Advertisement

Endothelial dysfunction in diabetes mellitus: Molecular mechanisms and clinical implications

  • Corey E. Tabit
  • William B. Chung
  • Naomi M. Hamburg
  • Joseph A. Vita
Article

Abstract

Cardiovascular disease is a major complication of diabetes mellitus, and improved strategies for prevention and treatment are needed. Endothelial dysfunction contributes to the pathogenesis and clinical expression of atherosclerosis in diabetes mellitus. This article reviews the evidence linking endothelial dysfunction to human diabetes mellitus and experimental studies that investigated the responsible mechanisms. We then discuss the implications of these studies for current management and for new approaches for the prevention and treatment of cardiovascular disease in patients with diabetes mellitus.

Keywords

Endothelium Nitric oxide Inflammation Diabetes mellitus Mitochondria Protein kinase C 

Notes

Acknowledgments

Drs. Tabit, Hamburg, and Vita received support from the NIH-sponsored Boston University Medical Center Leadership Program in Vascular Medicine (K12 HL083781). Dr. Vita’s work is supported by grants from the NIH (HL083801, HL081587, HL083269, and HL75795).

References

  1. 1.
    Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050. Diabetes Care. 2006;29:2114–6.PubMedGoogle Scholar
  2. 2.
    Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:480–6.PubMedGoogle Scholar
  3. 3.
    Eckel RH, Wassef M, Chait A, et al. Prevention conference VI: Diabetes and cardiovascular disease: writing Group II: pathogenesis of atherosclerosis in diabetes. Circulation. 2002;105:e138–43.PubMedGoogle Scholar
  4. 4.
    Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003;108:1527–32.PubMedGoogle Scholar
  5. 5.
    Widlansky ME, Gokce N, Keaney Jr JF, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–60.PubMedGoogle Scholar
  6. 6.
    Vita JA, Keaney Jr JF. Endothelial function: A barometer for cardiovascular risk? Circulation. 2002;106:640–2.PubMedGoogle Scholar
  7. 7.
    Beckman JA, Libby P, Creager MA. Diabetes mellitus, the metabolic syndrome, and atherosclerotic vascular disease. In: Zipes DP, Libby P, Bonow RO, Braunwald E, editors. Braunwald’s heart disease: A textbook of cardiovascular medicine. Philadelphia: Elsevier Saunders; 2005. p. 1035–46.Google Scholar
  8. 8.
    Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–904.PubMedGoogle Scholar
  9. 9.
    Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW. Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 2009;335:165–89.PubMedGoogle Scholar
  10. 10.
    Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev. 2001;22:36–52.PubMedGoogle Scholar
  11. 11.
    Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.PubMedGoogle Scholar
  12. 12.
    Vita JA. Nitric oxide-dependent vasodilation in human subjects. Methods Enzymol. 2002;359:186–200.PubMedGoogle Scholar
  13. 13.
    Silver AE, Vita JA. Shear-stress-mediated arterial remodeling in atherosclerosis: too much of a good thing? Circulation. 2006;113:2787–9.PubMedGoogle Scholar
  14. 14.
    Korshunov VA, Schwartz SM, Berk BC. Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol. 2007;27:1722–8.PubMedGoogle Scholar
  15. 15.
    Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res. 2004;95:449–58.PubMedGoogle Scholar
  16. 16.
    Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol. 2003;23:1143–51.PubMedGoogle Scholar
  17. 17.
    Pasterkamp G, Galis ZS, de Kleijn DP. Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol. 2004;24:650–7.PubMedGoogle Scholar
  18. 18.
    de Chantemele EJ Belin, Vessieres E, Guihot AL, et al. Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow. Cardiovasc Res. 2009;81:788–96.Google Scholar
  19. 19.
    Rubio R, Berne RM. Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance. Circ Res. 1969;25:407–15.PubMedGoogle Scholar
  20. 20.
    Loscalzo J, Vita JA. Ischemia, hyperemia, exercise, and nitric oxide: complex physiology and complex molecular adaptations. Circulation. 1994;90:2556–9.PubMedGoogle Scholar
  21. 21.
    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.PubMedGoogle Scholar
  22. 22.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.PubMedGoogle Scholar
  23. 23.
    Li H, Cybulsky MI, Gimbrone MA, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb. 1993;13(2):197–204.PubMedGoogle Scholar
  24. 24.
    Ruberg FL, Leopold JA, Loscalzo J. Atherothrombosis: plaque instability and thrombogenesis. Prog Cardiovasc Dis. 2002;44:381–94.PubMedGoogle Scholar
  25. 25.
    Libby P. Atherosclerosis: the new view. Sci Am. 2002;286:46–55.PubMedGoogle Scholar
  26. 26.
    Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–5.PubMedGoogle Scholar
  28. 28.
    Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81:491–7.PubMedGoogle Scholar
  29. 29.
    Benjamin EJ, Larson MG, Keyes MJ, et al. Clinical correlates and heritability of endothelial function in the community: the Framingham heart study. Circulation. 2004;109:613–9.PubMedGoogle Scholar
  30. 30.
    Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE. Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein (a) level. J Clin Invest. 1994;93:50–5.PubMedGoogle Scholar
  31. 31.
    Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long- term outcome of coronary heart disease. Circulation. 2000;101:1899–906.PubMedGoogle Scholar
  32. 32.
    Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101:948–54.PubMedGoogle Scholar
  33. 33.
    Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104:2673–8.PubMedGoogle Scholar
  34. 34.
    Perticone F, Ceravolo R, Pujia A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001;104:191–6.PubMedGoogle Scholar
  35. 35.
    Gokce N, Keaney Jr JF, Menzoian JO, et al. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function. Circulation. 2002;105:1567–72.PubMedGoogle Scholar
  36. 36.
    Halcox JP, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106:653–8.PubMedGoogle Scholar
  37. 37.
    Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol. 2002;40:505–10.PubMedGoogle Scholar
  38. 38.
    Huang AL, Silver AE, Shvenke E, et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler Thromb Vasc Biol. 2007;27:2113–9.PubMedGoogle Scholar
  39. 39.
    Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88:2510–6.PubMedGoogle Scholar
  40. 40.
    Nicolls MR, Haskins K, Flores SC. Oxidant stress, immune dysregulation, and vascular function in type I diabetes. Antioxid Redox Signal. 2007;9:879–89.PubMedGoogle Scholar
  41. 41.
    McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35:771–6.PubMedGoogle Scholar
  42. 42.
    Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996;97:22–8.PubMedGoogle Scholar
  43. 43.
    Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567–74.PubMedGoogle Scholar
  44. 44.
    Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97:2601–10.PubMedGoogle Scholar
  45. 45.
    Hamdy O, Ledbury S, Mullooly C, et al. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care. 2003;26:2119–25.PubMedGoogle Scholar
  46. 46.
    Gokce N, Vita JA, Donnell M, et al. Effect of medical and surgical weight loss on endothelial vasomotor function in obese patients. Am J Cardiol. 2005;95:266–8.PubMedGoogle Scholar
  47. 47.
    Lteif AA, Han K, Mather KJ. Obesity, insulin resistance, and the metabolic syndrome: determinants of endothelial dysfunction in whites and blacks. Circulation. 2005;112:32–8.PubMedGoogle Scholar
  48. 48.
    Hamburg NM, Larson MG, Vita JA, et al. Metabolic syndrome, insulin resistance, and brachial artery vasodilator function in framingham offspring participants without clinical evidence of cardiovascular disease. Am J Cardiol. 2008;101:82–8.PubMedGoogle Scholar
  49. 49.
    DeSouza CA, Shapiro LF, Clevenger CM, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102:1351–7.PubMedGoogle Scholar
  50. 50.
    Keaney Jr JF, Massaro JM, Larson MG, et al. Heritability and correlates of intercellular adhesion molecule-1 in the Framingham Offspring Study. J Am Coll Cardiol. 2004;44:168–73.PubMedGoogle Scholar
  51. 51.
    Meigs JB, Mittleman MA, Nathan DM, et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. JAMA. 2000;283:221–8.PubMedGoogle Scholar
  52. 52.
    Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004;291:1978–86.PubMedGoogle Scholar
  53. 53.
    de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CD. Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation. 2004;109:2529–35.PubMedGoogle Scholar
  54. 54.
    Balletshofer BM, Rittig K, Enderle MD, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101:1780–4.PubMedGoogle Scholar
  55. 55.
    Campia U, Sullivan G, Bryant MB, Waclawiw MA, Quon MJ, Panza JA. Insulin impairs endothelium-dependent vasodilation independent of insulin sensitivity or lipid profile. Am J Physiol Heart Circ Physiol. 2004;286:H76–82.PubMedGoogle Scholar
  56. 56.
    Shimabukuro M, Shinzato T, Higa S, et al. Enhanced insulin response relates to acetylcholine-induced vasoconstriction in vasospastic angina. J Am Coll Cardiol. 1995;25:356–61.PubMedGoogle Scholar
  57. 57.
    Shinozaki K, Hirayama A, Nishio Y, et al. Coronary endothelial dysfunction in the insulin-resistant state is linked to abnormal pteridine metabolism and vascular oxidative stress. J Am Coll Cardiol. 2001;38:1821–8.PubMedGoogle Scholar
  58. 58.
    Pasimeni G, Ribaudo MC, Capoccia D, et al. Non-invasive evaluation of endothelial dysfunction in uncomplicated obesity: relationship with insulin resistance. Microvasc Res. 2006;71:115–20.PubMedGoogle Scholar
  59. 59.
    Lampinen KH, Ronnback M, Groop PH, Kaaja RJ. A relationship between insulin sensitivity and vasodilation in women with a history of preeclamptic pregnancy. Hypertension. 2008;52:394–401.PubMedGoogle Scholar
  60. 60.
    Ardigo D, Franzini L, Valtuena S, Monti LD, Reaven GM, Zavaroni I. Relation of plasma insulin levels to forearm flow-mediated dilatation in healthy volunteers. Am J Cardiol. 2006;97:1250–4.PubMedGoogle Scholar
  61. 61.
    Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.PubMedGoogle Scholar
  62. 62.
    Tesauro M, Rizza S, Iantorno M, et al. Vascular, metabolic, and inflammatory abnormalities in normoglycemic offspring of patients with type 2 diabetes mellitus. Metabolism. 2007;56:413–9.PubMedGoogle Scholar
  63. 63.
    Meigs JB, O’Donnell CJ, Tofler GH, et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study. Diabetes. 2006;55:530–7.PubMedGoogle Scholar
  64. 64.
    Rossi R, Cioni E, Nuzzo A, Origliani G, Modena MG. Endothelial-dependent vasodilation and incidence of type 2 diabetes in a population of healthy postmenopausal women. Diabetes Care. 2005;28:702–7.PubMedGoogle Scholar
  65. 65.
    Monti LD, Barlassina C, Citterio L, et al. Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome. Diabetes. 2003;52:1270–5.PubMedGoogle Scholar
  66. 66.
    Pistrosch F, Passauer J, Fischer S, Fuecker K, Hanefeld M, Gross P. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care. 2004;27:484–90.PubMedGoogle Scholar
  67. 67.
    Caballero AE, Saouaf R, Lim SC, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism. 2003;52:173–80.PubMedGoogle Scholar
  68. 68.
    Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37:1344–50.PubMedGoogle Scholar
  69. 69.
    de Aguiar LG, Bahia LR, Villela N, et al. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care. 2006;29:1083–9.PubMedGoogle Scholar
  70. 70.
    Campia U, Matuskey LA, Panza JA. Peroxisome proliferator-activated receptor-gamma activation with pioglitazone improves endothelium-dependent dilation in nondiabetic patients with major cardiovascular risk factors. Circulation. 2006;113:867–75.PubMedGoogle Scholar
  71. 71.
    Hetzel J, Balletshofer B, Rittig K, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol. 2005;25:1804–9.PubMedGoogle Scholar
  72. 72.
    Cheetham C, Collis J, O’Driscoll G, Stanton K, Taylor R, Green D. Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin-dependent diabetes [In Process Citation]. J Am Coll Cardiol. 2000;36:1461–6.PubMedGoogle Scholar
  73. 73.
    O’Driscoll G, Green D, Maiorana A, Stanton K, Colreavy F, Taylor R. Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1999;33:1506–11.PubMedGoogle Scholar
  74. 74.
    Shaul PW, Smart EJ, Robinson LJ, et al. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996;271:6518–22.PubMedGoogle Scholar
  75. 75.
    Michel JB, Feron O, Sacks D, Michel T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem. 1997;272:15583–6.PubMedGoogle Scholar
  76. 76.
    Garcia-Cardena G, Fan R, Shah V, et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998;392:821–4.PubMedGoogle Scholar
  77. 77.
    Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem. 2001;276:30392–8.PubMedGoogle Scholar
  78. 78.
    Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45.PubMedGoogle Scholar
  79. 79.
    Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101:676–81.PubMedGoogle Scholar
  80. 80.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.PubMedGoogle Scholar
  81. 81.
    Krumenacker JS, Hanafy KA, Murad F. Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull. 2004;62:505–15.PubMedGoogle Scholar
  82. 82.
    Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28:463–91.PubMedGoogle Scholar
  83. 83.
    Hartell NA, Archer HE, Bailey CJ. Insulin-stimulated endothelial nitric oxide release is calcium independent and mediated via protein kinase B. Biochem Pharmacol. 2005;69:781–90.PubMedGoogle Scholar
  84. 84.
    Federici M, Pandolfi A, De Filippis EA, et al. G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation. 2004;109:399–405.PubMedGoogle Scholar
  85. 85.
    Wheatcroft SB, Shah AM, Li JM, et al. Preserved glucoregulation but attenuation of the vascular actions of insulin in mice heterozygous for knockout of the insulin receptor. Diabetes. 2004;53:2645–52.PubMedGoogle Scholar
  86. 86.
    Vicent D, Ilany J, Kondo T, et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest. 2003;111:1373–80.PubMedGoogle Scholar
  87. 87.
    Duncan ER, Crossey PA, Walker S, et al. Effect of endothelium-specific insulin resistance on endothelial function in vivo. Diabetes. 2008;57:3307–14.PubMedGoogle Scholar
  88. 88.
    Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999;104:447–57.PubMedGoogle Scholar
  89. 89.
    Nacci C, Tarquinio M, Montagnani M. Molecular and clinical aspects of endothelial dysfunction in diabetes. Intern Emerg Med. 2009;4:107–16.PubMedGoogle Scholar
  90. 90.
    Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med. 2003;20:255–68.PubMedGoogle Scholar
  91. 91.
    Montagnani M, Golovchenko I, Kim I, et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J Biol Chem. 2002;277:1794–9.PubMedGoogle Scholar
  92. 92.
    Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94:1172–9.PubMedGoogle Scholar
  93. 93.
    Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance. J Clin Invest. 1996;97:2601–10.PubMedGoogle Scholar
  94. 94.
    Baron AD, Brechtel-Hook G, Johnson A, Cronin J, Leaming R, Steinberg HO. Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake. Am J Physiol. 1996;271:E1067–72.PubMedGoogle Scholar
  95. 95.
    Mather K, Laakso M, Edelman S, Hook G, Baron A. Evidence for physiological coupling of insulin-mediated glucose metabolism and limb blood flow. Am J Physiol Endocrinol Metab. 2000;279:E1264–70.PubMedGoogle Scholar
  96. 96.
    Baron AD. Insulin resistance and vascular function. J Diabetes Complications. 2002;16:92–102.PubMedGoogle Scholar
  97. 97.
    Okon EB, Chung AW, Rauniyar P, et al. Compromised arterial function in human type 2 diabetic patients. Diabetes. 2005;54:2415–23.PubMedGoogle Scholar
  98. 98.
    Piatti PM, Monti LD, Conti M, et al. Hypertriglyceridemia and hyperinsulinemia are potent inducers of endothelin-1 release in humans. Diabetes. 1996;45:316–21.PubMedGoogle Scholar
  99. 99.
    Lam TY, Seto SW, Lau YM, et al. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic+db/+db mice. Eur J Pharmacol. 2006;546:134–41.PubMedGoogle Scholar
  100. 100.
    Bucci M, Roviezzo F, Brancaleone V, et al. Diabetic mouse angiopathy is linked to progressive sympathetic receptor deletion coupled to an enhanced caveolin-1 expression. Arterioscler Thromb Vasc Biol. 2004;24(24):721–6.PubMedGoogle Scholar
  101. 101.
    Catalan V, Gomez-Ambrosi J, Rodriguez A, et al. Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clin Endocrinol (Oxf). 2008;68:213–9.Google Scholar
  102. 102.
    Lei H, Venkatakrishnan A, Yu S, Kazlauskas A. Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem. 2007;282:9364–71.PubMedGoogle Scholar
  103. 103.
    Boger RH. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res. 2003;59:824–33.PubMedGoogle Scholar
  104. 104.
    Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol. 1992;263:H321–6.PubMedGoogle Scholar
  105. 105.
    Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend TL, Egan BM. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension. 1995;26:764–70.PubMedGoogle Scholar
  106. 106.
    Stocker R, Keaney Jr JF. The role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478.PubMedGoogle Scholar
  107. 107.
    Tomasian D, Keaney Jr JF, Vita JA. Antioxidants and the bioactivity of endothelium-derived nitric oxide. Cardiovasc Res. 2000;47:426–35.PubMedGoogle Scholar
  108. 108.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol. 1996;271:C1424–37.PubMedGoogle Scholar
  109. 109.
    Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest. 2002;109:817–26.PubMedGoogle Scholar
  110. 110.
    Munzel T, Daiber A, Ullrich V, Mulsch A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol. 2005;25:1551–7.PubMedGoogle Scholar
  111. 111.
    Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation. 2002;105:1656–62.PubMedGoogle Scholar
  112. 112.
    Hamburg NM, Vita JA. Endothelial dysfunction in atherosclerosis: Mechanisms of impaired nitric oxide bioactivity. In: Loscalzo J, editor. Molecular mechanisms of atherosclerosis. London: Taylor & Francis; 2006. p. 95–110.Google Scholar
  113. 113.
    Tong X, Evangelista A, Cohen RA. Targeting the redox regulation of SERCA in vascular physiology and disease. Curr Opin Pharmacol. 2009.Google Scholar
  114. 114.
    San Martin A, Du P, Dikalova A, et al. Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. Am J Physiol Heart Circ Physiol. 2007;292:H2073–82.PubMedGoogle Scholar
  115. 115.
    Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res. 2009;82:9–20.PubMedGoogle Scholar
  116. 116.
    Maloney E, Sweet IR, Hockenbery DM, et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29:1370–5.PubMedGoogle Scholar
  117. 117.
    Rajagopalan S, Harrison DG. Reversing endothelial dysfunction with ACE inhibitors: a new trend? Circulation. 1996;94:240–3.PubMedGoogle Scholar
  118. 118.
    Henriksen EJ. Improvement of insulin sensitivity by antagonism of the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2007;293:R974–80.PubMedGoogle Scholar
  119. 119.
    Oak JH, Cai H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes. 2007;56:118–26.PubMedGoogle Scholar
  120. 120.
    Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA. 1998;95:9220–5.PubMedGoogle Scholar
  121. 121.
    Pieper GM. Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol. 1997;29:8–15.PubMedGoogle Scholar
  122. 122.
    Alp NJ, Mussa S, Khoo J, et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest. 2003;112:725–35.PubMedGoogle Scholar
  123. 123.
    Heitzer T, Krohn K, Albers S, Meinertz T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia. 2000;43:1435–8.PubMedGoogle Scholar
  124. 124.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.PubMedGoogle Scholar
  125. 125.
    Meigs JB, Larson MG, Fox CS, Keaney Jr JF, Vasan RS, Benjamin EJ. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes Care. 2007;30:2529–35.PubMedGoogle Scholar
  126. 126.
    Keaney Jr JF, Larson MG, Vasan RS, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23:434–9.PubMedGoogle Scholar
  127. 127.
    Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Keaney JF, Creager MA. Oral antioxidant therapy improves endothelial function in type 1 but not type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2003;285:H2392–8.PubMedGoogle Scholar
  128. 128.
    Lonn E, Yusuf S, Hoogwerf B, et al. Effects of vtamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE Study and MICRO-HOPE Substudy. Diabetes Care. 2002;25:1919–27.PubMedGoogle Scholar
  129. 129.
    MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:23-33.Google Scholar
  130. 130.
    Münzel T, Keaney Jr JF. Are ACE-inhibitors a “magic bullet” against oxidative stress? Circulation. 2001;104:1571–4.PubMedGoogle Scholar
  131. 131.
    Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342:145–53.PubMedGoogle Scholar
  132. 132.
    Huang AL, Vita JA. Effects of systemic inflammation on endothelium-dependent vasodilation. Trends Cardiovasc Med. 2006;16:15–20.PubMedGoogle Scholar
  133. 133.
    Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.PubMedGoogle Scholar
  134. 134.
    Zhang J, Patel JM, Li YD, Block ER. Proinflammatory cytokines downregulate gene expression and activity of constitutive nitric oxide synthase in porcine pulmonary artery endothelial cells. Res Commun Mol Pathol Pharmacol. 1997;96:71–87.PubMedGoogle Scholar
  135. 135.
    Hingorani AD, Cross J, Kharbanda RK, et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation. 2000;102:994–9.PubMedGoogle Scholar
  136. 136.
    Bhagat K, Moss R, Collier J, Vallance P. Endothelial “stunning” following a brief exposure to endotoxin: a mechanism to link infection and infarction? Cardiovasc Res. 1996;32:822–9.PubMedGoogle Scholar
  137. 137.
    Vallance P, Collier J, Bhagat K. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? Lancet. 1997;349:1391–2.PubMedGoogle Scholar
  138. 138.
    Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81.PubMedGoogle Scholar
  139. 139.
    Pieper GM. Riaz uH. Activation of nuclear factor-kappaB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiovasc Pharmacol. 1997;30:528–32.PubMedGoogle Scholar
  140. 140.
    Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis. 2007;193:328–34.PubMedGoogle Scholar
  141. 141.
    Festa A, D’Agostino Jr R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102:42–7.PubMedGoogle Scholar
  142. 142.
    Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998;83:2907–10.PubMedGoogle Scholar
  143. 143.
    Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res. 2001;9:414–7.PubMedGoogle Scholar
  144. 144.
    Schulze MB, Rimm EB, Li T, Rifai N, Stampfer MJ, Hu FB. C-reactive protein and incident cardiovascular events among men with diabetes. Diabetes Care. 2004;27:889–94.PubMedGoogle Scholar
  145. 145.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286:327–34.PubMedGoogle Scholar
  146. 146.
    Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet. 1999;353:1649–52.PubMedGoogle Scholar
  147. 147.
    Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52:1799–805.PubMedGoogle Scholar
  148. 148.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.PubMedGoogle Scholar
  149. 149.
    Read MA, Whitley MZ, Williams AJ, Collins T. NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation. J Exp Med. 1994;179:503–12.PubMedGoogle Scholar
  150. 150.
    Kim F, Gallis B, Corson MA. TNF-alpha inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. Am J Physiol Cell Physiol. 2001;280:C1057–65.PubMedGoogle Scholar
  151. 151.
    Bierhaus A, Chevion S, Chevion M, et al. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes. 1997;46:1481–90.PubMedGoogle Scholar
  152. 152.
    Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes. 2001;50:2792–808.PubMedGoogle Scholar
  153. 153.
    de Alvaro C, Teruel T, Hernandez R, Lorenzo M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J Biol Chem. 2004;279:17070–8.PubMedGoogle Scholar
  154. 154.
    Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293:1673–7.PubMedGoogle Scholar
  155. 155.
    Kim F, Tysseling KA, Rice J, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKK{beta}. Arterioscler Thromb Vasc Biol. 2005;25:989–94.PubMedGoogle Scholar
  156. 156.
    Kim F, Pham M, Maloney E, et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1982–8.PubMedGoogle Scholar
  157. 157.
    Fleischman A, Shoelson SE, Bernier R, Goldfine AB. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31:289–94.PubMedGoogle Scholar
  158. 158.
    Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res. 2007;100:1659–66.PubMedGoogle Scholar
  159. 159.
    Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR. Aging is associated with greater nuclear NFkappaB, reduced IkappaBalpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell. 2008;7:805–12.PubMedGoogle Scholar
  160. 160.
    Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR. Nuclear factor-{kappa}B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation. 2009;119:1284–92.PubMedGoogle Scholar
  161. 161.
    Das EN, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55:498–510.Google Scholar
  162. 162.
    He Z, King GL. Protein kinase Cbeta isoform inhibitors: a new treatment for diabetic cardiovascular diseases. Circulation. 2004;110:7–9.PubMedGoogle Scholar
  163. 163.
    Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A. 1992;89:11059–63.PubMedGoogle Scholar
  164. 164.
    Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes. 1994;43:1122–9.PubMedGoogle Scholar
  165. 165.
    Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55:S9–S15.PubMedGoogle Scholar
  166. 166.
    Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest. 1991;87:1643–8.PubMedGoogle Scholar
  167. 167.
    Goel A, Zhang Y, Anderson L, Rahimian R. Gender difference in rat aorta vasodilation after acute exposure to high glucose: involvement of protein kinase C beta and superoxide but not of Rho kinase. Cardiovasc Res. 2007;76:351–60.PubMedGoogle Scholar
  168. 168.
    Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol. 2005;25:487–96.PubMedGoogle Scholar
  169. 169.
    Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51:2005–11.PubMedGoogle Scholar
  170. 170.
    Naruse K, Rask-Madsen C, Takahara N, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006;55:691–8.PubMedGoogle Scholar
  171. 171.
    Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci (Lond). 2002;103:311–21.Google Scholar
  172. 172.
    Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88:E14–22.PubMedGoogle Scholar
  173. 173.
    Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272:728–31.PubMedGoogle Scholar
  174. 174.
    Kouroedov A, Eto M, Joch H, Volpe M, Luscher TF, Cosentino F. Selective inhibition of protein kinase Cbeta2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation. 2004;110:91–6.PubMedGoogle Scholar
  175. 175.
    Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Creager MA. Inhibition of protein kinase C beta prevents impaired endothelium- dependent vasodilation caused by hyperglycemia in humans. Circ Res. 2002;90:107–11.PubMedGoogle Scholar
  176. 176.
    Mehta NN, Sheetz M, Price K, et al. Selective PKC beta inhibition with ruboxistaurin and endothelial function in type-2 diabetes mellitus. Cardiovasc Drugs Ther. 2009;23:17–24.PubMedGoogle Scholar
  177. 177.
    Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004;53:S96–102.PubMedGoogle Scholar
  178. 178.
    Rizzuto R, Pozzan T, Carafoli E. Ca2+ on the move: ways and means to translate a multifarious signal. Trends Pharmacol Sci. 2002;23:348–50.PubMedGoogle Scholar
  179. 179.
    Darley-Usmar V. The powerhouse takes control of the cell; the role of mitochondria in signal transduction. Free Radic Biol Med. 2004;37:753–4.PubMedGoogle Scholar
  180. 180.
    Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.PubMedGoogle Scholar
  181. 181.
    Ramachandran A, Levonen AL, Brookes PS, et al. Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic Biol Med. 2002;33:1465–74.PubMedGoogle Scholar
  182. 182.
    Brand MD, Affourtit C, Esteves TC, et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004;37:755–67.PubMedGoogle Scholar
  183. 183.
    Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626–9.PubMedGoogle Scholar
  184. 184.
    Chen K, Thomas SR, Albano A, Murphy MP, Keaney Jr JF. Mitochondrial function is required for hydrogen peroxide-induced growth factor receptor transactivation and downstream signaling. J Biol Chem. 2004;279:35079–86.PubMedGoogle Scholar
  185. 185.
    Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA. 2006;103:5379–84.PubMedGoogle Scholar
  186. 186.
    Zou MH, Kirkpatrick SS, Davis BJ, et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo: Role of mitochondrial reactive nitrogen species. J Biol Chem. 2004;279:43940–51.PubMedGoogle Scholar
  187. 187.
    Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res. 2003;93:573–80.PubMedGoogle Scholar
  188. 188.
    El Midaoui A, de Champlain J. Prevention of hypertension, insulin resistance, and oxidative stress by alpha-lipoic acid. Hypertension. 2002;39:303–7.PubMedGoogle Scholar
  189. 189.
    Hagen TM, Ingersoll RT, Lykkesfeldt J, et al. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999;13:411–8.PubMedGoogle Scholar
  190. 190.
    Smith AR, Hagen TM. Vascular endothelial dysfunction in aging: loss of Akt-dependent endothelial nitric oxide synthase phosphorylation and partial restoration by (R)-alpha-lipoic acid. Biochem Soc Trans. 2003;31:1447–9.PubMedGoogle Scholar
  191. 191.
    Heitzer T, Finckh B, Albers S, Krohn K, Kohlschutter A, Meinertz T. Beneficial effects of alpha-lipoic acid and ascorbic acid on endothelium-dependent, nitric oxide-mediated vasodilation in diabetic patients: relation to parameters of oxidative stress. Free Radic Biol Med. 2001;31:53–61.PubMedGoogle Scholar
  192. 192.
    Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008;1777:1092–7.PubMedGoogle Scholar
  193. 193.
    Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest. 2009;119:1275–85.PubMedGoogle Scholar
  194. 194.
    Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008;22:1577–90.PubMedGoogle Scholar
  195. 195.
    Nisoli E, Clementi E, Paolucci C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003;299:896–9.PubMedGoogle Scholar
  196. 196.
    Nisoli E, Falcone S, Tonello C, et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA. 2004;101:16507–12.PubMedGoogle Scholar
  197. 197.
    Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res. 2007;100:795–806.PubMedGoogle Scholar
  198. 198.
    Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314–7.PubMedGoogle Scholar
  199. 199.
    Menzies RA, Gold PH. The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem. 1971;246:2425–9.PubMedGoogle Scholar
  200. 200.
    Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27:433–46.PubMedGoogle Scholar
  201. 201.
    Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res. 2008;79:341–51.PubMedGoogle Scholar
  202. 202.
    Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA. 2006;103:2653–8.PubMedGoogle Scholar
  203. 203.
    Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.PubMedGoogle Scholar
  204. 204.
    Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102:401–14.PubMedGoogle Scholar
  205. 205.
    Zorzano A, Liesa M, Palacin M. Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol. 2009;41:1846–54.PubMedGoogle Scholar
  206. 206.
    Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.PubMedGoogle Scholar
  207. 207.
    Li B, Nolte LA, Ju JS, et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat Med. 2000;6:1115–20.PubMedGoogle Scholar
  208. 208.
    Goldman S, Zhang Y, Jin S. Autophagy and adipogenesis: implications in obesity and type II diabetes. Autophagy. 2010;6:179–81.PubMedGoogle Scholar
  209. 209.
    Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450:712–6.PubMedGoogle Scholar
  210. 210.
    Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140–2.PubMedGoogle Scholar
  211. 211.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.PubMedGoogle Scholar
  212. 212.
    Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003;100:8466–71.PubMedGoogle Scholar
  213. 213.
    Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.PubMedGoogle Scholar
  214. 214.
    Morino K, Petersen KF, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115:3587–93.PubMedGoogle Scholar
  215. 215.
    Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.PubMedGoogle Scholar
  216. 216.
    Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005;54:8–14.PubMedGoogle Scholar
  217. 217.
    Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546:851–8.PubMedGoogle Scholar
  218. 218.
    Widlansky ME, Vita JA, Wang J, Kizhakekuttu TJ, Arthur EIL, Gutterman DD. Mitochondrial membrane hyperpolarization and reduced mitochondrial mass characterize the arteriolar endothelium and mononuclear cells of humans with Type 2 diabetes mellitus- in vivo and in vitro assessment of mitochondrial function [abstr]. Circulation. 2009;120:S1107.Google Scholar
  219. 219.
    McCulloch DK. Overview of medical care in adults with diabetes mellitus. In: Holman RR, Mulder JE, editors. UpToDate Online. Boston; 2009.Google Scholar
  220. 220.
    Pearson TA, Blair SN, Daniels SR, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation. 2002;106:388–91.PubMedGoogle Scholar
  221. 221.
    Buse JB, Ginsberg HN, Bakris GL, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation. 2007;115:114–26.PubMedGoogle Scholar
  222. 222.
    Preis SR, Hwang SJ, Coady S, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119:1728–35.PubMedGoogle Scholar
  223. 223.
    Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.PubMedGoogle Scholar
  224. 224.
    Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.PubMedGoogle Scholar
  225. 225.
    Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.PubMedGoogle Scholar
  226. 226.
    Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Circulation. 2009;119:351–7.PubMedGoogle Scholar
  227. 227.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.PubMedGoogle Scholar
  228. 228.
    Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298:1189–95.PubMedGoogle Scholar
  229. 229.
    Goldfine AB. Assessing the cardiovascular safety of diabetes therapies. N Engl J Med. 2008;359:1092–5.PubMedGoogle Scholar
  230. 230.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342:154–60.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Corey E. Tabit
    • 1
  • William B. Chung
    • 1
  • Naomi M. Hamburg
    • 1
  • Joseph A. Vita
    • 1
    • 2
  1. 1.Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonUSA
  2. 2.Section of CardiologyBoston Medical CenterBostonUSA

Personalised recommendations