subunit Asn56 oligosaccharide on in vitro subunit association and follicle-stimulating hormone receptor binding of equine gonadotropins. Biol Reprod. 1998;58(2):458–69.PubMedGoogle Scholar
  141. 141.
    Fox KM, Dias JA, Van Roey P. Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol (Baltim, Md). 2001;15(3):378–89.Google Scholar
  142. 142.
    Dias JA, Van Roey P. Structural biology of human follitropin and its receptor. Arch Med Res. 2001;32(6):510–9.PubMedGoogle Scholar
  143. 143.
    Fan QR, Hendrickson WA. Structural biology of glycoprotein hormones and their receptors. Endocr. 2005;26(3):179–88.Google Scholar
  144. 144.
    Butnev VY, Singh V, Nguyen VT, Bousfield GR. Truncated equine LH beta and asparagine(56)-deglycosylated equine LH alpha combine to produce a potent FSH antagonist. J Endocrinol. 2002;172(3):545–55.PubMedGoogle Scholar
  145. 145.
    Ulloa-Aguirre A, Timossi C, Barrios-de-Tomasi J, Maldonado A, Nayudu P. Impact of carbohydrate heterogeneity in function of follicle-stimulating hormone: studies derived from in vitro and in vivo models. Biol Reprod. 2003;69(2):379–89.PubMedGoogle Scholar
  146. 146.
    Yding Andersen C, Leonardsen L, Ulloa-Aguirre A, Barrios-De-Tomasi J, Moore L, Byskov AG. FSH-induced resumption of meiosis in mouse oocytes: effect of different isoforms. Mol Hum Reprod. 1999;5(8):726–31.PubMedGoogle Scholar
  147. 147.
    Andersen CY, Leonardsen L, Ulloa-Aguirre A, Barrios-De-Tomasi J, Kristensen KS, Byskov AG. Effect of different FSH isoforms on cyclic-AMP production by mouse cumulus-oocyte-complexes: a time course study. Mol Hum Reprod. 2001;7(2):129–35.PubMedGoogle Scholar
  148. 148.
    Barrios-de-Tomasi J, Nayudu PL, Brehm R, Heistermann M, Zarinan T, Ulloa-Aguirre A. Effects of human pituitary FSH isoforms on mouse follicles in vitro. Reprod Biomed Online. 2006;12(4):428–41.PubMedGoogle Scholar
  149. 149.
    Timossi CM, Barrios de Tomasi J, Zambrano E, Gonzalez R, Ulloa-Aguirre A. A naturally occurring basically charged human follicle-stimulating hormone (FSH) variant inhibits FSH-induced androgen aromatization and tissue-type plasminogen activator enzyme activity in vitro. Neuroendocrinology. 1998;67((3):153–63.Google Scholar
  150. 150.
    Timossi CM, Barrios-de-Tomasi J, Gonzalez-Suarez R, Arranz MC, Padmanabhan V, Conn PM, et al. Differential effects of the charge variants of human follicle-stimulating hormone. J Endocrinol. 2000;165(2):193–205.PubMedGoogle Scholar
  151. 151.
    Vaidehi N, Kenakin T. The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol. 10(6):775–81.Google Scholar
  152. 152.
    Creus S, Chaia Z, Pellizzari EH, Cigorraga SB, Ulloa-Aguirre A, Campo S. Human FSH isoforms: carbohydrate complexity as determinant of in-vitro bioactivity. Mol Cell Endocrinol. 2001;174(1–2):41–9.PubMedGoogle Scholar
  153. 153.
    Ulloa-Aguirre A, Timossi C. Biochemical and functional aspects of gonadotrophin-releasing hormone and gonadotrophins. Reprod Biomed Online. 2000;1(2):48–62.PubMedGoogle Scholar
  154. 154.
    Stanton PG, Pozvek G, Burgon PG, Robertson DM, Hearn MT. Isolation and characterization of human LH isoforms. J Endocrinol. 1993;138(3):529–43.PubMedGoogle Scholar
  155. 155.
    Stanton PG, Robertson DM, Burgon PG, Schmauk-White B, Hearn MT. Isolation and physicochemical characterization of human follicle-stimulating hormone isoforms. Endocrinology. 1992;130(5):2820–32.PubMedGoogle Scholar
  156. 156.
    Baenziger JU. Glycoprotein hormone GalNAc-4-sulphotransferase. Biochem Soc Trans. 2003;31(2):326–30.PubMedGoogle Scholar
  157. 157.
    Schaaf L, Leiprecht A, Saji M, Hubner U, Usadel KH, Kohn LD. Glycosylation variants of human TSH selectively activate signal transduction pathways. Mol Cell Endocrinol. 1997;132(1–2):185–94.PubMedGoogle Scholar
  158. 158.
    Ulloa-Aguirre A, Timossi C, Mendez JP. Is there any physiological role for gonadotrophin oligosaccharide heterogeneity in humans? I. Gondatrophins are synthesized and released in multiple molecular forms. A matter of fact. Hum Reprod. 2001;16(4):599–604.PubMedGoogle Scholar
  159. 159.
    Vaidehi N. Dynamics and flexibility of G-protein-coupled receptor conformations and their relevance to drug design. Drug Discov Today. 2010;15(21–22):951–7.PubMedGoogle Scholar
  160. 160.
    Kenakin T. Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J. 2001;15(3):598–611.PubMedGoogle Scholar
  161. 161.
    Aggarwal BB, Lictt P, Papkoff H, Bona-Gallo A. Interaction of equine luteinizing hormone with binding sites for follicle-stimulating hormone in the rat seminiferous tubule. Endocrinology. 1980;107(3):725–31.PubMedGoogle Scholar
  162. 162.
    Trousdale RK, Yu B, Pollak SV, Husami N, Vidali A, Lustbader JW. Efficacy of native and hyperglycosylated follicle-stimulating hormone analogs for promoting fertility in female mice. Fertil Steril. 2009;91(1):265–70.PubMedGoogle Scholar
  163. 163.
    Weenen C, Pena JE, Pollak SV, Klein J, Lobel L, Trousdale RK, et al. Long-acting follicle-stimulating hormone analogs containing N-linked glycosylation exhibited increased bioactivity compared with o-linked analogs in female rats. J Clin Endocrinol Metab. 2004;89(10):5204–12.PubMedGoogle Scholar
  164. 164.
    Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol Endocrinol. 2002;16(4):736–46.PubMedGoogle Scholar
  165. 165.
    Vassart G, Pardo L, Costagliola S. A molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci. 2004;29(3):119–26.PubMedGoogle Scholar
  166. 166.
    Kitano H, Funahashi A, Matsuoka Y, Oda K. Using process diagrams for the graphical representation of biological networks. Nat Biotechnol. 2005;23(8):961–6.PubMedGoogle Scholar
  167. 167.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics. 2006;Chapter 5:Unit 5 6.Google Scholar
  168. 168.
    Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol. 2004;342(2):571–83.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alfredo Ulloa-Aguirre
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Pascale Crépieux
    • 1
    • 2
    • 3
    • 4
  • Anne Poupon
    • 1
    • 2
    • 3
    • 4
  • Marie-Christine Maurel
    • 1
    • 2
    • 3
    • 4
  • Eric Reiter
    • 1
    • 2
    • 3
    • 4
  1. 1.BIOS group, INRA, UMR85Unité Physiologie de la Reproduction et des ComportementsNouzillyFrance
  2. 2.CNRS, UMR6175NouzillyFrance
  3. 3.Université François RabelaisToursFrance
  4. 4.IFCENouzillyFrance
  5. 5.LE STUDIUM Institute for Advanced StudiesOrléansFrance
  6. 6.Research Unit in Reproductive MedicineUMAE Hospital de Ginecobstetricia “Luis Castelazo Ayala”, IMSSMéxicoMexico
  7. 7.MéxicoMexico

Personalised recommendations