Skip to main content
Log in

Preparation and Properties of Reinforced Engineering Materials

  • Published:
Refractories and Industrial Ceramics Aims and scope

The literature on preparation methods and signature features of composites based on transition-metal carbides, nitrides, and borides; covalent compounds (SiC, Si3N4); and Al2O3 reinforced with fibers and whisker crystals is reviewed. The main properties of the fibers and whisker crystals are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. A. A. Bataev and V. A. Bataev, Composites. Structure. Preparation. Application [in Russian], Logos, Moscow, 2006, 400 pp.

    Google Scholar 

  2. N. I. Baurova, “Use of carbon fibers in monitoring systems for metal structures,” Remont Vosstanov. Modernizatsiya, No. 8, 12 – 15 (2008).

  3. S. T. Mileiko, “Composites and nanostructure,” Kompoz. Nanostrukt., No. 1, 6 – 37 (2009).

  4. T. D. Karimbaev, “Fibers and composite materials on their basis for the perspective engines creation,” Konvers. Mashinostr., No. 5, 74 – 78 (2000).

  5. V. I. Kostikov, “Carbon-based construction materials in modern technology,” in: Current Problems of Carbon Product Manufacturing and Use: Collection of Scientific Works [in Russian], 2000, pp. 8 – 11.

  6. V. I. Kostikov and A. N. Varenkov, Ultrahigh-temperature Composites [in Russian], Intermet Inzhiniring, Moscow, 2003, 560 pp.

    Google Scholar 

  7. D. I. Kogan, Yu. O. Popov, A. V. Khrul’kov, and V. V. Krivonos, “Promising composites for fabricating load-bearing helicopter parts,” in: Current Problems in Aerospace Science and Technology (SPAN-2004) [in Russian], pp. 25, 26.

  8. E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Perspective high-temperature ceramic composite materials,” Ross. Khim. Zh., 54(1), 20 (2010).

    Google Scholar 

  9. D. V. Grashchenkov and L. V. Chursova, “Strategy for developing composites and functional materials,” Aviats. Mater. Tekhnol., No. 5, 231 – 242 (2012).

  10. D. A. Ivanov, A. I. Sitnikov, and S. D. Shlyapin, in: Dispersion-resistant Fibrous and Layered Inorganic Composites: Study Guide [in Russian], A. A. Il’in (ed.), MGIU, Moscow, 2010, 230 pp.

  11. F. L. Matthews and R. D. Rawlings, Composite Materials: Engineering and Science, CRC Press, Boca Raton, Fla., 2008 [Russian translation, Tekhnosfera, Moscow, 2004, 408 pp].

  12. T. A. Chernyshova, L. I. Kobeleva, and P. Sheboyu, Reaction of Metallic Melts with Reinforcing Fillers [in Russian], Nauka, Moscow, 1993, 272 pp.

    Google Scholar 

  13. S. V. Mikheev, G. B. Stroganov, and A. G. Romashin, Ceramic and Composite Materials in Aviation Technology [in Russian], Al’teks, Moscow, 2002, 276 pp.

    Google Scholar 

  14. E. N. Kablov, “Materials and chemical technologies for aviation technology,” Vestn. Ross. Akad. Nauk, 82(6), 520 (2012).

    Google Scholar 

  15. E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “High-temperature construction composites based on glass and ceramics for potential aviation technology products,” Steklo Keram., No. 4, 7 – 11 (2012).

  16. V. Ya. Shevchenko and S. M. Barinov, Technical Ceramics [in Russian], Nauka, Moscow, 1993, 187 pp.

    Google Scholar 

  17. N. V. Afanas’ev and O. F. Shlenskii, Brief Heat-treatment of Nonmetallic Materials [in Russian], SPbGTU, St. Petersburg, 1995, 282 pp.

    Google Scholar 

  18. P. Pettersson, Z. Shen, M. Johnsson, and M. Nygren, “Thermal shock resistance of α/β sialon ceramic composites,” J. Eur. Ceram. Soc., 21(8), 999 – 1005 (2001).

    Google Scholar 

  19. S. A. Suvorov, N. V. Dolgushev, A. I. Ponikarovskii, et al., “Sintered heat-resistant sialon materials,” Ogneupory Tekh. Keram., No. 3, 2 – 5 (2006).

  20. S. A. Suvorov, N. V. Dolgushev, and A. I. Ponikarovskii, “Sintered heat-resistant materials based on sialon and silicon carbide,” Ogneupory Tekh. Keram., No. 5, 3 – 8 (2007).

  21. I. Yu. Kelina, N. I. Ershova, and L. A. Plyasunkova, “Effect of reinforcing of silicon-nitride matrix with whisker crystals of silicon carbide,” Refract. Ind. Ceram., 41(9/10), 300 – 305 (2000).

    Google Scholar 

  22. D. S. Park, T.W. Roh, B. D. Han, et al., “Microstructural development of silicon nitride with aligned β-Si3N4 whiskers,” J. Eur. Ceram. Soc., 20(14), 2673 – 2677 (2000).

    Google Scholar 

  23. Yu. F. Kargin, S. N. Ivicheva, A. S. Lysenkov, et al., “Preparation of silicon carbide whiskers from silicon nitride,” Neorg. Mater., 45(7), 820 – 828 (2009).

    Google Scholar 

  24. D. S. Park, T. W. Roh, B. J. Hockey, et al., “Two cores in one grain in the microstructure of silicon nitride prepared with aligned whisker seeds,” J. Eur. Ceram. Soc., 23(3), 555 – 560 (2003).

    Google Scholar 

  25. S. H. Kim, Y. W. Kim, and M. Mitomo, “Microstructure and fracture toughness of liquid-phase-sintered β-SiC containing β-SiC whiskers as seeds,” J. Mater. Sci., 38 1117 – 1121 (2003).

    Google Scholar 

  26. S. Ochiai, K. Abe, and K. Osamura, “Preparation of boron fiber-reinforced aluminum matrix composites and their deformation and fracture behavior,” J. Jpn. Inst. Met., 48(10), 1028 – 1034 (1984).

    Google Scholar 

  27. S. Ochial, K. Osamura, and K. Abe, “A study on tensile behaviour of boron fibre-reinforced aluminium sheet in terms of computer simulation,” Z. Metallkd., 76, 402 – 408 (1985).

    Google Scholar 

  28. M. E. Buck and R. J. Suplinskas, “Continuous boron fiber MMCs,” in: Engineered Materials Handbook, ASM International, 1987, Vol. 1, pp. 851 – 857.

  29. L. Hwan, S. Suib, and F. Galasso, “Silicon carbide-coated boron fibers,” J. Am. Ceram. Soc., 72(7), 1259 – 1261 (1989).

    Google Scholar 

  30. A. A. Berlin, “Modern polymer composites (PCs),” Stal’, No. 35, 57 – 65 (1995).

  31. H. L. Belvin, R. J. Cano, N. J. Johnston, and J. M. Marchello, US Pat. 6,500,370, Dec. 31, 2002, “Process of making boron-fiber reinforced composite tape.”

  32. T. Fan, B. Sun, J. Gu, D. Zhang, and L. W. Lau, “Biomorphic Al2O3 fibers synthesized using cotton as bio-templates,” Scr. Mater., 53(8), 893 – 897 (2005).

    Google Scholar 

  33. C. Cerecedo, V. Valcarcel, M. Gomez, et al., “New massive vapor–liquid–solid deposition of α-Al2O3 fibers,” Adv. Eng. Mater., 9(7), 600 – 603 (2007).

    Google Scholar 

  34. T. Wang, S. Kong, Y. Jia, et al., “Synthesis and thermal conductivities of the biomorphic Al2O3 fibers derived from silk template,” Int. J. Appl. Ceram. Technol., 10(2), 285 – 292 (2013).

    Google Scholar 

  35. T. F. Cooke, “Fibrous composites: thermomechanical properties,” in: Concise Encyclopedia of Composite Materials, 1995, 378 pp.

  36. K. K. Chawla, Fibrous materials, Cambridge University Press, 1998, 309 pp.

  37. T. L. Apukhtina, G. I. Shcherbakova, D. V. Sidorov, et al., “Reinforcing silicon carbide fibers with protective glass-ceramic coatings,” Neorg. Mater., 51(8), 872 – 877 (2015).

    Google Scholar 

  38. S. Bai, H. Cheng, G. Su, et al., “Microstructure of dumbbell-shaped biomimetic SiC whiskers,” Chin. J. Mater. Res. (China), 14(5), 469 – 474 (2000).

    Google Scholar 

  39. J. Zheng, M. J. Kramer, and M. Akinc, “In situ growth of SiC whisker in pyrolyzed monolithic mixture of AHPCS and SiC,” J. Am. Ceram. Soc., 83(12), 2961 – 2966 (2000).

    Google Scholar 

  40. J. I. N. Zhi-liang, L. Sheng-li, and L. I. Wu, “Performance and application of the complex material reinforced by whiskers,” J. Salt Lake Res., 4, 10 – 21 (2003).

    Google Scholar 

  41. S. A. Baldacim, C. Santos, O. M. M. Silva, and C. R. M. Silva, “Mechanical properties evaluation of hot-pressed Si3N4–SiCw composites,” Int. J. Refract. Met. Hard Mater., 21(5/6), 233 – 239 (2003).

    Google Scholar 

  42. S. A. Baldacim, C. Santos, K. Strecker, O. M. M. Silva, and C. R. M. Silva, “Development and characterization by HRTEM of hot-pressed Si3N4–SiCw composites,” J. Mater. Process. Technol., 169(3), 445 – 451 (2005).

    Google Scholar 

  43. L. J. Neergaard and J. Homeny, “Mechanical properties of beta-silicon nitride whisker/silicon nitride matrix composites,” in: 13th Annual Conference on Composites and Advanced Ceramic Materials, Part 2 of 2, John Wiley & Sons, 2009, Vol. 118, pp. 1049 – 1062.

  44. H. Zhang and B. W. Darvell, “Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide,” Acta Biomater., 6(8), 3216 – 3222 (2010).

    Google Scholar 

  45. B. Bertram and R. Gerhardt, “Properties and applications of ceramic composites containing silicon carbide whiskers,” in: Properties and Applications of Silicon Carbide, InTech, 2011, pp. 197 – 230.

  46. J. D. Buckley and D. D. Edie, “Carbon-carbon materials and composites,” William Andrew, 1993, Vol. 1254, 280 pp.

  47. S. Chand, “Review carbon fibers for composites,” J. Mater. Sci., 35(6), 1303 – 1313 (2000).

    Google Scholar 

  48. B. Vigolo, A. Penicaud, C. Coulon, et al., “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science, 290(5495), 1331 – 1334 (2000).

    Google Scholar 

  49. P. Morgan, Carbon Fibers and Their Composites, CRC Press, 2005, 1132 pp.

  50. D. D. L. Chung and D. Chung, Carbon Fiber Composites, Butterworth-Heinemann, 2012, 216 pp.

  51. L. Rubin, “Applications of carbon-carbon,” in: Carbon–Carbon Materials and Composites, 1993, pp. 267 – 281.

  52. S. D. Gardner, C. S. K. Singamsetty, G. L. Booth, et al., “Surface characterization of carbon fibers using angle-resolved XPS and ISS,” Carbon, 33(5), 587 – 595 (1995).

    Google Scholar 

  53. G. Savage, Carbon-carbon Composites, Springer Science & Business Media, 2012, 388 pp.

  54. S. M. Barinov and V. Ya. Shevchenko, Strength of Technical Ceramics [in Russian], Nauka, Moscow, 1996, 159 pp.

    Google Scholar 

  55. R. Naslain, The Concept of Layered Interphases in SiC/SiC, American Ceramic Society, Westerville, OH, USA, 1995, No. 58, pp. 23 – 39.

  56. R. R. Naslain, “Interphases in ceramic matrix composites,” Ceram. Trans., 79, 37 – 52 (1996).

    Google Scholar 

  57. R. J. Kerans, “Issues in the control of fiber-matrix interface properties in ceramic composites,” Scr. Metall. Mater., 31(8), 1079 – 1084 (1994).

    Google Scholar 

  58. T. Taguchi, T. Nozawa, N. Igawa, et al., “Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi-layer interphase,” J. Nucl. Mater., 329, 572 – 576 (2004).

    Google Scholar 

  59. Y. Katoh, T. Nozawa, and L. L. Snead, “Mechanical properties of thin pyrolytic carbon interphase SiC-matrix composites reinforced with near-stoichiometric SiC fibers,” J. Am. Ceram. Soc., 88(11), 3088 – 3095 (2005).

    Google Scholar 

  60. H. Liu, H. Cheng, J. Wang, and G. Tang, “Effects of the single layer CVD SiC interphases on the mechanical properties of the SiCf/SiC composites fabricated by PIP process,” Ceram. Int., 36(7), 2033 – 2037 (2010).

    Google Scholar 

  61. H. Liu, H. Cheng, J. Wang, and G. Tang, “Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases,” J. Alloys Compd., 491(1/2), 248 – 251 (2010).

    Google Scholar 

  62. P. Baldus, M. Jansen, and D. Sporn, “Ceramic fibers for matrix composites in high-temperature engine applications,” Science, 285(5428), 699 – 703 (1999).

    Google Scholar 

  63. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, and I. Talmy, “UHTCs: ultra-high temperature ceramic materials for extreme environment applications,” Electrochem. Soc. Interface, 16(4), 30 – 36 (2007).

    Google Scholar 

  64. L. A. Plyasunkova, “Microstructure and properties of reinforced ceramic matrix composites with Si3N4 and SiC matrices,” Candidate Dissertation in Technical Sciences, 2012, 159 pp.

  65. R. A. Gerhardt and R. Ruh, “Volume fraction and whisker orientation dependence of the electrical properties of SiC whisker reinforced mullite composites,” J. Am. Ceram. Soc., 84(10), 2328 – 2334 (2001).

    Google Scholar 

  66. W. D. Fei, M. Hu, and C. K. Yao, “Thermal expansion and thermal mismatch stress relaxation behaviors of SiC whisker reinforced aluminum composite,” Mater. Chem. Phys., 77(3), 882 – 888 (2003).

    Google Scholar 

  67. V. Garnier, G. Fantozzi, D. Nguyen, et al., “Influence of SiC whisker morphology and nature of SiC/Al2O3 interface on thermomechanical properties of SiC reinforced Al2O3 composites,” J. Eur. Ceram. Soc., 25(15), 3485 – 3493 (2005).

    Google Scholar 

  68. W. Nakao, M. Ono, S. K. Lee, et al., “Critical crack-healing condition for SiC whisker reinforced alumina under stress,” J. Eur. Ceram. Soc., 25(16), 3649 – 3655 (2005).

    Google Scholar 

  69. X. Zhang, L. Xu, S. Du, et al., “Thermal shock behavior of SiC-whisker-reinforced diboride ultrahigh-temperature ceramics,” Scr. Mater., 59(1), 55 – 58 (2008).

    Google Scholar 

  70. J. Suo, Z. Chen, J. Xiao, and W. Zheng, “Influence of an initial hot-press processing step on the mechanical properties of 3D-C/SiC composites fabricated via PIP,” Ceram. Int., 31(3), 447 – 452 (2005).

    Google Scholar 

  71. K. Jian, Z. H. Chen, Q. S. Ma, et al., “Effects of pyrolysis temperatures on the microstructure and mechanical properties of 2D-Cf/SiC composites using polycarbosilane,” Ceram. Int., 33(1), 73 – 76 (2007).

    Google Scholar 

  72. K. Jian, Z. H. Chen, Q. S. Ma, et al., “Effects of polycarbosilane infiltration processes on the microstructure and mechanical properties of 3D-Cf/SiC composites,” Ceram. Int., 33(6), 905 – 909 (2007).

    Google Scholar 

  73. Y. Z. Zhu, Z. R. Huang, S. M. Dong, et al., “Correlation of PyC/SiC interphase to the mechanical properties of 3D HTA C/SiC composites fabricated by polymer infiltration and pyrolysis,” New Carbon Mater., 22(4), 327 – 331 (2007).

    Google Scholar 

  74. Y. Zhu, Z. R. Huang, S. M. Dong, et al., “Manufacturing 2D carbon-fiber-reinforced SiC matrix composites by slurry infiltration and PIP process,” Ceram. Int., 34(5), 1201 – 1205 (2008).

    Google Scholar 

  75. Z. Luo, X. Zhou, J. Yu, and F. Wang, “High-performance 3D SiC/PyC/SiC composites fabricated by an optimized PIP process with a new precursor and a thermal molding method,” Ceram. Int., 40(5), 6525 – 6532 (2014).

    Google Scholar 

  76. S. M. Dong, Y. Katoh, A. Kohyama, et al., “Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process,” Ceram. Int., 28(8), 899 – 905 (2002).

    Google Scholar 

  77. R. Dong, Y. Hirata, H. Sueyoshi, et al., “Polymer impregnation and pyrolysis (PIP) method for the preparation of laminated woven fabric/mullite matrix composites with pseudoductility,” J. Eur. Ceram. Soc., 24(1), 53 – 64 (2004).

    Google Scholar 

  78. S. G. Lee, J. Fourcade, R. Latta, and A. A. Solomon, “Polymer impregnation and pyrolysis process development for improving thermal conductivity of SiCp/SiC–PIP matrix fabrication,” Fusion Eng. Des., 83(5/6), 713 – 719 (2008).

    Google Scholar 

  79. J. Yin, S. H. Lee, L. Feng, et al., “The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process,” Ceram. Int., 41(3), 4145 – 4153 (2015).

    Google Scholar 

  80. A. Kohyama, M. Kotani, Y. Katoh, et al., “High-performance SiC/SiC composites by improved PIP processing with new precursor polymers,” J. Nucl. Mater., 283, 565 – 569 (2000).

    Google Scholar 

  81. M. Kotani, A. Kohyama, and Y. Katoh, “Development of SiC/SiC composites by PIP in combination with RS,” J. Nucl. Mater., 289(1/2), 37 – 41 (2001).

    Google Scholar 

  82. Y. Katoh, M. Kotani, H. Kishimoto, et al., “Properties and radiation effects in high-temperature pyrolyzed PIP–SiC/SiC,” J. Nucl. Mater., 289(1/2), 42 – 47 (2001).

    Google Scholar 

  83. S. Zhao, X. Zhou, J. Yu, and P. Mummery, “Effect of heat treatment on microstructure and mechanical properties of PIP–SiC/SiC composites,” Mater. Sci. Eng., A, 559, 808 – 811 (2013).

    Google Scholar 

  84. F. H. Gern and R. Kochendorfer, “Liquid silicon infiltration: Description of infiltration dynamics and silicon carbide formation,” Composites, Part A, 28(4), 355 – 364 (1997).

    Google Scholar 

  85. R. Kochendprfer and N. Lutzenburger, “Applications of CMCs made via the liquid silicon infiltration (LSI) technique,” in: High Temperature Ceramic Matrix Composites, 2001, pp. 275 – 287.

  86. J. C. Margiotta, D. Zhang, D. C. Nagle, and C. E. Feeser, “Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure,” J. Mater. Res., 23(5), 1237 – 1248 (2008).

    Google Scholar 

  87. J. C. Margiotta, D. Zhang, and D. C. Nagle, “Microstructural evolution during silicon carbide (SiC) formation by liquid silicon infiltration using optical microscopy,” Int. J. Refract. Met. Hard Mater., 28(2), 191 – 197 (2010).

    Google Scholar 

  88. H. Zhou, S. Dong, Y. Ding, Z. Wang, and D. Wu, “Friction and wear properties of 3D carbon/silicon carbide composites prepared by liquid silicon infiltration,” Tribol. Lett., 37(2), 337 – 341 (2010).

    Google Scholar 

  89. Z. Li, P. Xiao, X. Xiong, and B. Y. Huang, “Preparation and tribological properties of C fibre reinforced C/SiC dual matrix composites fabrication by liquid silicon infiltration,” Solid State Sci., 16, 6 – 12 (2013).

    Google Scholar 

  90. X. Fan, X. Yin, L. Wang, L. Cheng, and L. Zhang, “Processing, microstructure and ablation behavior of C/SiC–Ti3SiC2 composites fabricated by liquid silicon infiltration,” Corros. Sci., 74, 98 – 105 (2013).

    Google Scholar 

  91. X. Fan, X. Yin, X. Cao, L. Chen, et al., “Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration,” Compos. Sci. Technol., 115, 21 – 27 (2015).

    Google Scholar 

  92. O. Dezellus, S. Jacques, F. Hodaj, and N. Eustathopoulos, “Wetting and infiltration of carbon by liquid silicon,” J. Mater. Sci., 40(9/10), 2307 – 2311 (2005).

    Google Scholar 

  93. W. Krenkel, “Cost effective processing of CMC composites by melt infiltration (LSI-process),” Ceramic Engineering and Science Proceedings, 2009, pp. 443 – 454.

  94. S. Kumar, A. Kumar, R. Devi, A. Shukla, and A. K. Gupta, “Capillary infiltration studies of liquids into 3D-stitched C–C preforms: Part B: Kinetics of silicon infiltration,” J. Eur. Ceram. Soc., 29(12), 2651 – 2657 (2009).

    Google Scholar 

  95. M. Patel, K. Saurabh, V. B. Prasad, and J. Subrahmanyam, “High temperature C/C–SiC composite by liquid silicon infiltration: A literature review,” Bull. Mater. Sci., 35(1), 63 – 73 (2012).

    Google Scholar 

  96. R. Naslain, “Materials design and processing of high temperature ceramic matrix composites: State of the art and future trends,” Adv. Compos. Mater., 8(1), 3 – 16 (1999).

    Google Scholar 

  97. K. Yoshida, M. Imai, and T. Yano, “Processing and microstructure of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing,” J. Nucl. Mater., 258, 1960 – 1965 (1998).

    Google Scholar 

  98. T. Yano, K. Budiyanto, K. Yoshida, and T. Iseki, “Fabrication of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing,” Fusion Eng. Des., 41(1/4), 157 – 163 (1998).

    Google Scholar 

  99. I. Yu. Kelina, N. I. Ershova, L. A. Plyasunkova, et al., “Behavior of discrete and continuous SiC and C fibers in silicon nitride matrix under conditions of hot pressing,” Refract. Ind. Ceram., 41(11/12), 405 – 411 (2000).

    Google Scholar 

  100. I. Yu. Kelina, L. A. Plyasunkova, and L. A. Chevykalova, “High-temperature oxidation resistance of ceramic matrix Si3N4/Cf composites,” Powder Metall. Met. Ceram., 42(11/12), 592 – 595 (2003).

    Google Scholar 

  101. V. P. Paranosenkov, A. S. Shatalin, A. A. Chikina, et al., “Composite SiC–Cf with a coating of SiC on carbon fibers,” Perspekt. Mater., No. 5, 20 – 24 (2003).

  102. S. Dong, Y. Katoh, and A. Kohyama, “Preparation of SiC/SiC composites by hot pressing, using tyranno-SA fiber as reinforcement,” J Am. Ceram. Soc., 86(1), 26 – 32 (2003).

    Google Scholar 

  103. I. Yu. Kelina, L. A. Plyasunova, and L. A. Chevykalova, “Resistance of Si3N4/Cf ceramic-matrix composites to high-temperature oxidation,” Refract. Ind. Ceram., 44(4), 249 – 253 (2003).

    Google Scholar 

  104. L. A. Playsunkova, V. P. Paranosenkov, V. N. Rudykina, and I. Yu. Kelina, “Study of the microstructure of ceramic matrix composites in the SiC–Cf system,” Refract. Ind. Ceram., 46(1), 7 – 11 (2005).

    Google Scholar 

  105. L. A. Playsunkova, I. Yu. Kelina, and L. A. Chevykalova, “Microstructure and properties of ceramic matrix composites in the system Si3N4–SiCf,” Refract. Ind. Ceram., 54(3), 196 – 202 (2013).

    Google Scholar 

  106. H. W. Yu, P. Fitriani, S. Lee, et al., “Fabrication of the tube-shaped SiCf/SiC by hot pressing,” Ceram. Int., 41(6), 7890 – 7896 (2015).

    Google Scholar 

  107. C. M. L. Wu and G.W. Han, “Synthesis of an Al2O3/Al co-continuous composite by reactive melt infiltration,” Mater. Charact., 58(5), 416 – 422 (2007).

    Google Scholar 

  108. G. Jiang, J. Yang, Y. Xu, et al., “Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration,” Compos. Sci. Technol., 68(12), 2468 – 2473 (2008).

    Google Scholar 

  109. I. A. Rumyantsev and S. N. Perevislov, “Lightweight composite cermets obtained by titanium-plating,” Refract. Ind. Ceram., 58(4), 405 – 409 (2017).

    Google Scholar 

  110. L. Zou, N. Wali, J. M. Yang, and N. P. Bansal, “Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration,” J. Eur. Ceram. Soc., 30(6), 1572 – 1535 (2010).

    Google Scholar 

  111. Y. Wang, X. Zhu, L. Zhang, and L. Cheng, “Reaction kinetics and ablation properties of C/C–ZrC composites fabricated by reactive melt infiltration,” Ceram. Int., 37(4), 1277 – 1283 (2011).

    Google Scholar 

  112. L. Zou, N. Wali, J. M. Yang, N. P. Bansal, and D. Yan, “Microstructural characterization of a Cf/ZrC composite manufactured by reactive melt infiltration,” Int. J. Appl. Ceram. Technol., 8(2), 329 – 341 (2011).

    Google Scholar 

  113. Y. Tong, S. Bai, and K. Chen, “C/C–ZrC composite prepared by chemical vapor infiltration combined with alloyed reactive melt infiltration,” Ceram. Int., 38(7), 5723 – 5730 (2012).

    Google Scholar 

  114. Y. Zhu, S.Wang,W. Li, S. Zhang, and Z. Chen, “Preparation of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature,” Scr. Mater., 67(10), 822 – 825 (2012).

    Google Scholar 

  115. C. Zhang, Y. Zhang, and H. Hu, “Influence of pyrocarbon amount in C/C preform on the microstructure and properties of C/ZrC composites prepared via reactive melt infiltration,” Mater. Des., 58, 570 – 576 (2014).

    Google Scholar 

  116. S. Zhang, S.Wang,W. Li, Y. Zhu, and Z. Chen, “Preparation of ZrB2 based composites by reactive melt infiltration at relative low temperature,” Mater. Lett., 65(19/20), 2910 – 2912 (2011).

    Google Scholar 

  117. X. Cao, X. Yin, X. Fan, L. Cheng, and L. Zhang, “Effect of PyC interphase thickness on mechanical behaviors of SiBC matrix modified C/SiC composites fabricated by reactive melt infiltration,” Carbon, 77, 886 – 895 (2014).

    Google Scholar 

  118. S. Zhang, S. Wang, Y. Zhu, and Z. Chen, “Fabrication of ZrB2–ZrC-based composites by reactive melt infiltration at relative low temperature,” Scr. Mater., 65(2), 139 – 142 (2011).

    Google Scholar 

  119. X. Yang, Z. Su, Q. Huang, X. Fang, and L. Chai, “Microstructure and mechanical properties of C/C–ZrC–SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders,” J. Mater. Sci. Technol., 29(8), 702 – 710 (2013).

    Google Scholar 

  120. C. Zhang, Y. Zhang, and H. Hu, “Preparation and properties of carbon fiber reinforced ZrC–ZrB2 based composites via reactive melt infiltration,” Composites, Part B, 60, 222 – 226 (2014).

    Google Scholar 

  121. H. Pi, S. Fan, and Y. Wang, “C/SiC–ZrB2–ZrC composites fabricated by reactive melt infiltration with ZrSi2 alloy,” Ceram. Int., 38(8), 6541 – 6548 (2012).

    Google Scholar 

  122. M. Esfehanian, J. Gunster, F. Moztarzadeh, and J. G. Heinrich, “Development of a high temperature Cf/XSi2–SiC (X = Mo, Ti) composite via reactive melt infiltration,” J. Eur. Ceram. Soc., 27(2/3), 1229 – 1235 (2007).

    Google Scholar 

  123. W. J. Kim, S. M. Kang, J. Y. Park, and W. S. Ryu, “Effect of a SiC whisker formation on the densification of Tyranno SA/SiC composites fabricated by the CVI process,” Fusion Eng. Des., 81(8/14), 931 – 936 (2006).

  124. F. Qiangang, L. Hejun, S. Xiaohong, et al., “Microstructure and growth mechanism of SiC whiskers on carbon/carbon composites prepared by CVD,” Mater. Lett., 59(19/20), 2593 – 2597 (2005).

    Google Scholar 

  125. P. Delhaes, “Chemical vapor infiltration processes of carbon materials,” in: Fibers and Composites, CRC Press, 2003, pp. 97 – 121.

  126. D. A. Streitwieser, N. Popovska, H. Gerhard, and G. Emig, “Application of the chemical vapor infiltration and reaction (CVI-R) technique for the preparation of highly porous biomorphic SiC ceramics derived from paper,” J. Eur. Ceram. Soc., 25(6), 817 – 828 (2005).

    Google Scholar 

  127. D. A. Streitwieser, N. Popovska, and H. Gerhard, “Optimization of the ceramization process for the production of three-dimensional biomorphic porous SiC ceramics by chemical vapor infiltration (CVI),” J. Eur. Ceram. Soc., 26(12), 2381 – 2387 (2006).

    Google Scholar 

  128. N. Popovska, D. A. Streitwieser, C. Xu, and H. Gerhard, “Paper derived biomorphic porous titanium carbide and titanium oxide ceramics produced by chemical vapor infiltration and reaction (CVI-R),” J. Eur. Ceram. Soc., 25(6), 829 – 836 (2005).

    Google Scholar 

  129. X. Li, L. Zhang, X. Yin, L. Feng, and Q. Li, “Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4–SiC ceramic,” Scr. Mater., 63(6), 657 – 660 (2010).

    Google Scholar 

  130. H. Wang, X. Zhou, J. Yu, Y. Cao, R. Liu, “Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration,” Mater. Lett., 64(15), 1691 – 1693 (2010).

    Google Scholar 

  131. Z. K. Chen, X. Xiong, B. Y. Huang, et al., “Phase composition and morphology of TaC coating on carbon fibers by chemical vapor infiltration,” Thin Solid Films, 516(23), 8248 – 8254 (2008).

    Google Scholar 

  132. X. Li, L. Zhang, and X. Yin, “Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3-D printing and pressureless sintering,” Scr. Mater., 67(4), 380 – 383 (2012).

    Google Scholar 

  133. R. Naslain, A. Guette, F. Rebillat, R. Pailler, et al., “Boronbearing species in ceramic matrix composites for long-term aerospace applications,” J. Solid State Chem., 177(2), 449 – 456 (2004).

    Google Scholar 

  134. Y. Wang, W. Liu, L. Cheng, and L. Zhang, “Preparation and properties of 2D C/ZrB2–SiC ultra high temperature ceramic composites,” Mater. Sci. Eng., A, 524(1/2), 129 – 133 (2009).

    Google Scholar 

  135. P. P. Semyannikov, B. L. Moroz, S. V. Trubin, et al., “Chemical vapor infiltration method for deposition of gold nanoparticles on porous alumina supports,” J. Struct. Chem., 47(3), 458 – 464 (2006).

    Google Scholar 

  136. I. Yu. Kelina, N. I. Ershova, and L. A. Plyasunkova, “Composites based on silicon nitride with a broad spectrum of regulated properties,” Konstr. Kompoz. Mater., No. 2, 20 – 24 (2001).

  137. T. Wasanapiarnpong, S. Wada, M. Imai, and T. Yano, “Effect of post-sintering heat-treatment on thermal conductivity of Si3N4 ceramics containing different additives,” J. Ceram. Soc., 113(6), 394 – 399 (2005).

    Google Scholar 

  138. D. Bucevac, S. Boskovic, B. Matovic, and L. Zivkovicetal, “Correlation between fracture toughness and microstructure of seeded silicon nitride ceramics,” J. Mater. Sci., 42, 7920 – 7926 (2007).

    Google Scholar 

  139. A. S. Lysenkov, Yu. F. Kargin, A. I. Zakharov, et al., “Preparation of ceramics based on silicon nitride powder by the SHS method,” Usp. Khim. Khim. Tekhnol., 21(7), 70 – 72 (2007).

    Google Scholar 

  140. Yu. F. Kargin, A. S. Lysenkov, S. N. Ivicheva, et al., “Microstructure and properties of silicon nitride ceramics with added calcium aluminates,” Neorg. Mater., 46(7), 892 – 896 (2010).

    Google Scholar 

  141. S. N. Perevislov, “Liquid-phase-sintered materials based on silicon nitride with added MgO–Y2O3–Al2O3 oxides,” Perspekt. Mater., No. 10, 47 – 53 (2013).

  142. S. N. Perevislov, “Reactively sintered composites based on silicon nitride-carbide,” Vopr. Materialoved., 74(2), 45 – 52 (2013).

    Google Scholar 

  143. X. Zhu, Y. Zhou, and K. Hirao, “Post-densification behavior of reaction-bonded silicon nitride (RBSN): Effect of various characteristics of RBSN,” J. Mater. Sci., 39(18), 5785 – 5797 (2004).

    Google Scholar 

  144. J. S. Lee, J. H. Mun, B. D. Han, et al., “Effect of raw-Si particle size on the properties of sintered reaction-bonded silicon nitride,” Ceram. Int., 30(6), 965 – 976 (2004).

    Google Scholar 

  145. X. Zhu, Y. Zhou, and K. Hirao, “Effect of sintering additive composition on the processing and thermal conductivity of sintered reaction bonded Si3N4,” J. Am. Ceram. Soc., 87(7), 1398 – 1400 (2004).

    Google Scholar 

  146. M. Muller, W. Bauer, and R. Knitter, “Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 1: Factors influencing the reactionbonding process,” Ceram. Int., 35(7), 2577 – 2585 (2009).

    Google Scholar 

  147. M. Muller, J. Rogner, B. Okolo, W. Bauer, and R. Knitter, “Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 2: Sintering behaviour and micro-mechanical properties,” Ceram. Int., 36(2), 707 – 717 (2010).

    Google Scholar 

  148. S. N. Perevislov, “Study of the structure and strength properties of liquid-phase-sintered silicon carbide ceramics,” Deform. Razrushenie Mater., No. 5, 25 – 31 (2013).

  149. J.-Y. Kim, H.-G. An, Y.-W. Kim, and M. Mitomo, “R-curve behaviour and microstructure of liquid-phase sintered α-SiC,” J. Mater. Sci., 35, 3693 – 3697 (2000).

    Google Scholar 

  150. T. Nagano and K. Kaneko, “Superplasticity of liquid-phase-sintered β-SiC with Al2O3–Y2O3–AlN additions in an N2 atmosphere,” J. Am. Ceram. Soc., 83(10), 2497 – 2502 (2000).

    Google Scholar 

  151. Y.-W. Kim, M. Mitomo, and G.-D. Zhan, “Microstructure control of liquid-phase sintered β-SiC by seeding,” J. Mater. Sci. Lett., 20, 2217 – 2220 (2001).

    Google Scholar 

  152. G.-D. Zhan, R.-J. Xie, M. Mitomo, and Y.-W. Kim, “Effect of β–to–α phase transformation on the microstructural development and mechanical properties of fine-grained silicon carbide ceramics,” J. Am. Ceram. Soc., 84(5), 945 – 950 (2001).

    Google Scholar 

  153. S. Mandal, A. S. Sanyal, K. K. Dharupta, and S. Ghatak, “Gas pressure sintering of β-SiC–γ-AlON composite in nitrogen/argon environment,” Ceram. Int., 27, 473 – 479 (2001).

    Google Scholar 

  154. W. Kim, Y.-W. Kim, and M.-H. Choi, “Texture development and phase transformation in liquid-phase-sintered SiC ceramics,” Mater. Sci. Forum, 408 – 412, 1693 – 1698 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 10, pp. 37 – 48, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Tomkovich, M.V., Lysenkov, A.S. et al. Preparation and Properties of Reinforced Engineering Materials. Refract Ind Ceram 59, 534–544 (2019). https://doi.org/10.1007/s11148-019-00267-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00267-4

Keywords

Navigation