Skip to main content
Log in

Ceramics Based on Reactively Sintered Boron Carbide

  • Published:
Refractories and Industrial Ceramics Aims and scope

The influences of various processing parameters on phase and structure formation during reactive sintering of B4C materials in a Si melt are studied. The reaction of B4C particles and C with molten Si during reactive sintering is examined. Dissolution of B4C particles in the Si melt during reactive sintering has a negative effect. Methods for increasing the content of B4C particles in the reactively sintered B4C ceramic are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. R. Telle and G. Petzow, “Mechanisms in the liquid phase sintering of boron carbide with silicon based melts,” High Tech Ceram. (Part A), 38, 961 – 973 (1986).

    Google Scholar 

  2. Z. F. Chen, Y. C. Su, and Y. B. Cheng, “Formation and sintering mechanisms of reaction bonded silicon carbide – boron carbide composites,” Key Eng. Mater., 352, 207 – 212 (2007).

    Article  Google Scholar 

  3. E. F. Kharchenko, V. A. Aniskovich, V. V. Lenskii, I. S. Gavrikov, and V. A. Bykov, RU Pat. 2,440,956 (C1), Jan. 27, 2012, “Method of producing ceramic armor material based on silicon carbide and boron carbide.”

  4. A. I. Ovsienko, V. I. Rumyantsev, S. S. Ordan’yan, and V. N. Fishchev, RU Pat. 2,621,241, Jun. 1, 2017, “Nanostructured composite material based on boron carbide and the method of its obtaining.”

  5. M. K. Aghajanian, A. L. McCormick, B. N. Morgan, and A. F. Liszkiewicz, Jr., US Pat. 7,332,221 (B2), Feb. 19, 2008, “Boron carbide composite bodies, and method for making same.”

  6. K. M. Taylor and R. J. Palicka, US Pat. 3,796,564, Mar. 12, 1974, “Dense carbide composite bodies and method of making same.”

  7. C. Zhang, H. Ru, W. Wang, et al., “The role of infiltration temperature in the reaction bonding of boron carbide by silicon infiltration,” J. Am. Ceram. Soc., 97(10), 3286 – 3293 (2014).

    Article  Google Scholar 

  8. S. Hayun, A. Weizmann, M. P. Dariel, and N. Farge, “Microstructural evolution during the infiltration of boron carbide with molten silicon,” J. Eur. Ceram. Soc., 30(4), 1007 – 1014 (2010).

    Article  Google Scholar 

  9. M. Patel, V. V. B. Prasad, and J. Subrahmanyan, “Compressive property of liquid silicon (infiltrated) boron carbide,” Trans. Indian Inst. Met., 63(6), 863 – 866 (2010).

    Article  Google Scholar 

  10. D. Mallick, T. K. Kayal, J. Ghosh, et al., “Development of multi-phase B–Si–C ceramic composite by reaction sintering,” Ceram. Int., 35(4), 1667 – 1669 (2009).

    Article  Google Scholar 

  11. S. Hayun, N. Frage, and M. P. Dariel, “The morphology of ceramic phases in BxC–SiC–Si infiltrated composites,” J. Solid State Chem., 179(9), 2875 – 2879 (2006).

    Article  Google Scholar 

  12. S. Hayun, A. Weizmann, M. P. Dariel, and N. Frage, “The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites,” Int. J. Appl. Ceram. Technol., 6(4), 492 – 500 (2009).

    Article  Google Scholar 

  13. M. P. Dariel and N. Frage, “Reaction bonded boron carbide: Recent developments,” Adv. Appl. Ceram., 111(5/6), 301 – 310 (2012).

    Article  Google Scholar 

  14. P. Barick, D. C. Jana, and N. Thiyagarajan, “Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics,” Ceram. Int., 39(1), 763 – 770 (2013).

    Article  Google Scholar 

  15. K. Korniyenko, et al., “Boron–carbon–silicon,” in: Refractory Metal Systems, Springer, Berlin, Heidelberg, 2009, pp. 499 – 534.

  16. W. A. Gooch, “An overview of ceramic armor applications,” in: Ceramic Armor Material by Design, J. W. McCauley, et al. (eds.), American Ceramic Society, Westerville, 2002, pp. 3 – 21.

  17. SiC Armour Materials for Ballistic Protection; https://www.schunkgroup.com/fileadmin/Redakteur/Mediathek/Broschueren/SchunkCar-bonTechnology/TechnicalCeramics/Schunk-Carbon-Technology-SiC-Armour-Materials-Ballistic-Protection-EN.pdf (accessed Apr. 3, 2018).

  18. J. Briggs, Engineering Ceramics in Europe and the USA, Enceram, Menith Wood, Worcester, UK, 2011, 331 pp.

  19. M. K. Aghajanian, B. N. Morgan, J. R. Singh, et al., “A new family of reaction bonded ceramics for armor applications,” Ceram. Trans., 134, 527 – 539 (2002).

    Google Scholar 

  20. A. I. Ovsienko, V. I. Rumyantsev, S. S. Ordan’yan, et al., “Reaction sintered boron carbide: Structure, properties and potential applications as ceramic armor,” in: Current Problems in Production Technology of Modern Ceramics: Proceedings of a Scientific Seminar [in Russian], Izd. Politekhn. Univ., St. Petersburg, 2015, pp. 84 – 93.

  21. A. I. Ovsienko, V. I. Rumyantsev, I. A. Bespalov, and N. M. Sil’nikov, “Potential use of reaction sintered boron carbide as a reinforcing ceramic,” Vopr. Oboronoi. Tekh., Ser. 16, No. 7/8 (85/86), 95 – 101 (2015).

  22. S. S. Ordan’yan, D. D. Nesmelov, and A. I. Ovsienko, “Phase formation during reactive sintering of the B4C–SiC–Si(Al) composite (Review),” Refract. Ind. Ceram., 58(6), 666 – 672 (2017).

    Article  Google Scholar 

  23. J. Pittari, G. Subhash, J Zheng, et al., “The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics,” J. Eur. Ceram. Soc., 35(16), 4411 – 4422 (2015).

    Article  Google Scholar 

  24. C. Zhang, H. Ru, W. Wang, et al., “The role of infiltration temperature in the reaction bonding of boron carbide by silicon infiltration,” J. Am. Ceram. Soc., 97(10), 3286 – 3293 (2014); DOI: https://doi.org/10.1111/jace.13085.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ovsienko.

Additional information

Translated from Novye Ogneupory, No. 10, pp. 9 – 15, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsienko, A.I., Rumyantsev, V.I. & Ordan’yan, S.S. Ceramics Based on Reactively Sintered Boron Carbide. Refract Ind Ceram 59, 507–513 (2019). https://doi.org/10.1007/s11148-019-00263-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00263-8

Keywords

Navigation