High-Density Micro- and Nano-Grain Size Ceramics. Transition from Open into Closed Pores. Part 2. Binder Removal from a Workpiece1

An explanation is proposed for processes that occur when producing high-density micro- and nano-granular ceramics without the use of external pressure based on the data accumulated in publications. It is well known that pore growth commences after the start transition of open into closed pores that begins with about 30% open porosity. It is necessary to maintain open pores to the maximum possible total density of sintered ceramics. This regime may be implemented in various ways, including the binder removal stage. In this stage, defects may arise in a workpiece at macro-, micro-, and sub-levels. Numerous methods exist for binder removal. This article describes the main methods making it possible to reduce the number of defects.

This is a preview of subscription content, log in to check access.


  1. 1.

    A. V. Belyakov, High-density micro- and nanogranular ceramics. Transition of open to closed pores. Part 1. Powder preparation, molding mix, molding,” Novye Ogneupory, No. 11, 49 – 50 (2019).

  2. 2.

    F. H. Becker, “Debinding processes — physical and chemical conclusions and their practical realisations,” Ceramic Forum International, 83(5), E2 – E13 (2006).

    Google Scholar 

  3. 3.

    R. M. German German, “Theory of thermal debinding,” Int. J. Powder Metall., 23(4), 237 – 245 (1987).

    Google Scholar 

  4. 4.

    M. J. Cima, and J. A. Lewis, A. D. Devoe, “Binder distribution in ceramic greenware during thermolysis,” J. Am. Ceram. Soc., 72(7), 1192 – 1199 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    J. A. Lewis, “Binder removal from ceramics,” Annu. Rev. Mater. Sci., 27, 147 – 173 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    R. V. B. Oliveira, V. Soldi, and M. C. Fredel, “Ceramic injection molding: influence of specimen dimensions and temperature on solvent debinding kinetics,” J. Mater. Process. Technol., 160(2), 213 – 220 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    S. Joens, “Elnik systems: the next generation takes the helm at a leading innovator in batch furnace technology for MIM,” PIM-International, 7(2), 51 – 56 (2013).

    Google Scholar 

  8. 8.

    “Catamold® imagination is the only limit!” PIM International, 7(2), 6, 7 (2013).

  9. 9.

    R. M. German and A. Bose, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation, Princeton, New Jersey, USA (1997).

    Google Scholar 

  10. 10.

    Ç. Karatas, A. Sözen, E. Arcaklioglu, et al., “Investigation of moldability for feedstocks used powder injection molding,” Mater. Des., 29, 1713 – 1724 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    G. Fu, S. B. Tor, N. H. Loh, et al., “Fabrication of robust tooling for mass production of polymeric microfluidic devices,” J. Micromech. Microeng., 20(8), Article No. 085019 (2010).

  12. 12.

    Z. Y. Liu, N. H. Loh, S. B. Tor, et al., “Binder system for micropowder injection molding,” Mater. Lett., 48, 31 – 38 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    P. Thomas, B. Levenfeld, A. Várez, et al., “Production of alumina microparts by powder injection molding,” Int. J. Appl. Ceram. Technol., 8(3) 617 – 626 (2009).

    Article  CAS  Google Scholar 

  14. 14.

    K. S. Hwang, G. J. Shu, and H. J. Lee, “Solvent debinding behavior of powder injection molded components prepared from powders with different particle sizes,” Metall. Mater. Trans. A, 36(1), 161 – 167 (2005).

    Article  Google Scholar 

  15. 15.

    J. E. Zorzi, C. A. Perottoni, and J. A. H. da Jornada, “Method for the measurement of powder distribution in green ceramic bodies,” Mater. Sci. Lett., 22(2), 107 – 109 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Z. Y. Liu, N. H. Loh, S. B. Tor, et al., “Micro-powder injection molding,” J. Mater. Process. Technol., 127, 165 – 168 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    B. Y. Tay, L. Liu, N. H. Loh, et al., “Surface roughness of microstructured component fabricated by _MIM,” Mater. Sci. Eng. A,396, 311 – 319 (2005).

    Article  CAS  Google Scholar 

  18. 18.

    B. Y. Tay, L. Liu, N. H. Loh, et al., “Injection molding of 3D microstructures by _PIM,” Microsystem Technol., 11, 210 – 213 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    L. Liu, N. H. Loh, B. Y. Tay, et al., “Micro powder injection molding: sintering kinetics of microstructured components,” Scripta Mater., 55, 1103 – 1106 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    B. Y. Tay, L. Liu, N. H. Loh, et al., “Characterization of metallic micro rod arrays fabricated by _MIM,” Mater. Charact., 57, 80 – 85 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    L. Liu, N. H. Loh, B. Y. Ta, et al., “Effects of thermal debinding on surface roughness in micro powder injection molding,” Mater. Lett., 61, 809 – 812 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    A. C. Gonçalves, “Metallic powder injection molding using low pressure,” J. Mater. Process. Technol., 118(1/3), 193 – 198 (2001).

    Article  Google Scholar 

  23. 23.

    B. Hausnerova, I. Kuritka, and D. Bleyan, “Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks,” Molecules, 19(3), 2748 – 2760 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    B. Hausnerova, P. Vltavska, T. Sedlacek, et al., “Flow properties of powder injection moulding compounds,” Powder Technol., 194(3), 192 – 196 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    V. P. Onbattuvelli, R. K. Enneti, S. Park, et al., “The effects of nanoparticle addition on binder removal from injection molded aluminum nitride,” Int. Refract. Metals Hard Mater., 36, 77 – 84 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    A. Islam, N. Giannekas, D. M. Marhöfer, et al., “Experimental investigation on shrinkage and surface replication of injection moulded ceramic parts,” Proceedings of the 4th International Conference on Nanomanufacturing (nanoMan2014) 8 – 10 July, 2014, Germany. Access regime : https://core.ac.uk/download/pdf/20609159.pdf.

  27. 27.

    R. M. German, “A rationalization of the powder injection molding process for stainless steels based on component feature,” Int. Conf. and Exhib. on Powder Metallurgy and Particulate Materials (31 May – 4 June 1999),

  28. 28.

    K. S. Hwang, H. K. Lin, and S. C. Lee, “Thermal, solvent, and vacuum debinding mechanisms of PIM compacts,” Mater. Manuf. Process., 12(4), 593 – 6 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    K. S. Hwang and Y. M. Hsieh, “Comparative study of pore structure evolution during solvent and thermal debinding of power injection molded parts,” Metall. Mater. Trans. A, 27(2), 245 – 253 (1996).

    Article  Google Scholar 

  30. 30.

    K. Okubo, S. Tanaka, and H. Ito, “The effects of metal particle size and distributions on dimensional accuracy for micro parts in micro metal injection molding,” Proc. of the Annual Technical Conf. (ANTEC 2009), 22 – 24 June 2009.

  31. 31.

    K. Nishiyabu, I. Andrews, and S. Tanaka, “Making and measuring in micro MIM manufacturing,” Met. Powder Rep., 64(9), 22 – 25 (2009).

    Article  Google Scholar 

  32. 32.

    J. E. Zorzi, C. A. Perottoni, and J. A. H. da Jornada, “A new partially isostatic method for fast debinding of low-pressure injection molded ceramic parts,” Mater. Lett., 57(24/25), 3784 – 3788)2003).

  33. 33.

    M. Antônia dos Santos, M. P. Neivock, A. M. Maliska, et al., “Plasma debinding and pre-sintering of injected parts,” Mater. Res., 7(3), 505 – 511)2004).

  34. 34.

    M. I. H. Chua, A. B. Sulong, M. F. Abdullah, et al., “Optimization of injection molding and solvent debinding parameters of stainless steel powder (SS316L) based feedstock for metal injection molding,” Sains Malaysiana, 42(12), 1743 – 1750 (2013).

    CAS  Google Scholar 

  35. 35.

    J. M. Torralba, J. Hidalgo, and A. Jimenez-Morales, “Powder injection molding: processing of small parts of complex shape,” Proceedings of ICIT & MPT. 8th International Conference on industrial tools and material processing technologies, Ljubljana, Slovenia, October 2 – 5, 2011.

  36. 36.

    S. Ahn, S. J. Park, S. Lee, et al., “Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process,” Powder Technol., 193(2), 162 – 169 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    S. Md Ani, A. Muchtar, N. Muhamad, et al., “Binder removal via a two-stage debinding process for ceramic injection molding parts,” Ceram. Int., 40(2), 2819 – 2824 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    P. Thomas-Vielma, A. Cervera, B. Levenfeld, et al., “Production of alumina parts by powder injection molding with a binder system based on high density polyethylene,” J. Eur. Ceram. Soc., 28(4), 763 – 771 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    J.W. Tseng and C. K. Hsu, “Cracking defect and porosity evolution during thermal debinding in ceramic injection moldings,” Ceram. Int., 25, No. 5, 461 – 46 (1999).

    Article  Google Scholar 

  40. 40.

    J. González-Gutiérrez, G. B. Stringari, et al., “Part 3. Powder injection molding of metal and ceramic parts,”. In: Some Critical Issues for Injection Molding; ed. by Dr. Jian Wan. pub. by InTech, Croatia (2012).

  41. 41.

    M. S. Yan, W. H. Xiong, and C. Fan, “Study on solvent debinding process of powder injection molded Ti(C, N)-based cermets,” Key Eng. Mater., 353/358, 1410 – 1413 (2007). Access regime: http://citeseerx.ist.psu.edu/viewdoc/download-doi=

  42. 42.

    D.-S. Tsai and W.-W. Chen, “Solvent debinding kinetics of alumina green bodies by powder injection molding,” Ceram. Int., 21(4), 257 – 264 (1995).

    CAS  Article  Google Scholar 

  43. 43.

    W.W. Yang, K. Y. Yang, M. C. Wang, et al., “Solvent debinding mechanism for alumina injection molded compacts with water-soluble binders,” Ceram. Int., 29(7), 745 – 756 (2003).

    Article  CAS  Google Scholar 

  44. 44.

    D. Auzene and S. Roberjot, “Investigation into water soluble binder systems for powder injection moulding,” PIM International, 5(1), 54 – 57 (2011).

    Google Scholar 

  45. 45.

    Supercritical Fluid Nanotechnology. Advances and Applications in Composites and Hybrid Nanomaterials; ed. by C. Domingo and P. Subra-Paternault, CRC Press, Taylor & Francis Group. eBooks (2016).

  46. 46.

    Supercritical Fluid Technology in Materials Science and Engineering Syntheses, Properties, and Applications ; ed. by Y.-P. Sun, Marcel Dekker Inc., New York (2002).

  47. 47.

    A. Baiker, “Supercritical fluids in heterogeneous catalysis,” Chem. Rev., 99(2), 453 – 473 (1999).

    CAS  Article  Google Scholar 

  48. 48.

    R. Ruprecht, T. Gietzelt, K. Müller, et al., “Injection molding of microstructured components from plastics, metals and ceramics,” Microsystem Technol., 8(4/5), 351 – 358 (2002).

    CAS  Article  Google Scholar 

  49. 49.

    U. M. Attia and J. R. Alcock, “A review of micro-powder injection moulding as a microfabrication technique,” J. Micromech. Microeng., 21(4), 1 – 41 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    R. B. Gupta and J. J. Shim, Solubility in Supercritical Carbon Dioxide, CRC Press Boca Raton (2007).

  51. 51.

    T. Chartier, E. Delhomme, and J.-F. Baumard, “Mechanisms of binder removal involved in supercritical debinding of injection moulded ceramics,” J. Phys. III, 7(2), 291 – 302 (1997).

    CAS  Google Scholar 

  52. 52.

    S. W. Kim, “Debinding behaviours of injection molded ceramics bodies with nano-sized pore channels during extraction using supercritical carbon dioxide and n-heptane solvent,” J. Supercrit. Fluids, 51(3), 339 – 344 (2010).

    Article  CAS  Google Scholar 

  53. 53.

    Y.-H. Kim, Y.-W. Lee, J.-K. Park, “Supercritical carbon dioxide debinding in metal injection molding (MIM) process,” Korean J. Chem. Eng., 19(6), 986—991 (2002).—

  54. 54.

    M. Bloemacher and D. Weinand, “CATAMOLDTM — a new direction for powder injection molding,” J. Mater. Process. Technol., 63, 918 – 922 (1997).

    Article  Google Scholar 

  55. 55.

    F. Sommer, H. Walcher, F. Kern, et al., “Influence of feedstock preparation on ceramic injection molding and microstructural features of zirconia toughened alumina,” J. Eur. Ceram. Soc., 34(3), 745 – 751 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    A. Mannschatz, A. Müller-Köhn, and T. Moritz, “Influence of powder morphology on properties of ceramic injection moulding feedstocks,” J. Eur. Ceram. Soc., 31(14), 2551 – 2558 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    D. Krueger, M. Bloemacher, and D. Weinand, “Rapid catalytic debinding MIM feedstock: a new technology grows into a manufacturing process,” Advances in Powder Metallurgy & Particulate Materials, 5(2), 165 – 180 (1993).

    Google Scholar 

  58. 58.

    F. Clemens, “Thermoplastic extrusion for ceramic bodies,” in: Extrusion in Ceramics (Engineering Materials and Processes), Handle, F. (ed.), Springer-Verlag, Berlin, Germany (2009).

  59. 59.

    K. Watari, T. Nagaoka, K. Sato, et al., “A strategy to reduce energy usage in ceramic fabrication — novel binders and related processing technology,” Synthesiology, 2(2), 132 – 141 (2009).

    Article  Google Scholar 

  60. 60.

    K. Sato, Y. Hotta, T. Nagaoka, et al., “Mutual linkage of particles in a ceramic green body through photoreactive organic binders,” J. Ceram. Soc. Japan, 113, 687 – 691 (2005).

    CAS  Article  Google Scholar 

  61. 61.

    K. Sato, M. Kawai, Y. Hotta, et al., “Production of ceramic green bodies using a microwave reactive organic binder,” J. Am. Ceram. Soc., 90(4), 1319 – 1322 (2007).

    CAS  Article  Google Scholar 

  62. 62.

    C. Duran, K. Sato, Y. Hotta, et al., “Covalently connected particles in green bodies fabricated by tape casting,” J. Am. Ceram. Soc., 90(1), 279 – 282 (2007).

    CAS  Article  Google Scholar 

  63. 63.

    T. Nagaoka, K. Sato, Y. Hott, et al., “Extrusion of alumina ceramics with hydraulic alumina without organic additives,” J. Ceram. Soc. Japan, 115(1339), 191 – 194 (2007).

    CAS  Article  Google Scholar 

  64. 64.

    P. P. Budnikov and Yu. E. Pivinskii, “Quartz ceramics,” Rus. Chem. Rev., 36(3), 210 – 227 (1967).

    Article  Google Scholar 

  65. 65.

    Yu. E. Pivinskii and F. T. Gorobets, “Some features of slip casting quartz glass ceramics,” Glass and Ceramics, 25(5), 285 – 288 (1968).

    Article  Google Scholar 

  66. 66.

    Yu. E. Pivinskii, “Nanodispersed silica and some aspects of nanotechnology in the field of silicate materials science. Part 4,” Refract. Ind. Ceram., 49(1), 67 – 74 (2008).

    CAS  Article  Google Scholar 

  67. 67.

    S. Masia, P. D. Calvert,W. E. Rhine, et al., “Effects of oxides on binder burnout during ceramics processing,” J. Mater. Sci., 24(6), 1907 – 1912 (1989).

    CAS  Article  Google Scholar 

Download references

Work was conducted with financial support of the Russian Federation Ministry of Science within the scope of an agreement for supply of a subsidy of 09.27.2017 No. 14.574.21.0158.

Author information



Corresponding author

Correspondence to A. V. Belyakov.

Additional information

Translated from Novye Ogneupory, No. 12, pp. 19 – 27, December, 2019.

1Part 1 of the article published in Novye Ogneupory No. 11 (2019).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belyakov, A.V. High-Density Micro- and Nano-Grain Size Ceramics. Transition from Open into Closed Pores. Part 2. Binder Removal from a Workpiece1. Refract Ind Ceram 60, 582–589 (2020). https://doi.org/10.1007/s11148-020-00410-6

Download citation


  • fine-grained ceramics
  • transition of open into closed pores
  • local compaction
  • binder removal
  • binder support share