Refractories and Industrial Ceramics

, Volume 56, Issue 6, pp 656–663 | Cite as

Beryllium Oxide Powder Microstructure During Production Processing

  • V. S. Kiiko

Beryllium carbonate and hydroxide powders are studied during production processing in order to prepare pure BeO powder. Powders are supplied by the Ul’binsk Metallurgical Plant (Kazakhstan Republic). It is established that beryllium oxide powder crystallinity and morphology depend to a considerable extent on production treatment type and regimes. Microphotographs of different powder batches point to a genetic connection of their morphology with type of starting raw material, which in turn may have a marked effect on slip and press-mix preparation, on molding, and also on sintering of ceramic objects and their properties.


starting raw material beryl beryllium material breakdown beryllium hydroxide beryllium carbonate production process electron microscope study 


  1. 1.
    R. A. Belyaev, Beryllium Oxide [in Russian], Atomizdat, Moscow (1980).Google Scholar
  2. 2.
    V. S. Kiiko, Yu. N. Makurin, and A. L. Ivanovskii, Ceramics Based on Beryllium Oxide: Preparation, Physicochemical Properties, and Application [in Russian], UrO RAN, Ekaterinburg (2006).Google Scholar
  3. 3.
    G. P. Akishin, S. K. Turnaev, V. Ya. Vaispapir, et al., “Composition of beryllium oxide ceramics,” Refract. Indust. Ceram., 51(5), 377 – 381 (2011).CrossRefGoogle Scholar
  4. 4.
    V. S. Kiiko and V. Ya. Vaispapir, “Thermal conductivity and prospects for using BeO-ceramic in electronic engineering,” Steklo Keram., No. 11, 12 – 16 (2014).Google Scholar
  5. 5.
    V. S. Kijko, “The state of the raw materials base and the need to produce beryllium oxide-based ceramic in Russia,” Refract. Indust. Ceram., 55(1), 5 – 9 (2014).CrossRefGoogle Scholar
  6. 6.
    S. I. Solomativ, “How to dispose of beryllium,” Regional Gazette (Sverdlovsk region), 20 Jan. (2012).Google Scholar
  7. 7.
    Emerald cutters are generated in the Sverdlovsk region:
  8. 8.
    E. S. Funston, W. J. Kirkpatrick, and P. P. Turner, “Preparation of rich purity BeO powder,” J. Nucl. Mater., 11(3), 310 – 319 (1964).CrossRefGoogle Scholar
  9. 9.
    Ralp E. Johnson, “Hot-pressing high-density small grain size beryllia,” Amer. Ceram. Soc. Bull., 43(12), 886 – 888 (1964).Google Scholar
  10. 10.
    V. S. Kiiko, Yu. N. Makurin, I. D. Kashcheev, et al., “Features of thermovacuum decomposition of beryllium hydroxide and basic carbonate,” Izv. Akad. Nauk SSSR, Neorgan. Materialy, 23(12), 2012 – 2015 (1987).Google Scholar
  11. 11.
    A. N. Enyashin, Yu. N. Kakurin, A. A. Safronov, et al., “Nano-clusters of beryllium oxide; quantum-chemical modeling of the electron structure and chemical bond,” ZhNKh, 49(6), 979 – 985 (2004).Google Scholar
  12. 12.
    S. N. Bagayev, V. V. Osipov, V. A. Shitov, et al., “Fabrication and optical properties of Y2O3-based ceramics with broad emission bandwidth,” J. Europ. Ceram. Soc., 32, 4257 – 4262 (2012).CrossRefGoogle Scholar
  13. 13.
    V. S. Kiiko, Yu. I. Komolikov, Yu. N. Makurin, et al., “Ultrasound propagation and absorption rate in ceramics based on BeO, Al2O3, ZrO2, and SiO2,” Neorgan. Materialy, 43(12), 1510 – 1514 (2007).Google Scholar
  14. 14.
    F. Buresch, “Berylliumoxid – Thoriumoxid und Zirkondioxid – Keramiken,” Radex Rundschau, No. 1/2, 133 – 145 (1983).Google Scholar
  15. 15.
    M. A. Kolenkova and O. E. Krein, Metallurgy of Dispersed and Light Rare Metals [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  16. 16.
    A. N. Zelikman and G. A. Meerson, Rare Metal Metallurgy [in Russian], Metallurgiya, Moscow (1983).Google Scholar
  17. 17.
    D. Darwin and J. Buddery, Beryllium [Russian translation], Izv. Inostr. Lit, Moscow (1962).Google Scholar
  18. 18.
    A. Platskii, Engineering Ceramics [Russian translation], Gosénergoizdat, Moscow-Leningrad (1959).Google Scholar
  19. 19.
    Yu. M. Mikhailov, V. A. Pchelkin, Yu. I. Ostroushko, et al., “New areas and technology for primary beryllium ore processing,” in: Strategy of utilization and development of the mineral raw material base of rare metals of Russia in the XXI century, Mineral Raw Materials (VIMS), II(7), 138 – 145 (2000).Google Scholar
  20. 20.
    Z. A. Zhurkova, and T. I. Kostenko, “Physicochemical bases of comprehensive processing fluorite-beryllium concentrates,” in: Strategy of utilization and development of the mineral raw material base of rare metals of Russia in the XXI century, Mineral Raw Materials (VIMS), II(7), 89 – 93 (2000).Google Scholar
  21. 21.
    R. M. Kolenkova, T. V. Blistanova, R. M. Bakasheva, et al., “Study of beryllium hydroxide physicochemical properties,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Met.,, No. 4, 82 – 85 (1973).Google Scholar
  22. 22.
    S. V. Bleshinskii, V. F. Abramova, and I,. G, Druzhinin, Beryllium Chemistry [in Russian], AN Kirg. SSR, Frunze (1955).Google Scholar
  23. 23.
    D. Everest, Beryllium Chemistry [in Russian], Khimiya, Moscow (1968).Google Scholar
  24. 24.
    V. L. Baklevich, Engineering Ceramics [in Russian], Stroizdat, Moscow 91984).Google Scholar
  25. 25.
    R. N. Pletnev, V. S. Kiiko, A. A. Nepryakhin, et al., “Proton magnetic resonance in beryllium hydroxide and its thermal decomposition products,” Proc. 7th Internat. Symp. “Phase transformations in solid solutions and alloys,” OMA-2004. ISBN 5-8480-0449-8. Sochi (2004).Google Scholar
  26. 26.
    R. N. Pletnev, V. S. Kiiko, Yu. N. Makurin, et al., “Proton magnetic resonance and the state of hydrogen in beryllium hydroxide,” Refract. Indust. Ceram., 46(4), 273 – 275 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.FGOAU VPO Ural Federal UniversityEkaterinburgRussia

Personalised recommendations