Skip to main content

Advertisement

Log in

Research in the Field of Composite Materials Based on HCBS and Refractory Materials Based on the System Al2O3–SiO2–SiC. Part 1

  • SCIENTIFIC RESEARCH AND DEVELOPMENT
  • Published:
Refractories and Industrial Ceramics Aims and scope

Previous research in the field of preparing SiC-containing suspensions, and also refractory materials based on them, are analyzed. The effect of SiC additive fineness in composite HCBS of the Al2O3–SiO2–SiC system is studied with a predominantly high-alumina composition on the properties of materials based upon them after firing the range 1000 – 1400°C. The effect of firing temperature on specimen shrinkage and growth, and their porosity and strength in bending are studied. For specimens after firing at 1200, 1300, and 1400°C a weight increase is detected pointing to SiC oxidation with formation of SiO2. The maximum ultimate strength in bending (110 – 130 MPa) is achieved with a firing temperature of 1200°C, and the ultimate strength in compression for specimens of all compositions after firing at 1200°C is 200 – 425 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. D. Kashcheev, K. K. Strelov, and P. S. Mamykin, Refractory Chemical Technology [in Russian], Intermet Inzhiniring, Moscow (2007).

    Google Scholar 

  2. G. G. Gnesin, Silicon Carbide Materials [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  3. I. Allenshtein, Refractory Materials. Structure, Properties, Testing: Handbook [Russian translation], Intermet Inzhiniring, Moscow (2010).

    Google Scholar 

  4. I. S. Kainarskii and É. V. Degtyareva, Corundum Refractories [in Russian], Metallurgiya, Khar’kov (1963).

    Google Scholar 

  5. Yu. E. Pivinskii, Unmolded Refractories. Vol. 1. General Questions of Technology [in Russian], Teploenergetik, Moscow (2003).

    Google Scholar 

  6. Yu. E. Pivinskii, Ceramic and Refractory Materials, Coll. Work, Vol. 2 [in Russian], Stroiizdat Sp. B, St Petersburg (2003).

    Google Scholar 

  7. E. M. Grishpun, Yu. E. Pivinskii, E. V. Rozhkov, et al., “Production and service of high-alumina ceramic castables. 1. Ramming mixtures based on modified bauxite HCBS,” Refract. Indust. Ceram., 41(3), 104 – 108 (2000).

    Article  CAS  Google Scholar 

  8. E. V. Rozhkov, Yu. E. Pivinskii, M. Z. Naginskii, et al., “Production and service of high-alumina ceramic castables. 2. Properties and service of vibration-placed castables based on bauxite–modified highly concentrated binding suspensions (HCBS) for use in blast–furnace runners,” Refract. Indust. Ceram., 42(5/6), 209 – 215 (2001).

    Article  CAS  Google Scholar 

  9. Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions (HCBS) and ceramic castables. Stages in research and development,” Refract. Indust. Ceram., 44(3), 152 – 160 (2003).

    Article  CAS  Google Scholar 

  10. Yu. E. Pivinskii, E. M. Grishpun, and A. M. Gorokhovskii, “Engineering, manufacturing, and servicing of shaped and highly concentrated ceramic binding suspensions,” Refract. Indust. Ceram., 56(3), 245 – 253 (2015).

    Article  CAS  Google Scholar 

  11. Yu. E. Pivinskii, Rheology of Dispersed Systems, HCBS and Ceramic Concretes. Elements of Nanotechnology in Silicate Materials Science. Vol. 3 [in Russian] Politekhnika, St. Petersburg (2012).

    Google Scholar 

  12. Yu. E. Pivinskii and E. V. Rozhkov, “Unshaped and shaped refractories based on and highly concentrated ceramic binding suspensions (HCBS),” Stahl und Eisen (2001). Special. September. (44th International Colloquium on Refractories).

  13. Yu. E. Pivinskii, P. V. Dyakin, and A. Yu. Kolobov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 9. Preparation and properties of mixed HCBS composition: fuzed bauxite-corundum, quartz glass, reactive alumina. Dilatometric study of materials based on them,” Refract. Indust. Ceram., 58(1), 103 – 108 (2017).

    Article  CAS  Google Scholar 

  14. Yu. E. Pivinskii, P. V. Dyakin, A. M. Gorokhovskii, and L. V. Ostryakov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 10. Effect of firing temperature on properties of materials prepared based on mixed composition HCBS from fuzed bauxite-corundum, quartz glass, and reactive alumina,” Refract. Indust. Ceram., 58(2), 227 – 232 (2017).

    Article  CAS  Google Scholar 

  15. Yu. E. Pivinskii, P. V. Dyakin, and L. V. Ostryakov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 11. Composite composition HCBS (fuzed corundum-bauxite, sintered bauxite, quartz glass) and some properties of materials based upon them,” Refract. Indust. Ceram., 58(4), 450 – 456 (2017).

    Article  CAS  Google Scholar 

  16. Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions. Raw materials properties and Classification,” Refractories, 28(3/4), 179 – 190 (1987).

    Article  Google Scholar 

  17. Yu. E. Pivinskii, Ceramic Binders and Ceramic Concretes [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  18. P. V. Dyakin and Yu. E. Pivinskii, “Rheological and physicochemical properties of HCBS and ceramic concretes in the Al2O3–SiO2–SiC system,” Fundamental Research and New Technology in Building materials Science: Proc. All-Union Conf., Belgorod (1989).

  19. P. V. Dyakin, Yu. E. Pivinskii, F. S. Kalplan, et al, USSR Inventor’s Cert. 1638970, Ceramic concrete mixture for vibration casting, Claim 05.03.89, Publ. 12.01.90.

  20. P. V. Dyakin, Yu. E. Pivinskii, N. A. Davydov, et al., USSR Inventor’s Cert. 1658590. Raw material mix for preparing highly concentrated suspension, Claim 07.26.89, Publ. 02.22.91.

  21. P. V. Dyakin, Yu. E. Pivinskii, F. S. Kalplan, et al, USSR Inventor’s Cert. 1715771, Method for preparing unfired ceramic, Claim 12.25.1989, Publ. 11.01.91.

  22. Yu. E. Pivinskii and M. A. Skuratov, “Rheotechnological properties of molding systems for fabrication of silicon carbide ceramic castables,” Refract. Indust. Ceram., 41(11), 401 – 404 (2000).

    Article  CAS  Google Scholar 

  23. M. A. Skuratov and Yu. E. Pivinskii, “Cast (self-flow) ceramic castables. 4. Spreadability of molding systems and some properties of mullite-silicon carbide ceramic castables,” Refract. Indust. Ceram., 42(1/2), 23 – 29 (2001).

    Article  CAS  Google Scholar 

  24. Yu. E. Pivinskii and P. L. Mityakin, “Rheological and binding properties of high-alumina suspensions,” Refractories, 22(3/4), 292 – 297 (1981).

    Article  Google Scholar 

  25. I. R. Oliveira, P. Sepulveda, and V. C. Pandolfelli, “Deflocculation of Al2O3–SiC suspensions,” Am. Ceram. Soc. Bull., 80(2), 47 – 53 (2001).

    CAS  Google Scholar 

  26. Yu. E. Pivinskii and A. I. Natsenko, “Rheological and technological properties of mixed suspensions of refractory components,” Refractories, 15(11/12), 710 – 716 (1974).

    Article  Google Scholar 

  27. V. T. Shmuradko, O. V. Roman, A. F. Ilyushchenko, et al., Physicochemical features of mullite-corundum material technology,” Ogneupor. Tekhn. Keram., No. 7, 3 – 10 (2008).

  28. V. A. Doroganov and Yu. N. Trepalina, “Highly concentrated ceramic binder suspensions based on silicon carbide,” Refract. Indust. Ceram., 51(4), 302 – 304 (2010).

    Article  CAS  Google Scholar 

  29. V. A. Doroganov, N. A. Peretokina, E. A. Doroganov, et al., “Refractory materials based on artificial ceramic binder suspensions of silicon carbide composition,” Novye Ogneupory, No. 4, 156 – 160 (2013).

    Google Scholar 

  30. V. A. Doroganov, N. A. Peretokina, E. A. Doroganov, et al., “Study of nano-differentiated silicon carbide binders and composites based on them,” Refract. Indust. Ceram., 55(5), 465 – 468 (2014).

    Article  Google Scholar 

  31. S. V. Zaitsev, V. A. Doroganov, and E. I. Evtushenko, “Study of artificial ceramic binder properties in the system Al2O3–SiO2–SiC,” Refract. Indust. Ceram., 57(5), 526 – 530 (2016).

    Article  Google Scholar 

  32. S. V. Zaitsev, V. A. Doroganov, E. A. Doroganov, and E. I. Evtushenko, “Study of artificial ceramic binders of mullite-silicon carbide composition and composites based on them,” Refract. Indust. Ceram., 58(1), 109 – 112 (2017).

    Article  CAS  Google Scholar 

  33. E. M. Grishpun and Yu. E. Pivinskii, “HCBS and ceramic concretes. Breakthrough in XXI century refractory technology,” Novye Ogneupory, No. 2, 28 – 33 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Pivinskii.

Additional information

Translated from Novye Ogneupory, No. 3, pp. 17 – 27, March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivinskii, Y.E., Dyakin, P.V. Research in the Field of Composite Materials Based on HCBS and Refractory Materials Based on the System Al2O3–SiO2–SiC. Part 1. Refract Ind Ceram 59, 124–133 (2018). https://doi.org/10.1007/s11148-018-0193-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-018-0193-5

Keywords

Navigation