Reviews in Endocrine and Metabolic Disorders

, Volume 10, Issue 4, pp 237–243 | Cite as

Melatonin formation in mammals: In vivo perspectives

  • Asamanja Chattoraj
  • Tiecheng Liu
  • Liang Samantha Zhang
  • Zheping Huang
  • Jimo Borjigin


Melatonin is a hormone secreted from the pineal gland specifically at night and contributes to a wide array of physiological functions in mammals. Melatonin is one of the most well understood output of the circadian clock located in the suprachiasmatic nucleus. Melatonin synthesis is controlled distally via the circadian clock located in the suprachiasmatic nucleus and proximally regulated by norepinephrine released in response to the circadian clock signals. To understand melatonin synthesis in vivo, we have performed microdialysis analysis of the pineal gland, which monitors melatonin as well as the precursor (serotonin) and intermediate (N-acetylserotonin) of melatonin synthesis in freely moving animals in realtime at high resolution. Our data revealed a number of novel features of melatonin production undetected using conventional techniques, which include (1) large inter-individual variations of melatonin onset timing; (2) circadian regulation of serotonin synthesis and secretion in the pineal gland; and (3) a revised view on the rate-limiting step of melatonin formation in vivo. This article will summarize the main findings from our laboratory regarding melatonin formation in mammals.


Melatonin Serotonin (5-HT) Pineal gland Microdialysis 



Authors wish to thank Dr. Lijun Wang for help with animal care, and Ms Yaxi Chen for laboratory assistance, and Dr Michael Wang and Ms Soo Jung Lee for help with degu AANAT cloning. This work was support by grant NS057583 (to JB).


  1. 1.
    Borjigin J, Li X, Snyder SH. The pineal gland and melatonin: molecular and pharmacologic regulation. Annual Reviews in Pharmacology and Toxicology, 1999.Google Scholar
  2. 2.
    Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 2003;55(2):325–95.CrossRefPubMedGoogle Scholar
  3. 3.
    Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia. 1993;49(8):654–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Skene DJ, Arendt J. Human circadian rhythms: physiological and therapeutic relevance of light and melatonin. Ann Clin Biochem. 2006;43(Pt 5):344–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsater H, et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry. 2008;13(1):90–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Jasser SA, Blask DE, Brainard GC. Light during darkness and cancer: relationships in circadian photoreception and tumor biology. Canc Causes Contr. 2006;17(4):515–23.CrossRefGoogle Scholar
  7. 7.
    Peschke E. Melatonin, endocrine pancreas and diabetes. J Pineal Res. 2008;44(1):26–40.PubMedGoogle Scholar
  8. 8.
    Klein DC. Arylalkylamine N-acetyltransferase: "the Timezyme". J Biol Chem. 2007;282(7):4233–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Maronde E, Pfeffer M, Glass Y, Stehle JH. Transcription factor dynamics in pineal gland and liver of the Syrian hamster (Mesocricetus auratus) adapts to prevailing photoperiod. J Pineal Res. 2007;43(1):16–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Falcon J, Besseau L, Fuentes M, Sauzet S, Magnanou E, Boeuf G. Structural and functional evolution of the pineal melatonin system in vertebrates. Ann N Y Acad Sci. 2009;1163:101–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu T, Borjigin J. Relationship between nocturnal serotonin surge and melatonin onset in rodent pineal gland. Journal of Circadian Rhythms. 2006.Google Scholar
  12. 12.
    Gronfier C, Wright Jr KP, Kronauer RE, Czeisler CA. Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci U S A. 2007;104(21):9081–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Perreau-Lenz S, Kalsbeek A, Van Der Vliet J, Pevet P, Buijs RM. In vivo evidence for a controlled offset of melatonin synthesis at dawn by the suprachiasmatic nucleus in the rat. Neuroscience. 2005;130(3):797–803.CrossRefPubMedGoogle Scholar
  14. 14.
    Sun X, Deng J, Liu T, Borjigin J. Circadian 5-HT production regulated by adrenergic signaling. Proceedings of the National Academy of Sciences. 2002.Google Scholar
  15. 15.
    Huang Z, Liu T, Chattoraj A, Ahmed S, Wang MM, Deng J, et al. Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland. J Pineal Res. 2008;45(4):506–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Simonneaux V, Sinitskaya N, Salingre A, Garidou ML, Pevet P. Rat and Syrian hamster: two models for the regulation of AANAT gene expression. Chronobiol Int. 2006;23(1–2):351–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Borjigin J, Wang MM, Snyder SH. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature. 1995.Google Scholar
  18. 18.
    Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC. Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology. 1996;137(7):3033–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee SJ, Liu T, Chattoraj A, Zhang LS, Wang L, Lee TM, Wang MM, Borjigin J. Posttranscriptional regulation of pineal melatonin synthesis in Octodon degus. J Pineal Res. 2009;46(5):in print.Google Scholar
  20. 20.
    Liu T, Borjigin J. N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night. Journal of Pineal Research. 2005.Google Scholar
  21. 21.
    Miguez JM, Simonneaux V, Pevet P. The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. J Pineal Res. 1997;23(2):63–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Arendt J. Melatonin in humans: it’s about time. J Neuroendocrinol. 2005;17(8):537–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Kim JS, Coon SL, Blackshaw S, Cepko CL, Moller M, Mukda S, et al. Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression. J Biol Chem. 2005;280(1):677–84.PubMedGoogle Scholar
  24. 24.
    Klein DC. Evolution of the vertebrate pineal gland: the AANAT hypothesis. Chronobiol Int. 2006;23(1–2):5–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Huang Z, Deng J, Borjigin J. A novel H28Y mutation in LEC rats leads to decreased NAT protein stability in vivo and in vitro. J Pineal Res. 2005;39(1):84–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Huang Z, Chattoraj A, Li X, Snyder SH, Borjigin J. The increased degradation of NAT-H28Y mutant protein is due to a reduced interaction with 14-3-3. J Pineal Res. 2009;46(1):119–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Borjigin J, Payne AS, Deng J, Li X, Wang MM. A novel pineal night-specific ATPase encoded by the Wilson Disease Gene. Journal of Neuroscience. 1999.Google Scholar
  28. 28.
    Ahmed S, Deng J, Borjigin J. A new strain of rat for functional analysis of PINA. Molecular Brain Research. 2005.Google Scholar
  29. 29.
    Choi BH, Chae HD, Park TJ, Oh J, Lim J, Kang SS, et al. Protein kinase C regulates the activity and stability of serotonin N-acetyltransferase. J Neurochem. 2004;90(2):442–54.CrossRefPubMedGoogle Scholar
  30. 30.
    Li X. The regulation of tissue-specific and rhythmic expression of serotonin N-acetyltransferase. Baltimore, MD: Neuroscience. The Johns Hopkins University. 2000. 90.Google Scholar
  31. 31.
    Borjigin J, Wang MM, Snyder SH. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature. 1995;378(6559):783–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Coon SL, Roseboom PH, Baler R, Weller JL, Namboodiri MA, Koonin EV, et al. Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science. 1995;270(5242):1681–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Craft CM, Murage J, Brown B, Zhan-Poe X. Bovine arylalkylamine N-acetyltransferase activity correlated with mRNA expression in pineal and retina. Brain Res Mol Brain Res. 1999;65(1):44–51.CrossRefPubMedGoogle Scholar
  34. 34.
    Ackermann K, Bux R, Rub U, Korf HW, Kauert G, Stehle JH. Characterization of human melatonin synthesis using autoptic pineal tissue. Endocrinology. 2006;147(7):3235–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Wehr TA. The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab. 1991;73(6):1276–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Schomerus C, Korf HW, Laedtke E, Weller JL, Klein DC. Selective adrenergic/cyclic AMP-dependent switch-off of proteasomal proteolysis alone switches on neural signal transduction: an example from the pineal gland. J Neurochem. 2000;75(5):2123–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Asamanja Chattoraj
    • 1
  • Tiecheng Liu
    • 1
  • Liang Samantha Zhang
    • 2
  • Zheping Huang
    • 1
    • 3
  • Jimo Borjigin
    • 1
    • 2
  1. 1.Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Neuroscience Graduate ProgramUniversity of Michigan Medical SchoolAnn ArborUSA
  3. 3.Department of PediatricsWomen & Infants Hospital of Rhode IslandProvidenceUSA

Personalised recommendations