Reviews in Endocrine and Metabolic Disorders

, Volume 7, Issue 3, pp 187–196 | Cite as

Adiponectin and leptin: Potential tools in the differential diagnosis of pediatric diabetes?

  • Milagros Gloria Huerta


The incidence of type 1 and type 2 diabetes mellitus in the pediatric population has increased over the past decade. The practitioner is often faced with the challenge of differentiating between type 1 and type 2 diabetes at the time of initial diagnosis because of the overlap of clinical and laboratory characteristics between these two entities. Adipokines are proteins secreted by the adipose tissue. Leptin and adiponectin are two adipokines that have been extensively studied in vitro, in animal studies, and in human subjects with type 1 and type 2 diabetes. Leptin and adiponectin play a significant role in the regulation of lipid and carbohydrate metabolism. Adiponectin increases insulin sensitivity in both the liver and skeletal muscle. Leptin decreases appetite, increases energy expenditure, suppresses insulin synthesis and secretion and increases insulin sensitivity. Changes in the secretion or sensitivity to leptin and adiponectin may contribute to the development of type 1 and type 2 diabetes. Adiponectin is higher in adult and pediatric patients with type 1 diabetes compared to those with type 2 diabetes. Data regarding leptin levels are contradictory. Most studies report decreased serum leptin at the time of diagnosis in type 1 diabetes compared to type 2 diabetes subjects and non-diabetic controls. This paper will review basic research and clinical evidence supporting the role of adiponectin and leptin in the development of type 1 and type 2 diabetes and discuss their potential use as tools in the differential diagnosis of pediatric diabetes.


Adiponectin Leptin Adipokines Type 1 diabetes Type 2 diabetes Pediatric 


  1. 1.
    Onkamo P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of Type I diabetes—the analysis of the data on published incidence trends. Diabetologia 1999;42:1395–403.PubMedGoogle Scholar
  2. 2.
    Kaufman FR. Type 2 diabetes in children and youth. Rev Endocr Metab Disord 2003;4:33–42.PubMedGoogle Scholar
  3. 3.
    Schwab KO, Doerfer J, Hecker W, Grulich-Henn J, Wiemann D, Kordonouri O, et al. DPV initiative of the German Working Group for pediatric diabetology: spectrum and prevalence of atherogenic risk factors in 27,358 children, adolescents, and young adults with type 1 diabetes: cross-sectional data from the German diabetes documentation and quality management system (DPV). Diabetes Care 2006;29:218–25.PubMedGoogle Scholar
  4. 4.
    Pundziute-Lycka A, Dahlquist G, Nystrom L, Arnqvist H, Bjork E, Blohme G, et al. The incidence of type 1 diabetes has not increased, but has shifted to a younger age-at-diagnosis in the 0–34 years group in Sweden 1983–1998. Diabetologia 2002;45:783–91.PubMedGoogle Scholar
  5. 5.
    Littorin B, Nystrom E, Gullberg B, Rastam L, Ostman J, Arnqvist HJ, et al. Increasing body mass index at diagnosis of diabetes in young adult people during 1983–1999 in the Diabetes Incidence Study in Sweden (DISS). J Intern Med 2003;254:251–6.PubMedGoogle Scholar
  6. 6.
    de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation 2004;110 16:2494–7.PubMedGoogle Scholar
  7. 7.
    Morales AE, Rosenbloom AL. Death caused by hyperglycemic hyperosmolar state at the onset of type 2 diabetes. J Pediatr 2004;144:270–3.PubMedGoogle Scholar
  8. 8.
    Savola K, Bonifacio E, Sabbah E, Kulmala P, Vahasalo P, Karjalainen J, et al. IA-2 antibodies—a sensitive marker of IDDM with clinical onset in childhood and adolescence. Childhood Diabetes in Finland Study Group. Diabetologia 1998;41:424–9.PubMedGoogle Scholar
  9. 9.
    Verge CF, Gianani R, Kawasaki E, Yu L, Pietropaolo M, Jackson RA, et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 1996;45:926–33.PubMedGoogle Scholar
  10. 10.
    Hathout EH, Thomas W, El-Shahawy M, Nahab F, Mace JW. Diabetic autoimmune markers in children and adolescents with type 2 diabetes. Pediatrics 2001;107:E102.PubMedGoogle Scholar
  11. 11.
    Eldor R, Raz I. Lipotoxicity versus adipotoxicity—the deleterious effects of adipose tissue on beta cells in the pathogenesis of type 2 diabetes. Diabetes Res Clin Pract 2006;74:S3–8.Google Scholar
  12. 12.
    Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab 2005;19:547–66.PubMedGoogle Scholar
  13. 13.
    Gable DR, Hurel SJ, Humphries SE. Adiponectin and its gene variants as risk factors for insulin resistance, the metabolic syndrome and cardiovascular disease. Atherosclerosis, 2006;188:231–44.PubMedGoogle Scholar
  14. 14.
    Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin—a key adipokine in the metabolic syndrome. Diabetes Obes Metab 2006;8:264–80.PubMedGoogle Scholar
  15. 15.
    Bottner A, Kratzsch J, Muller G, Kapellen TM, Bluher S, Keller E, et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab 2004;89:4053–61.PubMedGoogle Scholar
  16. 16.
    Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3–L1 adipocytes. Biochem Biophys Res Commun 2002;290:1084–9.PubMedGoogle Scholar
  17. 17.
    Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2005;50:2094–9.Google Scholar
  18. 18.
    Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002;277:25863–6.PubMedGoogle Scholar
  19. 19.
    Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 2003;278:2461–8.PubMedGoogle Scholar
  20. 20.
    Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004;291:1730–7.PubMedGoogle Scholar
  21. 21.
    Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004;279:12152–62.PubMedGoogle Scholar
  22. 22.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8:1288–95.PubMedGoogle Scholar
  23. 23.
    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001;86:1930–5.PubMedGoogle Scholar
  24. 24.
    Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care 2004;27:547–52.PubMedGoogle Scholar
  25. 25.
    Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001;86:3815–9.PubMedGoogle Scholar
  26. 26.
    Balagopal P, George D, Yarandi H, Funanage V, Bayne E. Reversal of obesity-related hypoadiponectinemia by lifestyle intervention: a controlled, randomized study in obese adolescents. J Clin Endocrinol Metab 2005;90:6192–7.PubMedGoogle Scholar
  27. 27.
    Stefan N, Bunt JC, Salbe AD, Funahashi T, Matsuzawa Y, Tataranni PA. Plasma adiponectin concentrations in children: relationships with obesity and insulinemia. J Clin Endocrinol Metab 2002;87:4652–6.PubMedGoogle Scholar
  28. 28.
    Nemet D, Wang P, Funahashi T, Matsuzawa Y, Tanaka S, Engelman L, et al. Adipocytokines, body composition, and fitness in children. Pediatr Res 2003;53:148–52.PubMedGoogle Scholar
  29. 29.
    Morales A, Wasserfall C, Brusko T, Carter C, Schatz D, Silverstein J, et al. Adiponectin and leptin concentrations may aid in discriminating disease forms in children and adolescents with type 1 and type 2 diabetes. Diabetes Care 2004;27:2010–4.PubMedGoogle Scholar
  30. 30.
    Retnakaran R, Zinman B, Connelly PW, Harris SB, Hanley AJ. Nontraditional cardiovascular risk factors in pediatric metabolic syndrome. J Pediatr 2006;148:176–82.PubMedGoogle Scholar
  31. 31.
    Weiss R, Dufour S, Groszmann A, Petersen K, Dziura J, Taksali SE, et al. Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab 2003;88:2014–8.PubMedGoogle Scholar
  32. 32.
    Bacha F, Saad R, Gungor N, Arslanian SA. Does adiponectin explain the lower insulin sensitivity and hyperinsulinemia of African-American children? Pediatr 2005;Diabetes 6:100–2.PubMedGoogle Scholar
  33. 33.
    Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 2002;51:1884–8.PubMedGoogle Scholar
  34. 34.
    Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001;7:947–53.PubMedGoogle Scholar
  35. 35.
    Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941–6.PubMedGoogle Scholar
  36. 36.
    Shklyaev S, Aslanidi G, Tennant M, Prima V, Kohlbrenner E, Kroutov V, et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc Natl Acad Sci U S A 2003;100:14217–22.PubMedGoogle Scholar
  37. 37.
    Weiss R, Taksali SE, Dufour S, Yeckel CW, Papademetris X, Cline G, et al. The “obese insulin-sensitive” adolescent: importance of adiponectin and lipid partitioning. J Clin Endocrinol Metab 2005;90:3731–7.PubMedGoogle Scholar
  38. 38.
    Frystyk J, Tarnow L, Krarup Hansen T, Parving H, Flyvbjerg A. Increased serum adiponectin levels in type 1 diabetic patients with microvascular complications. Diabetologia 2005;48:1911–8.PubMedGoogle Scholar
  39. 39.
    Imagawa A, Funahashi T, Nakamura T, Moriwaki M, Tanaka S, Nishizawa H, et al. Elevated serum concentration of adipose-derived factor, adiponectin, in patients with type 1 diabetes. Diabetes Care 2002;25:1665–6.PubMedGoogle Scholar
  40. 40.
    Perseghin G, Lattuada G, Danna M, Sereni LP, Maffi P, De Cobelli F, et al. Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 2003;285 6:E1174–81.PubMedGoogle Scholar
  41. 41.
    Schaffler A, Herfarth H, Paul G, Ehling A, Muller-Ladner U, Scholmerich J, et al. Identification of influencing variables on adiponectin serum levels in diabetes mellitus type 1 and type 2. Exp Clin Endocrinol Diabetes 2004;112:383–9.PubMedGoogle Scholar
  42. 42.
    Celi F, Bini V, Papi F, Santilli E, Castellani MS, Ferretti A, et al. Circulating adipocytokines in non-diabetic and Type 1 diabetic children: relationship to insulin therapy, glycaemic control and pubertal development. Diabet Med 2006;23:660–5.PubMedGoogle Scholar
  43. 43.
    Vionnet N, Hani E-H, Dupont S, Gallina S, Francke S, Dotte S, et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am J Hum Genet 2000;67:1470–80.PubMedGoogle Scholar
  44. 44.
    Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002;51:536–40.PubMedGoogle Scholar
  45. 45.
    Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, et al. Single-nucleotide polymorphism haplotypes in both the proximal promoter and exon 3 of the AMP1 gene modulate adipocytesecreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 2002;11:2607–14.PubMedGoogle Scholar
  46. 46.
    Lee YY, Lee NS, Cho YM, Moon MK, Jung HS, Park YJ, et al. Genetic association study of adiponectin polymorphisms with risk of type 2 diabetes mellitus in Korean population. Diabet Med 2005;22:569–75.PubMedGoogle Scholar
  47. 47.
    Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003;361:226–8.PubMedGoogle Scholar
  48. 48.
    Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002;360:57–8.PubMedGoogle Scholar
  49. 49.
    Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595–9.PubMedGoogle Scholar
  50. 50.
    Gungor N, Bacha F, Saad R, Janosky J, Arslanian S. Youth type 2 diabetes: insulin resistance, beta-cell failure, or both? Diabetes Care 2005;28:638–44.PubMedGoogle Scholar
  51. 51.
    Wasim H, Al-Daghri NM, Chetty R, McTernan PG, Barnett AH, Kumar S. Relationship of serum adiponectin and resistin to glucose intolerance and fat topography in South-Asians. Cardiovasc Diabetol 2006;5:10.PubMedGoogle Scholar
  52. 52.
    Mojiminiyi OA, Abdella NA, Al Arouj M, Ben Nakhi A. Adiponectin, insulin resistance and clinical expression of the metabolic syndrome in patients with Type 2 diabetes. Int J Obes (Lond), 2006 (e-publication 2006 June 6).Google Scholar
  53. 53.
    Taniguchi A, Fukushima M, Ohya M, Nakai Y, Yoshii S, Nagasaka S, et al. Interleukin 6, adiponectin, leptin, and insulin resistance in nonobese Japanese type 2 diabetic patients. Metabolism 2006;55:258–62.PubMedGoogle Scholar
  54. 54.
    Inoue M, Maehata E, Yano M, Taniyama M, Suzuki S. Correlation between the adiponectin–leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metabolism 2005;54:281–6.PubMedGoogle Scholar
  55. 55.
    Bogan JS, Lodish HF. Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. J Cell Biol 1999;146:609–20.PubMedGoogle Scholar
  56. 56.
    Smith U, Axelsen M, Carvalho E, Eliasson B, Jansson PA, Wesslau C. Insulin signaling and action in fat cells: associations with insulin resistance and type 2 diabetes. Ann N Y Acad Sci 1999;892:119–26.PubMedGoogle Scholar
  57. 57.
    Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002;25:376–80.PubMedGoogle Scholar
  58. 58.
    Shimizu H, Oh-I S, Tsuchiya T, Ohtani KI, Okada S, Mori M. Pioglitazone increases circulating adiponectin levels and subsequently reduces TNF-alpha levels in Type 2 diabetic patients: a randomized study. Diabet Med 2006;23:253–7.PubMedGoogle Scholar
  59. 59.
    Aas AM, Seljeflot I, Torjesen PA, Diep LM, Thorsby PM, Birkeland KI. Blood glucose lowering by means of lifestyle intervention has different effects on adipokines as compared with insulin treatment in subjects with type 2 diabetes. Diabetologia 2006;49:872–80.PubMedGoogle Scholar
  60. 60.
    Mari A, Manco M, Guidone C, Nanni G, Castagneto M, Mingrone G, et al. Restoration of normal glucose tolerance in severely obese patients after bilio-pancreatic diversion: role of insulin sensitivity and beta cell function. Diabetologia 2006;49:2136–43.PubMedGoogle Scholar
  61. 61.
    Looker HC, Krakoff J, Funahashi T, Matsuzawa Y, Tanaka S, Nelson RG, et al. Adiponectin concentrations are influenced by renal function and diabetes duration in Pima Indians with type 2 diabetes. J Clin Endocrinol Metab 2004;89:4010–7.PubMedGoogle Scholar
  62. 62.
    Yilmaz MI, Sonmez A, Acikel C, Celik T, Bingol N, Pinar M, et al. Adiponectin may play a part in the pathogenesis of diabetic retinopathy. Eur J Endocrinol 2004;151:135–40.PubMedGoogle Scholar
  63. 63.
    Seufert J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes 2004;53 Suppl 1:S152–8.PubMedGoogle Scholar
  64. 64.
    Myers SE, Albert SG, Haas MJ, Clifton D, Mooradian AD. Pubertal changes in serum leptin levels in adolescents with type 1 diabetes mellitus: a controlled longitudinal study. J Pediatr Endocrinol Metab 2004;17:1653–62.PubMedGoogle Scholar
  65. 65.
    Ahmed ML, Ong KK, Watts AP, Morrell DJ, Preece MA, Dunger DB. Elevated leptin levels are associated with excess gains in fat mass in girls, but not boys, with type 1 diabetes: longitudinal study during adolescence. J Clin Endocrinol Metab 2001;86:1188–93.PubMedGoogle Scholar
  66. 66.
    Sivitz W, Wayson S, Bayless M, Larson L, Sinkey C, Bar R, et al. Leptin and Body Fat in Type 2 Diabetes and Monodrug Therapy. J Clin Endocrinol Metab 2003;88:1543–53.PubMedGoogle Scholar
  67. 67.
    Ruige JB, Dekker JM, Blum WF, Stehouwer CD, Nijpels G, Mooy J, et al. Leptin and variables of body adiposity, energy balance, and insulin resistance in a population-based study. The hoorn study. Diabetes Care 1999;22:1097–104.PubMedGoogle Scholar
  68. 68.
    Marita AR, Sarkar JA, Rane S. Type 2 diabetes in non-obese Indian subjects is associated with reduced leptin levels: study from Mumbai, Western India. Mol Cell Biochem 2005;275:143–51.PubMedGoogle Scholar
  69. 69.
    Schmidt MI, Duncan BB, Vigo A, Pankow JS, Couper D, Ballantyne CM, et al. For the ARIC Investigators: Leptin and incident type 2 diabetes: risk or protection? Diabetologia 2006;49:2086–96.PubMedGoogle Scholar
  70. 70.
    Clayton P, Gill M, Hall C, Tillmann V, Whatmore A, Price D. Serum leptin through childhood and adolescence. Clinical Endocrinology 1997;46:727–33.PubMedGoogle Scholar
  71. 71.
    Gilliam LK, Jensen RA, Yang P, Weigle DS, Greenbaum CJ, Pihoker C. Evaluation of leptin levels in subjects at risk for type 1 diabetes. J Autoimmun 2006;26:133–7.PubMedGoogle Scholar
  72. 72.
    Kratzsch J, Deimel A, Galler A, Kapellen T, Klinghammer A, Kiess W. Increased serum soluble leptin receptor levels in children and adolescents with type 1 diabetes mellitus. Eur J Endocrinol 2004;151:475–81.PubMedGoogle Scholar
  73. 73.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763–70.PubMedGoogle Scholar
  74. 74.
    Kolaczynski JW, Considine RV, Ohannesian J, Marco C, Opentanova I, Nyce MR, et al. Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves. Diabetes 1996;45:1511–5.PubMedGoogle Scholar
  75. 75.
    Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, Boss O, Pernin A, Chin WW, et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest 1997;100:2858–64.PubMedCrossRefGoogle Scholar
  76. 76.
    Kieffer TJ, Habener JF. The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 2000;278:E1–14.PubMedGoogle Scholar
  77. 77.
    Moran O, Phillip M. Leptin: obesity, diabetes and other peripheral effects—a review. Pediatr Diabetes 2003;4:101–9.PubMedGoogle Scholar
  78. 78.
    Poitout V, Rouault C, Guerre-Millo M, Briaud I, Reach G. Inhibition of insulin secretion by leptin in normal rodent islets of Langerhans. Endocrinology 1998;139:822–6.PubMedGoogle Scholar
  79. 79.
    Mueller WM, Gregoire FM, Stanhope KL, Mobbs CV, Mizuno TM, Warden CH, et al. Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 1998;139:551–8.PubMedGoogle Scholar
  80. 80.
    Malmstrom R, Taskinen MR, Karonen SL, Yki-Jarvinen H. Insulin increases plasma leptin concentrations in normal subjects and patients with NIDDM. Diabetologia 1996;39:993–6.PubMedGoogle Scholar
  81. 81.
    Arslanian S, Suprasongsin C, Kalhan SC, Drash AL, Brna R, Janosky JE. Plasma leptin in children: relationship to puberty, gender, body composition, insulin sensitivity, and energy expenditure. Metabolism 1998;47:309–12.PubMedGoogle Scholar
  82. 82.
    Lee Y, Yu K, Gonzales F, Mangelsdorf DJ, Wang MY, Richardson C, et al. PPAR alpha is necessary for the lipogenic action of hyperleptinemia on white adipose and liver tissue. Proc Natl Acad Sci U S A 2002;99:11848–53.PubMedGoogle Scholar
  83. 83.
    Muoio DM, Dohm GL, Fiedorek FT Jr, Tapscott EB, Coleman RA. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 1997;46:1360–3.PubMedGoogle Scholar
  84. 84.
    Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387:903–8.PubMedGoogle Scholar
  85. 85.
    Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;2002 346:570–8.Google Scholar
  86. 86.
    Zhao YF, Feng DD, Chen C. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes. Int J Biochem Cell Biol 2006;38:804–19.PubMedGoogle Scholar
  87. 87.
    Lord G. Role of leptin in immunology. Nutr Rev 2002;60:S35–8.PubMedGoogle Scholar
  88. 88.
    Faggioni R, Jones-Carson J, Reed DA, Dinarello CA, Feingold KR, Grunfeld C, et al. Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor alpha and IL-18. Proc Natl Acad Sci USA 2000;97:2367–72.PubMedGoogle Scholar
  89. 89.
    Matarese G, Di Giacomo A, Sanna V, Lord GM, Howard JK, Di Tuoro A, et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 2001;166:5909–16.PubMedGoogle Scholar
  90. 90.
    Matarese G, Sanna V, Lechler RI, Sarvetnick N, Fontana S, Zappacosta S, et al. Leptin accelerates autoimmune diabetes in female NOD mice. Diabetes 2002;51:1356–61.PubMedGoogle Scholar
  91. 91.
    Lee CH, Reifsnyder PC, Naggert JK, Wasserfall C, Atkinson MA, Chen J, et al. Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: I. Pathophysiological analysis. Diabetes 2005;54:2525–32.PubMedGoogle Scholar
  92. 92.
    Roden M, Ludwig C, Nowotny P, Schneider B, Clodi M, Vierhapper H, et al. Relative hypoleptinemia in patients with type 1 and type 2 diabetes mellitus. Int J Obes Relat Metab Disord 2000;24:976–81.PubMedGoogle Scholar
  93. 93.
    Fluck CE, Kuhlmann BV, Mullis PE. Insulin increases serum leptin concentrations in children and adolescents with newly diagnosed type I diabetes mellitus with and without ketoacidosis. Diabetologia 1999;42:1067–70.PubMedGoogle Scholar
  94. 94.
    Hanaki K, Becker DJ, Arslanian SA. Leptin before and after insulin therapy in children with new-onset type 1 diabetes. J Clin Endocrinol Metab 1999;84:1524–6.PubMedGoogle Scholar
  95. 95.
    Kiess W, Anil M, Blum WF, Englaro P, Juul A, Attanasio A, et al. Serum leptin levels in children and adolescents with insulin-dependent diabetes mellitus in relation to metabolic control and body mass index. Eur J Endocrinol 1998;138:501–9.PubMedGoogle Scholar
  96. 96.
    Soliman A, Omar M, Assem H, Nasr I, Rizk M, Matary W, et al. Serum leptin concentrations in children with Type 1 diabetes mellitus: relationship to body mass index, insulin dose, and glycemic control. Metabolism 2002;51:292–6.PubMedGoogle Scholar
  97. 97.
    Kirel B, Dogruel N, Korkmaz U, Kilic F, Ozdamar K, Ucar B. Serum leptin levels in Type 1 diabetic and obese children: relation to insulin levels. Clin Biochem 2000;33:475–80.PubMedGoogle Scholar
  98. 98.
    Tuominen JA, Ebeling P, Stenman UH, Heiman ML, Stephens TW, Koivisto VA. Leptin synthesis is resistant to acute effects of insulin in insulin-dependent diabetes mellitus patients. J Clin Endocrinol Metab 1997;82:381–2.PubMedGoogle Scholar
  99. 99.
    Thrailkill KM, Fowlkes JL, Hyde JF, Litton JC. The effects of co-therapy with recombinant human insulin-like growth factor I and insulin on serum leptin levels in adolescents with type 1 diabetes mellitus. Pediatr Diabetes 2001;2:25–9.PubMedGoogle Scholar
  100. 100.
    Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1998;1:619–25.PubMedGoogle Scholar
  101. 101.
    Guler S, Cakir B, Demirbas B, Gursoy G, Serter R, Aral Y. Leptin concentrations are related to glycaemic control, but do not change with short-term oral antidiabetic therapy in female patients with type 2 diabetes mellitus. Diabetes Obes Metab 2000;2:313–6.PubMedGoogle Scholar
  102. 102.
    Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, et al. Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with Type 2 diabetes mellitus. Diabet Med 2000;17:713–9.PubMedGoogle Scholar
  103. 103.
    Haffner SM, Stern MP, Miettinen H, Wei M, Gingerich RL. Leptin concentrations in diabetic and nondiabetic Mexican-Americans. Diabetes 1996;45:822–4.PubMedGoogle Scholar
  104. 104.
    Ozata M, Gungor D, Turan M, Ozisik G, Bingol N, Ozgurtas T, et al. Improved glycemic control increases fasting plasma acylation-stimulating protein and decreases leptin concentrations in Type II diabetic subjects. J Clin Endocrinol Metab 2001;86:3659–64.PubMedGoogle Scholar
  105. 105.
    Widjaja A, Stratton IM, Horn R, Holman RR, Turner R, Brabant G. UKPDS 20: plasma leptin, obesity, and plasma insulin in type 2 diabetic subjects. J Clin Endocrinol Metab 1997;82:654–7.PubMedGoogle Scholar
  106. 106.
    Nagasaka S, Ishikawa S, Nakamura T, Kawakami A, Rokkaku K, Hayashi H, et al. Association of endogenous insulin secretion and mode of therapy with body fat and serum leptin levels in diabetic subjects. Metabolism 1998;47:1391–6.PubMedGoogle Scholar
  107. 107.
    Clement K, Lahlou N, Ruiz J, Hager J, Bougneres P, Basdevant A, et al. Association of poorly controlled diabetes with low serum leptin in morbid obesity. Int J Obes Relat Metab Disord 1997;21:556–61.PubMedGoogle Scholar
  108. 108.
    Tasaka Y, Yanagisawa K, Iwamoto Y. Human plasma leptin in obese subjects and diabetics. Endocr J 1997;44:671–6.PubMedGoogle Scholar
  109. 109.
    Moriya M, Okumura T, Takahashi N, Yamagata K, Motomura W, Kohgo Y. An inverse correlation between serum leptin levels and hemoglobin A1c in patients with non-insulin dependent diabetes mellitus. Diabetes Res Clin Pract 1999;43:187–91.PubMedGoogle Scholar
  110. 110.
    Sivitz WI, Wayson SM, Bayless ML, Larson LF, Sinkey C, Bar RS, et al. Leptin and body fat in type 2 diabetes and monodrug therapy. J Clin Endocrinol Metab 2003;88:1543–53.PubMedGoogle Scholar
  111. 111.
    Haffner SM, Hanefeld M, Fischer S, Fucker K, Leonhardt W. Glibenclamide, but not acarbose, increases leptin concentrations parallel to changes in insulin in subjects with NIDDM. Diabetes Care 1997;20:1430–4.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.University of Florida College of MedicineGainesvilleUSA

Personalised recommendations